

كلية الهندسة

السنة الثالثة

الفصل الأول

الدكنور هشام النجار

29/9/2013

استكمل الدكتور عناصر الدورة الهيدرولوجية:

3 - الرطوبة:

كمية بخار الماء العالق في الجو و تعد أساس مظاهر التكاثف كالهطول والضباب و الندى.

 $e=M_D/V_L$ وزن بخار الماء مقدراً بالغرام الموجود في متر مكعب من الهواء - الرطوبة المطلقة وزن بخار الماء مقدراً بالغرام الموجود (g/m^3)

 (m^3) حجم الهواء الجاف : V_L

M_D: وزن بخا الماء ب (g)

وتتراوح قيمة e بين 0.19 عند القطبين و 50 عند المناطق الاستوائية .

- الرطوبة النوعية أو رطوبة الإشباع E: وزن بخار الماء المكن أن يستوعبه الهواء بشكل أعظمي و تقدر ب g/m^3 بدرجة حرارة معينة.
- الرطوبة النسبية: هي النسبة المئوية بين وزن بخار الماء الموجود في متر مكعب واحد من الهواء في لحظة معينة إلى الوزن الذي يستطيع حمله من بخار الماء في درجة الحرارة ذاتها $R=e/E \times 100\%$

تسمى درجة الحرارة التي يحصل عندها الإشباع الكامل للهواء ببخار الماء بنقطة الندى . 🖥

4 - التكاثف:

يتكاثف بخار الماء في الهواء إذا انخفضت درجة حرارته إلى ما دون درجة الندى (خنفساء الصحراء -G غاز الكيمتريل).

الدكتوم: هشام النجام

- الضباب : يحدث من انتقال هواء دافئ إلى جهة بادرة (من سطح مائي إلى الأراضي المجاورة شتاءً).
 - الندى :قطرات تظهر صباحاً على أوراق الأشجار والأجسام الصلبة نتيجة تبردها.
- الصقيع :عندما تنخفض درجة حرارة الندى إلى ما دون الصفر تتكاثف الرطوبة على شكل بلورات ثلج متحمدة.
 - الغيوم: تتشكل نتيجة لتكاثف بخار الماء في الجو و يحدث التكاثف نتيجة وجود مواد دقيقة في الجو والتي يطلق عليها نوى التكاثف.

5 - الرياح:

هي انتقال الهواء من منطقة ضغط جوي مرتفع إلى منطقة ضغط جوي منخفض و تؤثر الرياح بـ:

- حركة الغيوم.
- حمولة الرياح: أي تأثيرها على المنشأت.
 - ارتضاع الأمواج.
- شدة التبخر: حيث تزداد شدة التبخر مع ازدياد سرعة الرياح.
 - توليد الطاقة بالرياح.

تعتبر الرياح أعاصير إذا زادت سرعتها عن 117 كم/سا و يمكن أن تصل سرعة الرياح إلى 400 كم/ سا.

- تتأثر سرعة الرياح بـ:
- الضغط الجوي الجاذبية الأرضية دوران الأرض
- شكل سطح الأرض الارتفاع فوق سطح الارض التغيرات اليومية والفصلية
 - $T_m = \frac{1}{4} (T_7 + T_{14} + 2T_{21})$ الحرارة :

T7: درجة الحرارة الساعة السابعة صباحا.

الفصل الثاني : الموازنة المائية و موازنة الطاقة

$P - ET - R \pm \Delta s = 0$ (mm/t)

STOP

ET : التبخر النتحي

P: الهطول

S ألخزون

R: الجريان

t:الفترة الزمنية اللازمة للموازنة (فصلية - سنوية - ...)

3 rd. Year الدكتور: هشام النحل اسم المادة : هيدرلوحيا

$P - ET + R_1 - R_0 + G_1 - G_0 \pm \Delta s = 0$

المياه السطحية الداخلة المياه السطحية الخارجة المياه الجوفية الخارجة. G_0

اذا زاد المخزون Δs تكون إشارته (--) و العكس صحيح.

المياه الجوفية الداخلة: G_I

P > ET + R

P < ET + Rطور التضريغ

P = ET (mm/year)

طور الإملاء

-التبخر لا يعبر دوماً عن الضياعات فمثلاً 50٪ من الهطولات في حوض الأمازون تأتى من التبخر. -إذا زادت درجة حرارة الأرض 4 درجات ستغرق بنغلادش و جزء من مصر و تصبح السويد منطقة سياحية (ذات حرارة معتدلة).

بحر الأرال

أرال بالإنجليزية (Aral sea) هو بحر داخلي يقع في أسيا الوسطى عرفه جغرافيو العرب بـ بحر خوارزم مقسم ما بين كازخستان شمالاً و أوزياكستان جنوباً ... في عام 1960 كانت مساحته تغطى 68,000 كم مربع و كان أقصى عمق فيه 68 م تفصله هضبة أوست أورت.

إن تحويل نهرين من الأنهار التي تصب في هذا البحر من أجل زراعة القطن أدت إلى الأمور التالية:

- 1 انخفاض مساحة سطح البحيرة للنصف تقريباً (معظم الموانئ خارج الخدمة).
 - 2 انخفاض حجم البحيرة إلى ربع ما كان عليه (ملوحة عالية جداً).
 - انقراض أكثر من 20 صنف من الأسماك من أصل 24 صنف.
 - 4 حرمان 60000 شخص من موارد رزقهم (صيد و تجارة أسماك).
 - تملح الأراضي الزراعية في المنطقة (كارثة اقتصادية أخرى).
- حدوث مشاكل صحية غير متوقعة مثل صعوبات تنفسية ناتجة عن الأملاح الجافة و الغبار السام (ثلثي سكان المنطقة يعانون من التهاب الكبد الوبائي و أمراض أخرى).
 - معدل وفيات الأطفال الرضع يساوي 4 أضعاف مثيلاتها في المناطق الأخرى. 7
 - المشروع ألحق الأذى بـ 30 مليون شخص.

اسم المادة : هير الوجيا الدكتور : هشام التجار 3rd Year

جدول يبين كميات الهطول و التبخر بين المحيط و اليابسة:

Item	ocean	land
$A (M/Km^2)$	361.1	148.8
Precipitation _(Km3/year)	458000	119000
Evaporation _(Km3/year)	505000	72000
Runoff to oean(Km3/year)		
Rivers		44700
Ground Water		2200

الفصل الثالث : القياسات المائية لتصميم المنشأت

- طول فترة القياس

- دقة الأدوات المستخدمة

تشمل القياسات المائية:

- التصاريف - المناسيب - الهطول - الطمى - التبخر - المياه الجوفية

إن وجود القياسات لم يعد كافياً لذلك نلجأ للنمذجة الرياضية Hec-Ras كما إن عدم وجود قياسات يجعلنا نلجأ للطرق التقريبية و أخذ عوامل أمان كبيرة.

هذه لمحة أعطاها الدكتور عن المحاضرة القادمة ...

ملاحظات من أجل حل مسألة الوظيفة (الأولى) :

- 1 يجب حفظ ترتيب أشهر السنة لحل المسألة.
- . G_0 ولا خارجى $G_{\rm I}$ لا يوجد لدينا جريان جوية داخلى $G_{\rm I}$
 - . R_0 و خارجى $R_{\rm I}$ و حارجى 3
- نحول واحدة الجريان السطحي من m^3/s أو L/s إلى m من أجل أن نعوض في القانون L/s

يلى: $P - ET + R_I - Ro \pm \Delta s = 0$

لدينا الجريان السطحي الخارج خلال الفترة من أول شهر شباط و حتى نهاية شهر أيار (أربع أشهر) أي 120 يوم

 $R_I = 2.5 \times 120 \times 30 \times 24 \times 60 \times 60 = ()m^3$

ثم نقسم الناتج على المساحة المعطاة بالمسألة فينتج m^3/s مع الانتباه إلى تجانس الواحدات حيث يجب أن تكون المساحة بال m^2 فيكون الجريان السطحى بال m و نحوله إلى m.

و كذلك الجريان السطحي الداخل معطى L/s نحوله إلى m^3/s و بنفس الطريقة إلى mm ثم نعوض في القانون فينتج Δs به mm ولدينا التبخر نحوله إلى mm (نقسمه على المساحة المعطاة فيصبح باله m و نحوله إلى mm)

أما الطلب الثاني ف نقسم S∆على المسامية الحركية للترية.

www.facebook.com/groups/civil.geniuses.2011