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Preface

Prior to the development of quantitative structural theories in the mid-18th century and
since, builders relied on an intuitive and highly developed sense of structural behaviour.
The advent of modern mathematical modelling and numerical methods has to a large
extent replaced this skill with a reliance on computer generated solutions to structural
problems. Professor Hardy Cross' aptly expressed his concern regarding this in the
following quote:

“There is sometimes cause to fear that the scientific technique, the proud servant of the
engineering arts, is trying to swallow its master.’

It is inevitable and unavoidable that designers will utilize continually improving
computer software for analyses. However, it is essential that the use of such software
should only be undertaken by those with the appropriate knowledge and understanding of
the mathematical modelling, assumptions and limitations inherent in the programs they
use.

Students adopt a variety of strategies to develop their knowledge and understanding of
structural behaviour, e.g. the use of:

 computers to carry out sensitivity analyses,

« physical models to demonstrate physical effects such as buckling, bending, the
development of tension and compression and deformation characteristics,

* the study of worked examples and carrying out analyses using ‘hand” methods.

This textbook focuses on the provision of numerous fully detailed and comprehensive
worked examples for a wide variety of structural problems. In each chapter a résumé of
the concepts and principles involved in the method being considered is given and
illustrated by several examples. A selection of problems is then presented which students
should undertake on their own prior to studying the given solutions.

Students are strongly encouraged to attempt to visualise/sketch the deflected shape of
a loaded structure and predict the type of force in the members prior to carrying out the
analysis; i.e.

(i) in the case of pin-jointed frames identify the location of the tension and
compression members,

(ii) in the case of beams/rigid-jointed frames, sketch the shape of the bending moment
diagram and locate points of contra-flexure indicating areas of tension and compression.

A knowledge of the location of tension zones is vital when placing reinforcement in
reinforced concrete design and similarly with compression zones when assessing the
effective buckling lengths of steel members.



When developing their understanding and confirming their own answers by studying
the solutions provided, students should also analyse the structures using a computer
analysis, and identify any differences and the reasons for them.

The methods of analysis adopted in this text represent the most commonly used ‘hand’
techniques with the exception of the direct stiffness method in Chapter 7. This matrix
based method is included to develop an understanding of the concepts and procedures
adopted in most computer software analysis programs. A method for inverting matrices is
given in Appendix 3 and used in the solutions for this chapter—it is not necessary for
students to undertake this procedure. It is included to demonstrate the process involved
when solving the simultaneous equations as generated in the direct stiffness method.

Whichever analysis method is adopted during design, it must always be controlled by
the designer, i.e. not a computer! This can only be the case if a designer has a highly
developed knowledge and understanding of the concepts and principles involved in
structural behaviour. The use of worked examples is one of a number of strategies
adopted by students to achieve this.

1 Cross, H. Engineers and Ivory Towers. New York: McGraw Hill, 1952
W.M.C.McKenzie

To the many students who, during the last twenty five years, have made teaching a
very satisfying and rewarding experience.
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1.
Structural Analysis and Design

1.1 Introduction

The design of structures, of which analysis is an integral part, is frequently undertaken
using computer software. This can only be done safely and effectively if those
undertaking the design fully understand the concepts, principles and assumptions on
which the computer software is based. It is vitally important therefore that design
engineers develop this knowledge and understanding by studying and using hand-
methods of analysis based on the same concepts and principles, e.g. equilibrium, energy
theorems, elastic, elasto-plastic and plastic behaviour and mathematical modelling.

In addition to providing a mechanism for developing knowledge and understanding,
hand-methods also provide a useful tool for readily obtaining approximate solutions
during preliminary design and an independent check on the answers obtained from
computer analyses.

The methods explained and illustrated in this text, whilst not exhaustive, include those
most widely used in typical design offices, e.g. method-of-sections/joint resolution/unit
load/McCaulay’s method/moment distribution/plastic analysis.

In Chapter 7 a résumé is given of the direct stiffness method; the technique used in
developing most computer software analysis packages. The examples and problems in
this case have been restricted and used to illustrate the processes undertaken when using
matrix analysis; this is not regarded as a hand-method of analysis.

1.2 Equilibrium

All structural analyses are based on satisfying one of the fundamental laws of physics, i.e.

F=ma )
Equation

1)

where

F is the force system acting on a body
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3

is the mass of the body
a is the acceleration of the body

Structural analyses carried out on the basis of a force system inducing a dynamic
response, for example structural vibration induced by wind loading, earthquake loading,
moving machinery, vehicular traffic etc., have a non-zero value for ‘a’ the acceleration.
In the case of analyses carried out on the basis of a static response, for example
stresses/deflections induced by the self-weights of materials, imposed loads which do not
induce vibration etc., the acceleration ‘a’ is equal to zero.

Static analysis can be regarded as a special case of the more general dynamic analysis
in which:

F=ma=10 )
Equation

)

F can represent the applied force system in any direction; for convenience this is
normally considered in either two or three mutually perpendicular directions as shown in
Figure 1.1.

Z
Figure 1.1

The application of Equation 2 to the force system indicated in Figure 1.1 is:
Sum of the forces in the direction of the X-axis ¥F=0 Equation 3
Sum of the forces in the direction of the Y-axis 2Fy=0 Equation 4

Sum of the forces in the direction of the Z-axis ¥F,=0 Equation 5
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Since the structure is neither moving in a linear direction, nor in a rotational direction
a further three equations can be written down to satisfy Equation 2:

Sum of the moments of the forces about the X-axis  XMy=0 Equation 6
Sum of the moments of the forces about the Y-axis ~ SMy=0 Equation 7

Sum of the moments of the forces about the Z-axis  XM,=0 Equation 8

Equations 3 to 8 represent the static equilibrium of a body (structure) subject to a
three-dimensional force system. Many analyses are carried out for design purposes
assuming two-dimensional force systems and hence only two linear equations (e.g.
equations 3 and 4 representing the x and y axes) and one rotational equation (e.g.
equation 8 representing the z-axis) are required. The x, y and z axes must be mutually
perpendicular and can be in any orientation, however for convenience two of the axes are
usually regarded as horizontal and vertical, (e.g. gravity loads are vertical and wind loads
frequently regarded as horizontal). It is usual practice, when considering equilibrium, to
assume that clockwise rotation is positive and anti-clockwise rotation is negative. The
following conventions have been adopted in this text:

x-direction: horizontal direction = positive is left-to right  —  4ve
y-direction: vertical direction - positive is upwards T e
Z-direction: rotation about the z-ax1s - positive 15 clockwise ™Y 4y
Y
plane (XY) of the structure —{— X
£
Figure 1.2

Structures in which all the member forces and external support reactions can be
determined using only the equations of equilibrium are ‘statically determinate’ otherwise
they are ‘indeterminate structures’. The degree-of-indeterminacy is equal to the number
of unknown variables (i.e. member forces/external reactions) which are in excess of the
equations of equilibrium available to solve for them, see Section 1.5

The availability of current computer software enables full three-dimensional analyses
of structures to be carried out for a wide variety of applied loads. An alternative, more
traditional, and frequently used method of analysis when designing is to consider the
stability and forces on a structure separately in two mutually perpendicular planes, i.e. a
series of plane frames and ensure lateral and rotational stability and equilibrium in each
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plane. Consider a typical industrial frame comprising a series of parallel portal frames as
shown in Figure 1.3. The frame can be designed considering the X-Y and the Y-Z planes
as shown.

longituding] wind loading

smow load . windload rafler Individual frames designed

: as rigidjointed in the X.Y

plane for deadimposed and
transverse wind loads,

== In the Y.£ plane bracing is

wramsverse provided  (pinjointed) 1o

= wind load  yransfer the longitudinal wind

3 forces.

bongitudisal longitudinal
wind load simple connoctions wind koad
e o =
; - Mlongitudinl p: %,
# S wind bracing /' B
ﬁﬂ =3 - == i == =2 h
Figure 1.3

1.3 Mathematical Modelling

The purpose of mathematical modelling is to predict structural behaviour in terms of
loads, stresses and deformations under any specified, externally applied force system.
Since actual structures are physical, three-dimensional entities it is necessary to create an
idealized model which is representative of the materials used, the geometry of the
structure and the physical constraints e.g. the support conditions and the externally
applied force system.

The precise idealisation adopted in a particular case is dependent on the complexity of
the structure and the level of the required accuracy of the final results. The idealization
can range from simple 2-dimensional ‘beam-type’ and ‘plate’ elements for pin-jointed or
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rigid jointed plane frames and space frames to more sophisticated 3-dimensional
elements such as those used in grillages or finite element analyses adopted when
analysing for example bridge decks, floor-plates or shell roofs.

It is essential to recognise that irrespective of how advanced the analysis method is, it
is always an approximate solution to the real behaviour of a structure.

In some cases the approximation reflects very closely the actual behaviour in terms of
both stresses and deformations whilst in others, only one of these parameters may be

accurately modelled or indeed the model may be inadequate in both respects resulting in
the need for the physical testing of scaled models.

1.3.1 Line Diagrams

When modelling it is necessary to represent the form of an actual structure in terms of
idealized structural members, e.g. in the case of plane frames as beam elements, in which
the beams, columns, slabs etc. are indicated by line diagrams. The lines normally
coincide with the centre-lines of the members. A number of such line diagrams for a
variety of typical plane structures is shown in Figures 1.4 to 1.9. In some cases it is

sufficient to consider a section of the structure and carry out an approximate analysis on a
sub-frame as indicated in Figure 1.8.

Three-pinned
Pomal frame

Figure 1.4
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F
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i
E
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Cantilever

L
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Figure 1.5
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1.3.2 Load Path

The support reactions for structures relate to the restraint conditions against linear and
rotational movement. Every structural element and structure must be supported in order
to transfer the applied loading to the foundations where it is dissipated through the
ground. For example beams and floor slabs may be supported by other beams, columns or
walls which are supported on foundations which subsequently transfer the loads to the
ground. It is important to trace the load path of any applied loading on a structure to
ensure that there is no interruption in the flow as shown in Figure 1.10.

(AR RN RRN SR N AR NERNRRRRRTAR
r— — ——— %
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Load path for a typical frame

Figure 1.10
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The loads are transferred between structural members at the joints using
either simple or rigid connections (i.e. moment connections). In the case of
simple connections axial and/or shear forces are transmitted whilst in the
case of rigid connections in addition to axial and shear effects, moments
are also transferred.

The type of connections used will influence the degree-of-indeterminacy
and the method of analysis required (e.g. determinate, indeterminate, pin-
jointed frame, rigid-jointed frame). Connection design, reflecting the
assumptions made in the analysis, is an essential element in achieving an
effective load path.

1.3.3 Foundations

The primary function of all structural members/frames is to transfer the applied dead
and imposed loading, from whichever source, to the foundations and subsequently to the
ground. The type of foundation required in any particular circumstance is dependent on a
number of factors such as the magnitude and type of applied loading, the pressure which
the ground can safely support, the acceptable levels of settlement and the location and
proximity of adjacent structures.

In addition to purpose made pinned and roller supports the most common types of
foundation currently used are indicated Figure 1.11. The support reactions in a structure
depend on the types of foundation provided and the resistance to lateral and rotational
movement.

Ll Ll

square pad foundations rectangular pad fourdation r anecd

raft Founcation

Figure 1.11
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1.4 Structural Loading

All structures are subjected to loading from various sources. The main categories of
loading are: dead, imposed and wind loads. In some circumstances there may be other
loading types which should be considered, such as settlement, fatigue, temperature
effects, dynamic loading, or impact effects (e.g. when designing bridge decks, crane-
gantry girders or maritime structures). In the majority of cases design considering
combinations of dead, imposed and wind loads is the most appropriate.

Most floor systems are capable of lateral distribution of loading. In situations where
lateral distribution is not possible, the effects of the concentrated loads should be
considered with the load applied at locations which will induce the most adverse effect,
e.g. maximum bending moment, shear and deflection. In addition, local effects such as
crushing and punching should be considered where appropriate.

In multi-storey structures it is very unlikely that all floors will be required to carry the
full imposed load at the same time. Statistically it is acceptable to reduce the total floor
loads carried by a supporting member by varying amounts depending on the number of
floors or floor area carried. Dynamic loading is often represented by a system of
equivalent static forces which can be used in the analysis and design of a structure.

The primary objective of structural analysis is to determine the distribution of internal
moments and forces throughout a structure such that they are in equilibrium with the
applied design loads.

Mathematical models which can be used to idealise structural behaviour include: two-
and three-dimensional elastic behaviour, elastic behaviour considering a redistribution of
moments, plastic behaviour and non-linear behaviour. The following chapters illustrate
most of the hand-based techniques commonly used to predict structural member forces
and behaviour.

In braced structures (i.e. those in which structural elements have been provided
specifically to transfer lateral loading) where floor slabs and beams are considered to be
simply supported, vertical loads give rise to different types of beam loading. Floor slabs
can be designed as either one-way spanning or two-way spanning as shown in Figures
1.12(a) and (b).

main beam ¥t

miain beam

. wilh licheams
ma-m\bcam -

e nl

N ol !
) | 1 l main beam l
ta bem main beam l L

one-way spanning slab two-way spanning slab
(a) o ()
Figure 1.12

In the case of one-way spanning slabs the entire load is distributed to the two main
beams. Two-way spanning slabs distribute load to main beams along all edges. These
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differences give rise to a humber of typical beam loadings in floor slabs as shown in
Figures 1.13.
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Figure 1.13
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1.5 Statical Indeterminacy

Any plane-frame structure which is in a state of equilibrium under the action of an
externally applied force system must satisfy the following three conditions:

« the sum of the horizontal components of all applied forces must equal zero,

» the sum of the vertical components of all applied forces must equal zero,

* the sum of the moments (about any point in the plane of the frame) of all applied
forces must equal zero.

This is represented by the following ‘three equations of static equilibrium’

Sum of the horizontal forces equals zero +ve —
XF=0

Sum of the vertical forces equals zero +ve T
ZFy=0

Sum of the moments about a point in the plane of the +ve Yy

forces equals zero >M=0

In statically determinate structures, all internal member forces and external reactant
forces can be evaluated using the three equations of static equilibrium. When there are
more unknown member forces and external reactant forces than there are available
equations of equilibrium a structure is statically indeterminate and it is necessary to
consider the compatibility of structural deformations to fully analyse the structure.

A structure may be indeterminate due to redundant components of reaction and/or
redundant members. i.e. a redundant reaction or member is one which is not essential to
satisfy the minimum requirements of stability and static equilibrium, (Note: it is not
necessarily a member with zero force).

The degree-of-indeterminacy (referred to as Ip in this text) is equal to the number of
unknown variables (i.e. member forces/external reactions) which are in excess of the
equations of equilibrium available to solve for them.

1.5.1 Indeterminacy of Two-Dimensional Pin-Jointed Frames

The external components of reaction (r) in pin-jointed frames are normally one of two
types:

i) a roller support providing one degree-of-restraint, i.e. perpendicular to the roller,
ii) a pinned support providing two degrees-of-restraint, e.g. in the horizontal and
vertical directions.

as shown in Figure 1.14
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F - R @%1%

roller supports: providing one

pinned supports: providing two
restraint perpendicular to the roller.

mutually perpendicular restramts

Figure 1.14

It is necessary to provide three non-parallel, non-concentric, components of reaction to
satisfy the three equations of static equilibrium. Consider the frames indicated in Figures
1.15and 1.16

15kN 15k

QE External

b Force
A cC System
“*\,: 10m I0m ?

} .0 m )
Figure 1.15
¥
Extemal Force System \\l £\
\ /
A 7 E
Hy g

Figures 1.16

In Figures 1.15 and 1.16 the applied forces and the external components of reaction
represent co-planar force systems which are in static equilibrium. In Figure 1.15 there are
three unknowns, (Ha, Va and V¢), and three equations of equilibrium which can be used
to determine their values: there are no redundant components of reaction.
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In Figure 1.16 there are five unknowns components of reaction, (Ha, Va, Vi, He and
V), and only three equations of equilibrium; there are two redundant reactions in this
case.

The internal members of pin-jointed frames transfer either tensile or compressive axial
loads through the nodes to the supports and hence reactions. A simple pin-jointed frame
is one in which the minimum number of members is present to ensure stability and static
equilibrium.

Consider the basic three member pinned-frame indicated in Figure 1.15. There are
three nodes and three members. A triangle is the basis for the development of all pin-
jointed frames since it is an inherently stable system, i.e. only one configuration is
possible for any given three lengths of the members.

Consider the development of the frame shown in Figure 1.17:

s LT Rig Ny
3 2 i
- m .
§ ]
iy s e
m "rom M gy
1]
iy i
UETH .Jr:r ntyz .“5

= node number ny = member number

Figure 1.17

Initially there are three nodes and three members. If the number of members in the
frame is to be increased then for each node added, two members are required to maintain
the triangulation. The minimum number of members required to create a simple frame
can be determined as follows:

nr = the initial three members + (2 % number of additional joints)

=3+2n-3) ey = (20— 3)
g inthiscase s =8 and therefore the minimum number of members = [(2 * §) - 3))
Som=13

Any members which are added to the frame in addition to this number are redundant
members and make the frame statically indeterminate; e.g.

one redundant member two redundant members

Figure 1.18
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It is also essential to consider the configuration of the members in a frame to ensure
that it is triangulated. The simple frames indicated in Figure 1.19 are unstable.

) o= 2 — 3) but ome bay is
(2n = 3 and the cenral not triangulated

m
/P}cjmn i ot tnangulated m
[ +]

Figure 1.19

As indicated previously, the minimum number of reactant forces to maintain static
equilibrium is three and consequently when considering a simple, pin-jointed plane-frame
and its support reactions the combined total of members and components of reaction is
equal to:

¥ (number of members+support reactions)=(m+r)=(2n—3)+3=2n

Consider the frames shown in Figure 1.20 with pinned and roller supports as indicated.

'« number of joints m =3
number of members wmo=%

(2n=3)=3

number of supipor reaclHans =3

e + o)==
The frame is stbeally deerminane

=10

numher of joints n =7
mEmber of members wi= 11
(2= 3p= 11

number of suppar resciions Ll ]

for+ Fi = 14 =24
The frame is sttpcally deberminate

In=0
Lo E

B 2 her of joants n =
numher of members o= 14
2w —21=13

number of support reaciions r =3
(or + Fy= 017> 2n

. & The frame is statically imbeterminate with
iy = F an redundant internal member
r » H :'r In=1
Fa {eh Ve
Ly
L L1 23 :

g o number of joants N =%
number of members =13
2 —31=13

mnumber of support reaciins ro= b

Cm 4 )= 20 = 2w

The frame is statically indeterminate amd

has 5 redunclancics:

{2 internal members + 3 exiermal reactions)
A F In=35

Figure 1.20
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The degree of indeterminacy Ip=(m+r)—2n

Compound trusses which are fabricated from two or more simple trusses by a
structural system involving no more than three, non-parallel, non-concurrent, unknown
forces can also be stable and determinate. Consider the truss shown in Figure 1.21(a)
which is a simple truss and satisfies the relationships m=(2n—3) and 15=0.

ll.'t H.Ib:li!iﬂlliﬂ Wi
1 Torces @l the pin

" wditional Rce
in this member

Figure 1.21

This truss can be connected to a similar one by a pin and an additional member as
shown in Figure 1.21(b) to create a compound truss comprising two statically determinate
trusses. Since only an additional three unknown forces have been generated the three
equations of equilibrium can be used to solve these by considering a section A-A as
shown (see Chapter 3—Section 3.2.—Method of Sections for Pin-Jointed Frames:
Problem 3.4).

1.5.2 Indeterminacy of Two-Dimensional Rigid-Jointed Frames

The external components of reaction (r) in rigid-jointed frames are normally one of
three types:

i) a roller support providing one degree-of-restraint, i.e. perpendicular to the roller,

ii) a pinned support providing two degrees-of-restraint, e.g. in the horizontal and
vertical directions,

iii) a fixed (encastre) support providing three degrees-of-restraint, i.e. in the horizontal
and vertical directions and a moment restraint,

as shown in Figure 1.22

Fap RIS

roller supports: providing  pinned supports: providing  fixed supports: providing

one restraint perpendicular two mutually perpendicular two mutually perpendicular

1o the roller. resiraints restraints and one moment
restraint,

Figure 1.22

In rigid-jointed frames, the applied load system is transferred to the supports by
inducing axial loads, shear forces and bending moments in the members. Since three
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components of reaction are required for static equilibrium the total number of unknowns
is equal to: [(3xm)+r]. At each node there are three equations of equilibrium, i.e.

X the vertical forces  F,=0;

¥ the horizontal Fx=0;
forces
¥ the moments M=0, providing (3xn) equations.

The degree of indeterminacy
Io=[(3m)+r]-3n

Consider the frames shown in Figure 1.23

B C
Ip=4
My
A Iy,
¥y
(k)
i, My
A %E B
Py fp=3

) T
) F $

Figure 1.23

The existence of an internal pin in a member in a rigid-frame results in only shear and
axial loads being transferred through the frame at its location. This reduces the number of
unknowns and hence redundancies, since an additional equation is available for solution,
i.e. Sum of the moments about the pin equals zero, i.e. X~ Mir,=0

Consider the effect of introducing pins in the frames shown in Figure 1.24
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.f" - H{Smrﬁ . r] - .\ul = 1 due o the
releass of the moment capasity at the
position of the pin.

(a) h=(2-1)=1

f= L(30r) + r] = 3n) = 1 dug 1o the
release of the moment capacity at the
position of the pin.

Iy fa=(3=11=2

(k)

Figure 1.24

The existence of an internal pin at a node with two members in a rigid-frame results in
the release of the moment capacity and hence one additional equation as shown in Figure
1.25(a). When there are three members meeting at the node then there are effectively two
values of moment, i.e. M; and M, and in the third member Ms;=(M;+M,) The introduction
of a pin in one of the members produces a single release and in two members (effectively
all three members) produces two releases as shown in Figure 1.25(b).

In general terms the introduction of ‘p’ pins at a joint introduces ‘p’ additional
equations. When pins are introduced to all members at the joint the number of additional
equations produced equals (number of members at the joint—1).

M

Mty Ms M sero
M ”4— ; ) - ;

\ M, + Ay A
LRSI F
no releases one release
st
[ oYy FEra .
T, xr0 ol
A -
mn one release zero rero

two releases

{a) ()

Figure 1.25
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Consider the frame shown in Figure 1.26.

B N s Iy = Q[i3h + ] = 3} = 3 due to the
pin releass of the moment capagity ot the
o E positions of the pins,
—ee
in—q ™ .
" v pin = {3 =8+ T) =3 x o} =3=1
AR, b vkl '\%‘-—-H.
r.'l. ‘:_ B '.lP b
Figure 1.26

The inclusion of an internal roller within a member results in the release of the
moment capacity and in addition the force parallel to the roller and hence provides two
additional equations. Consider the continuous beam ABC shown in Figure 1.27. in which
a roller has been inserted in member AB

My,

Lo B c
u\_%t‘ - - et [
Va mfl’:r 1'.:T\‘ :"?v
Figure 1.27

I5={[(3m)+r]-3n}-2 due to the release of the moment and axial load capacity at the
roller .. Ip={[(3%2)+6]-(3x3)—2=1
Consider the same beam AB with a pin added in addition to the roller.

A .
n‘*ﬁ—.\ ~ S m— B ’"F.— He
Fa pin n:lﬁr I"—"* ‘|:J .
Figure 1.28

I5={[(3m)+r]—-3n}-3 due to the release of the moment capacity at the position of the
pin and the release of the moment and axial load capacity at the roller

15={[(3%2)+6]—(3x3)—3=0 The structure is statically determinate.

A similar approach can be taken for three-dimensional structures; this is not
considered in this text.
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1.6 Structural Degrees-of-Freedom

The degrees-of-freedom in a structure can be regarded as the possible components of
displacements of the nodes including those at which some support conditions are
provided. In pin-jointed, plane-frames each node, unless restrained, can displace a small
amount & which can be resolved in to horizontal and vertical components 6H and 3V as
shown in Figure 1.29.

Figure 1.29

Each component of displacement can be regarded as a separate degree-of-freedom and
in this frame there is a total of three degrees-of-freedom:

The vertical and horizontal displacement of node B and the horizontal displacement of
node C as indicated.

In a pin-jointed frame there are effectively two possible components of displacement
for each node which does not constitute a support. At each roller support there is an
additional degree-of-freedom due to the release of one restraint. In a simple, i.e. statically
determinate frame, the number of degrees-of-freedom is equal to the number of members.
Consider the two frames indicated in Figures 1.20(a) and (b):

In Figure the number of members m=3
1.20(a):
possible components of displacements at node B =2
possible components of displacements at node =1
support C

Total number of degrees-of-freedom (=m)=3



In Figure
1.20(b):
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the number of members m=11
possible components of displacements at nodes =10
possible components of displacements at =1
support E

Total number of degrees-of-freedom (=m)=11

In the case of indeterminate frames, the number of degrees-of-freedom is equal to the
(number of members—Ip); consider the two frames indicated in Figures 1.20(c) and (d):

In Figure
1.20(c):

In Figure
1.20(d):

the number of members m=14
possible components of displacements at =12
nodes

possible components of displacements at =1
support G

degree-of-indeterminacy Ib=1
Total number of degrees-of-freedom (m—Ip)=13
the number of members m=15
possible components of displacements at =10
nodes

degree-of-indeterminacy Ib=5

Total number of degrees-of-freedom (m-1p)=10
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In rigid-jointed frames there are effectively three possible components of displacement
for each node which does not constitute a support; they are rotation and two components
of translation e.g. 0, 3y and &y. At each pinned support there is an additional degree-of-
freedom due to the release of the rotational restraint and in the case of a roller, two
additional degrees-of-freedom due to the release of the rotational restraint and a
translational restraint. Consider the frames shown in Figure 1.23.

In Figure 1.23(a): the number of nodes (excluding supports) =2
possible components of displacements at nodes =6

possible components of displacements at support D =1

Total number of degrees-of-freedom =7
In Figure the number of nodes (excluding supports) =4
1.23(b):

possible components of displacements at nodes =12

possible components of displacements at support =1

G

possible components of displacements at support F =1

Total number of degrees-of-freedom =14
In Figure 1.23(c): the number of nodes (excluding supports) =3

possible components of displacements at nodes =9

possible components of displacements at support A =1

Total number of degrees-of-freedom =10
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In Figure 1.23(d): the number of nodes (excluding supports) =1
possible components of displacements at nodes =3
possible components of displacements at support C =2
possible components of displacements at support D =1

Total number of degrees-of-freedom =6

The introduction of a pin in a member at a node produces an additional degree-of-
freedom. Consider the typical node with four members as shown in Figure 1.30. In (a) the
node is a rigid connection with no pins in any of the members and has the three degrees-
of-freedom indicated. In (b) a pin is present in one member, this produces an additional
degrees-of-freedom since the rotation of this member can be different from the remaining
three, similarly with the other members as shown in (c) and (d).

Figure 1.30
Degrees-of-freedom:
(a) total =3 oneof mtation - &, two of translation - &y, v
(b) total =4 two of rotation - 7, &, two of translation - &y, v
{c) total =5 three of rotation - &, &5 &, two of translation - &y &y

(dy total =6 fourof rotation -0, &+ 05 80 two of translation - &y, &

In many cases the effects due to axial deformations is significantly smaller than those
due to the bending effect and consequently an analysis assuming axial rigidity of
members is acceptable. Assuming axial rigidity reduces the degrees-of-freedom which
are considered; consider the frame shown in Figure 1.31.
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..:H“ r’f“;.‘ F e
L o I/ 3 Mo axial rigidity
¢ e 1 ﬁ:, 9 e Dc-gm{'s—olb-llldmc}dﬂn'.
Ay Fun Fue three at nodes B, C, [and E
2 one at nods F
o 2 nocde G
A Total= (3= 4)+ 1+ 2= 15
ooy
ﬁ‘, - Assume all columns 1o be axial rigsd
B o, S Degrees-of-freedom:
- o at nodes B, C, D aml E
ane at node F
o it node G
o Tatal = [(2 % &)+ 1 + 2] = 11
=
,..\I.’“ A.a.\ul_nl.' ?I]_ beams and columns o
e[¥ be axial migid
Degrect-of-frecdom:
=i ome rotation st B, C, D, amd E
ane translation al levels BC and DE
onc at node F
A oo ot node G
ez Totl=[(1 <) +2+1+2]=9

Figure 1.31

1.6.1 Problems: Indeterminacy and Degrees-of-Freedom

Determine the degree of indeterminacy and the number of degrees-of-freedom for the
pin-jointed and rigid-jointed frames indicated in Problems 1.1 to 1.3. and 1.4 to 1.6
respectively.

Problem 1.1
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Problem 1.2

Problem 1.3

Problem 1.4
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Problem 1.5

Problem 1.6
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1.6.2 Solutions: Indeterminacy and Degrees-of-freedom

Solution
Topic: Indeterminacy and Degrees-of-freedom
Problem Numbers: 1.1 to 1.6 Page MNa. 1

Degrec-of-Tndeterminacy:
lp=(m+rA=2n={12+4)=(2xT1 =2
Total number of degrees-of-freedoms:
(m—Ip}y=(12-2)=10

Degrec.of-Indeterminacy: -
fo=(m+A=2n=(12+5)=(2xT)=3 —
Total number of degrees-of-frecdom: m =12
!m-—-:’n] {]2“3] 9 o 5
# =0 Degrecol-Indeterminacy:
m o= 9 fp=(m+r=2n=(9+4)={2x6)=1
r =4 Total number of degrees-of-freedom:
(rr=Tp)=(3-1)=8

Degrec-ol-Indeterminacy: Jo={3m+ri—=3n-1  (Note: one internal pin)
Internal pins = 1

fp=[(3x8)+T7=(3xN]-1~3

The number of nodes (exeluding suppons) =6

Displacements at nodes = {3 = 6)+ 1 =19

Displacements al supports = 2

Total number of degrees-of-Tfrecdom: = 21

Degrec-of-Indeterminacy: fi = (3m + ry=3n
=[3=T+6=-3xT]=0

The number of nodes (excluding suppons) =5
Displacements at nodes = (3 = 5) = |5
Displacements al suppaorts = 0

Total number of degrees=of-freedom: = 15

Deprec-ol-Indeterminacy: Iy = (3w + #) - 3n 3
In=[(3x8)+3=-(3x9)]=5 ’
The number of nodes (excluding suppors) = 3
Displacements at nodes = {3 x 5)= 15
Displacements at supports = 4

Total number of degrees-of-freedom: = 19




2.
Material and Section Properties

2.1 Introduction

Structural behaviour is dependent upon material characteristics such as elastic
constants which describe the stress/strain relationships and the geometry of the cross-
section of individual members. This section describes the principal characteristics and
properties which must be considered and evaluated to enable mathematical modelling to
be undertaken.

2.1.1 Simple Stress and Strain

The application of loads to structural members induce deformations and internal
resisting forces within the materials. The intensity of these forces is known as the stress
in the material and is measured as the force per unit area of the cross-sections which is
normally given the symbol o when it acts perpendicular to the surface of a cross-section
and = when it acts parallel to the surface. Different types of force cause different types
and distributions of stress for example: axial stress, bending stress, shear stress, torsional
stress and combined stress.

Consider the case of simple stress due to an axial load P which is supported by a
column of cross-sectional area A and original length L as shown in Figure 2.1. The
applied force induces an internal stress o such that:

P=(gxA) and hence & =P/4 (i.e load/unitarea)

(L-6)

Figure 2.1
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The deformation induced by the stress is quantified by relating the change in length to
the original length and is known as the strain in the material normally given the symbol ¢
where:

d=(change in length/original length)=(5/L)

Note: the strain is dimensionless since the units of 5 and L are the same.

The relationship between stress and strain was first established by Robert
Hook in 1676 who determined that in an elastic material the strain is
proportional to the stress. The general form of a stress/strain graph is as
shown in Figure 2.2.

Stress (o)
&

. - Fracture
Plastic Region
E‘I“ﬁ”f ey il &l

limit

Elastic Régian

k

Strain (£)
Figure 2.2

The point at which this graph ceases to obey Hook’s Law and becomes non-linear is
the “elastic limit” or ‘proportional limit’.

A typical stress-strain curve for concrete is shown in Figure 2.3(a). This is a non-linear
curve in which the peak stress is developed at a compressive strain of approximately
0.002 (depending upon the strength of the concrete) with an ultimate strain of
approximately 0.0035. There is no clearly defined elastic range over which the stress
varies linearly with the strain. Such stress/strain curves are typical of brittle materials.

A typical stress-strain curve for hot-rolled mild steel is shown in Figure 2.3(b). When
a test specimen of mild steel reinforcing bar is subjected to an axial tension in a testing
machine, the stress/strain relationship is linearly elastic until the value of stress reaches a
yield value, e.g. 250 N/mm?.

At this point an appreciable increase in the stretching of the sample occurs at constant load: this is
known as yielding. During the process of yielding a molecular change takes place in the

material which has the effect of hardening the steel. After approximately 5% strain has occurred

sufficient strain-hardening will have developed to enable the steel to carry a further increase in

load until a maximum load is reached.
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The stress-strain curve falls after this point due to a local reduction in the diameter of the sample
(known as necking) with a consequent smaller cross-sectional area and load carrying capacity.
Eventually the sample fractures at approximately 35% strain.

laad Falling off dise
1o neckng of the
spesimen

masimaum lensale stress

upperlower

E 3 };i\."ll.l AAFCssEs %
4 2 o ) »
£ [ cffect of strain  frocpire poing
= Fracture poim £ hardening rcture paod :
- w linearly :
: B glastic H
'
: regaon :

Sirain (£ Straln (£)

Figure 2.3

The characteristics of the stress/strain curves are fundamental to the development and
use of structural analysis techniques. A number of frequently used material properties
relating to these characteristics are defined in Sections 2.1.2 to 2.1.6.

2.1.2 Young’s Modulus (Modulus of Elasticity)—E

From Hooke’s Law (in the elastic region): stress =Cstrain .. stress=(constantxstrain).
The value of the constant is known as “Young’s Modulus’ and usually given the

symbol ‘E’. Since strain is dimensionless, the units of E are the same as those for stress.
It represents a measure of material resistance to axial deformation. For some materials the
value of Young’s Modulus is different in tension than it is in compression. The numerical

value of E is equal to the slope of the stress/strain curve in the elastic region, i.e. tan6 in
Figure 2.2.

2.1.3 Secant Modulus—E;,

The ‘secant modulus’ is equal to the slope of a line drawn from the origin of the stress-
strain graph to a point of interest beyond the elastic limit as shown in Figure 2.4.
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Stress (o)

& ____‘“‘\

point of interest

secant modulus = tan 7

A

A 2

Strain (£)
Figure 2.4

The secant modulus is used to describe the material resistance to deformation in the
inelastic region of a stress/strain curve and is often expressed as a percentage of Young’s
Modulus, e.g. 75%-0.75E.

2.1.4 Tangent Modulus—E;

The “tangent modulus’ is equal to the slope of a tangent line to the stress-strain graph
at a point of interest beyond the elastic limit as shown in Figure 2.5.

Stress (o) e
'y s

= _"--_.__\
S

et point of interest

tangent modulus = tan o

L

Strain (&)
Figure 2.5

The tangent modulus can be used in inelastic buckling analysis of columns as shown
in Section 6.3.6 of Chapter 6.

2.1.5 Shear Rigidity (Modulus of Rigidity)—G

The shear rigidity is used to describe the material resistance against shear deformation.
similar to Young’s Modulus for axial or normal stress/strain. The numerical value of G is
equal to the slope of the shear stress/strain curve in the elastic region, where the shear
strain is the change angle induced between two perpendicular surfaces subject to a shear
stress.
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2.1.6 Yield Strength

The vyield strength corresponds with the point on the stress/strain graph where
permanent deformation begins in the material. In some cases, e.g. in Figure 2.3(a) there is
no distinct yield point whilst in others, such as in Figure 2.3(b) there is a well-defined
yield region. In the former case a percentage offset is often used to obtain an approximate
yield point, e.g. a 0.2% offset point can be determined by drawing a line parallel to the
elastic linear line of the graph starting at a point 0.2% (0.002) along the strain axes as
shown in Figure 2.6. The intersection of this line with the stress-strain curve defines the
0.2% yield point.

Stress (o)
F 1

yiehd stress [sssssssssnriarnannnsssasasssnnnns -

.-'J:“-

+71 0.2% offset point
elastie limit | - i
' l’ i
# '
* H
, '
¢ i
Ea '
- H
< '
# '
' " !
o H
(2] L8 : 5
0,002 Strain (£)

Figure 2.6

2.1.7 Ultimate Tensile Strength

The ‘ultimate strength’ is the maximum stress which a material is capable of
sustaining and corresponds to the highest point on the stress/strain curve; see Figure
2.3(b). In engineering terms this is normally the value adopted, however if a specimen
undergoes considerable necking prior to fracture the true value will differ from this.

2.1.8 Modulus of Rupture in Bending

The “‘modulus of rupture’ represents the ultimate strength in bending obtained during a
bending test. It is determined by calculating the maximum bending stress in the extreme
fibres in a member at failure.

2.1.9 Modulus of Rupture in Torsion

The ‘modulus of rupture’ represents the ultimate strength in torsion obtained during
torsion test. It is determined by calculating the maximum shear stress in the extreme
fibres of a circular member at failure.
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2.1.10 Poisson’s Ratio—o

The “‘Poisson’s Ratio’ for a material is a dimensionless constant representing the ratio
of the lateral strain to the axial strain as shown in Figure 2.7.

' F oo la.lem_lslmm . Eeral
: longitedinal strain &0 s
fr = Ah i . .
F : o | o= (b b) _ {.’.ﬁr.".ﬁ}l
I ™~ @y (@)
h = ,u,‘\"n Original geometry

Figure 2.7

2.1.11 Coefficient of Thermal Expansion—a

The linear coefficient of thermal expansion describes by how much a material will
expand for each degree of temperature increase/decrease, e.g. the change in the length of
a bar made from a particular material is given by:

8L=(1LAT

where

a is the coefficient of thermal expansion for the material,

L is the original length,

At is the change in temperature—a reduction being considered negative and an
increase being positive.

The unit for coefficient of thermal expansion is typically °C ™.

2.1.12 Elastic Assumptions

The laws of structural mechanics are well established in recognised elastic theory
using the following assumptions:

« the material is homogeneous which implies its constituent parts have the same
physical properties throughout its entire volume.

« the material is isotropic which implies that the elastic properties are the same in all
directions.

» the material obeys Hooke’s Law, i.e. when subjected to an external force system the
deformations induced will be directly proportional to the magnitude of the applied force.
(P = 3)

 the material is elastic, which implies that it will recover completely from any
deformation after the removal of load.

« the modulus of elasticity is the same in tension and compression.
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» plane sections remain plane during deformation. During bending this assumption is
violated and is reflected in a non-linear bending stress diagram throughout cross-sections
subject to a moment; in most cases this can be neglected.

2.2 Elastic Cross-Section Properties

An evaluation of the elastic section properties of a cross-section is fundamental to all
structural analyses. These encompass a wide range of parameters such as; cross-sectional
area, position of the centroid and the elastic neutral axes, the second moment of area
about the centroidal axes and any parallel axes and the elastic section modulus, (Note: not
the Elastic Modulus of Elasticity which is discussed in Section 2.1). Each of these is
discussed separately in Sections 2.2.1 t0 2.2.8.

Most structural elements have a cross-section for which standard properties are
known, e.g. square, rectangle, triangle, trapezium, circle etc., or comprise a combination
of one or more such shapes. If the properties of each shape which makes up a complete
cross-section are known, this information can be used to determine the corresponding
properties of the composite shape. A humber of examples are given to illustrate this in the
following sections.

In structural steelwork a variety of hot-rolled standard sections are available, the cross-
sectional properties of which are given in published tables. A selection of the most
common ones are shown in Figure 2.8.

& g ' 5

L' im-n B
Equal angle (EA) Unequal angle (UA) T-section (TUB or TUC)
Universal Begam (LI} Liniversal Column (LIC) Channgl {REC)

Reciangular hellow section (RHS) Square hallow section (5HS) Circular kallow section (CHS)

Figure 2.8
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2.2.1 Cross-sectional Area

The cross-sectional area of a composite shape can be expressed as:
nunrher of prrts
Allﬂ:ll = z A

i=l

where:

At 1S the total area of the composite cross-section

Aj is the cross-sectional area of each component part

Consider the composite shapes indicated in (i) to (ix) and determine the value of A

@ 90 mm 90 mm

- -

s - -
e 10 mim

%
I

O mm

e Bom vw Bmm

Figure 2.9

(i)

S0 mum 82 mm

8 mm

7
b
H
H
kA
H
H
i
£
%
H
kA
£
-
=z
E

1500 mim
R sy —
150 mm

|(_. B mm ,_l, B mm
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(iid
o " Iﬂ_l'l_mm_\_
s | T} mamy
=32 [ s S
: 2 mm

=
|
2 £
2 £

2

hrmm
= Ty
; 104} mamy |
Figure 2.10
mumrher of paris
2
Awa = D 4 =[(150 x 8) + (82 x 8)] = 1856 mm
i=I
£ - lrmm " L mrvm
E | | 10 mm
S e T
=
E = mm
% 10 mm
£ i -
E ¥ et — ¥
S
Figure 2.11

nmfer af purels

Avoeal * Z,f, [(100 = 10) + (150 x &) + (100 = 10)] = 3200 mm’

i
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(iv)

30 mm

= _A0mm 3 1111} B
E X . |
i Faas " Ll T _:‘.r' 10 mm
& 5
8
] [}
g ]
£ 8 = ®
£ g £ i
= . % mm = B
— s & I
] I
-
-]
g 30 mm
3 e
E 8 [
SR L] 3
g = s *— E== 10 mm
Figure 2.12
(v)
10 mm 130 mm 10 mm

AR AR
A BBBA A SBERA

30 mim

Note: the cross-sectional
area of these pars was
caleulated in (i) and (iv)
above,

(vi)

30 mm 0 50 mum |
s : - o,

Figure 2.13

wenrhier of peris

Aroral = ZA, = (3200  + 1640) = 4840 mm’
i=l
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S0 mm

|30 mam T mm | 50 mm
F - ¥ ¥

Figure 2.14

ater e iy
I —— Z_-l, = [{0.5 = 30 = 50) + (70 = 50) + (0.5 = 50 = 50)] = 5500 mm®

inf

Note: For a trapezium in gcncral;

Figure 2.15

]

Awr= YA <05 %0 %)+ (b b+ (0.5 %% % )]
]

= (0. 5xy 4 ok 0500 = 050y 4 2B 4 x)h
Azt = |05 % (the sum of the lengzths of the parallel sides) = (perpendicular height)]

Check the area of the trapezium in (vi): Aww=[0.5%(70+150)x(50)]=5500 mm?

In a similar manner to adding the individual areas of component parts to obtain the
total area, section properties can be evaluated by subtracting areas which do not exist, e.g.
in hollow sections. Consider examples (vii) to (ix).
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(vii) [bmm  10mm
P i

= 1. E 10 nam

220 mm
220 mam

Figure 2.16

sieireher of  peeels

Awa= D4 =[(220 x 120) - (200 x 100)] = 6400 mm’
i=!

lf\n'iii] ,.mm: Itl;llm .
s ..
- 3
£ = -1
[= Ly S
,E_ 5 mm
[ 120 wm
__,-' —
Figure 2.17
rnther of parts ,
Aga= 34 =[(220 x 120) - (100 x 50)] = 21,400 mm’

i=I
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(ix) 2270 mam

- ‘j.»_
160 pam 375 mm 1 200 ey 375 mm 160 mm

S 40125 men diameter voids

Figure 2.18

e ol parfi
Ao ™= Z .-’|'I
i=l

= [0.5 % (1200 + 2270) x (600)] — 2[(0.5 = 375 x 405) ] - 4 [7 = 62.5°]
= 840,038 mm’

2.2.2 Centre of Gravity and Centroid

The centre of gravity of an object is the point through which the force due to gravity
on the total mass of the object is considered to act. The corresponding position on a plane

surface (i.e. relating to the cross-sectional area) is known as the centroid; both are
indicated in Figure 2.19

Position ofthe RS =gt
centre-of-pravity T Position of the centraid
of the mass - of the cross-section
i
Figure 2.19

Consider the cross-section A shown in Figures 2.20(a) and (b) which can be
considered to be an infinite number of elemental areas each equal to JA. The 1% moment
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of area (i.e. areaxperpendicular lever arm) of the total area about any axis is equal to the
sum of the 1% moments of area of each individual area about the same axis, i.e.

Ax x = Z(Eﬁ!xx] SoX = Z[Jﬂx:{}/ﬂ
Ax 5= Z(f’if{xy) N Z(c?Ax_v)/ﬁ'

where:
A is the total area of the cross section
x is the distance in the x direction to the centroid for the total area
¥ is the distance in the y direction to the centroid for the total area
X is the distance in the x direction to the centroid of the elemental area
y is the distance in the y direction to the centroid of the elemental area
Y Y
1 '
{,r—'— Total arca= A P
- f B
X i
\ i
L X o — Elemental area = &4
y \
+ =X ———
(a) (b)
Figure 2.20

In precise terms, Z3AX/A and Z5Ay/A are the integrals for the shape being considered,
however in most practical cases the cross-sectional area comprises a number of standard
shapes (instead of the elemental area) i.e. rectangles, triangles, circles etc. in which the
position of the centroid is known as shown in Figure 2.21
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Figure 2.21

Consider the composite shapes (i) to (ix) indicated previously to determine

the co-ordinates of their centroids.

(i)
Y Yt
0 mm o0 mm i
£ :
= 1 45 nmm 10 man
£
g e ]
: 8
o - x X
cr Bmm
X o= (090w 145 + (0 = BHA5)] /1620 = 45 mm
¥ [0 2 LONEDSY + (90 = M)A 1620 = T2.78 mm
Figure 2.22
(i)
Y Q0 mm Y
- T —F = E
—y = B
E e E A mm
— 3 —- E Fu
- ¥ = pl
'g‘: 75 mm
! X v X
sr & mm LL 8 mam
X =[(150 = 8N4 + (82 = EA9)] / 1856 = 19.91 mm
T = [(150 = ENTA)+ (82 « 8) 14631/ 1856 = 100,1 mm

Figure 2.23

45 mm
—_

45 mam

_:.,- % mm

[ Vertical axis of symmeiry)

#2 mm

+ Bmm

146 mam
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(i)

LLLARIETIE] o

10 mam
.

&
&

150mm

G R

|

* DO I AT

5 mam

L

= 100 s POWS0) + (150 5 Bp300 + (100 3 10pF00] ¢ 3200 = 30.0 mm
= IOI00 e IOW 165 + (150 =« BWESY + (100 = 10K 53]/ 3200 = E5.0 mmy

B
=
X
¥

Figure 2.24

Note: If there are axes of symmetry then the centroid lies at the intersection point of the

axes.

o AR

145 s

SRR

i{;
|

#—r 15 mm 5 mm

[(300 1O IS) + (130 = SH4) + (30 = 10H15)] / 1640 = §.02 mm
T5.0 mm {Horizontal axis of symmetry)

=l

Figure 2.25

)

The values of ¥ and ¥ for the sections in {ii1) and (iv) are used in this calculation.

v ¥ ¥
4 4
LeF men
g H02 man
£
=
- 169495 e
BS
: E
= x
A, WD ameamy o = 2t
X =750 mm {Venical axis of symmetry)
¥ = M32000ES) + (16400 1G9.98)] 7/ (3200 = 16407 = 113.80 mm

Figure 2.26
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1667 mm

M T 66AT mm
66T mm

T = [(0.5 % 30 x S0)(20) + (70 x SOH65) + (0.5 » 50 1 SOH116.67)] / 5500= 70.61 mm
7= [00.5 = 30 % SO)(16.67) + (70 = S0)(25) + (0.5 = 50 = S0)(16.67)] / 5500 = 21.97 mm

Figure 2.27
(i}
Y
Imm 10 mm
. s
r 10 mm
g Ol mm
= - *1 E
q 5
10k mmuam =
-- + = 3
12300 iy L
¥ =600 mm {Vertical axis of symmetry)
¥ = 1100 mm (Haorizontal axis of symmetry)
Figure 2.28
(viii)
Y Y b
fmm 10 mm
.';' - E
« =
i B3 mm
= 4
- :
= X X : = X

X - [(220 = 1200600 = (100 = 30y(E5)) /21400 = 54,16 mm
Foo (220 5 120001 10) = (100 = 303 160)] £ 21400 = 98.32 mm

Figure 2.29
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(ix) Y
2270 mm :
- /_
160 man - 375 mom 1 2CH) 375 w160 mny
p—i n Fa g =
]
L
_1
£
41125 mm, 3
dizmeter  NEEE y
4 ovouls TN : |
- g =
225 mm | 3 at 250 mum centres 225 mm E
b E:
|§ 12040 e |
Y 2270 man

: .t
15667 mm 1TEZY mm 1200 mim 178,33 mim 356,67 mm
. \ » fe e 4

GIHD

%
S35 mm | 1200 mm » 235 mm Jr_,_

Y
1860 mim :

410 nnn"zl
E

TG0 mim 50 mm 250 mm 250 mm
r o ry

4125 mm diameter voids

.

Figure 2.30

¥ =227/ 2= 1135 mm {Vertical axis of symmetry)
F = {105 = 535 = GOOYS00) + (1200 = GO0 I00) + (0.5 = 535 = G00)400)]
= [(0.5 5 375 5 40533000 + (4 = 72 6257 11200 + (0.5 » 375 2 4053 390)] /540,038

= 33246 mm
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2.2.3 Problems: Cross-sectional Area and Position of Centroid

Determine the cross-sectional area and the values of X and ¥to locate the position of
the centroid for the sections shown in Problems 2.1 to 2.6. Assume the origin of the co-
ordinate system to be at the bottom left-hand corner for each section.

240 mm
E
EZ
= /
%
%
E i _
E iy
2 i
A t i
L i
ek 10 mm
Problem 2.1
240 mm

e

I

e SRR Rass |
5

15 mm

&

&

X

.
A mm

400 mm

y

15 mm
o

[ 180 mm

Problem 2.2



Problem 2.3

Problem 2.4
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350 mm
= e 4
; - 200 mm +
oy
=
o
=
=
=
'E" : | 200

mim

& I J

Ii
.

457 = 152 = 52 UB

£
“
)
A
7
[
7
[
[
|
[
7
7
o

I
fffffffffffj LTRSS
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E 1420} mm .
| 1
b

k N
| X
el ¢
L. F
E. _I[}mm J,l 1200 mm J 10 mm
- f — -

Problem 2.5

Section Propertics for UB scctions:
457 = 152 % 52 UB

Owerall depth £} = 449.8 mm S
Area A = 66.6 em®

2™ Moment of area I = 21400 e’

2" Moment of area I, = 645 cm’

533« 210 = §2 UB

Owerall depth D= 5283 mimi
Flange width B = 208.8 mm
Area A = 1050 em’
Web thickness =96 mm
2™ Moment of area I = 47500 cm®
2 Mament of arca Ly = 2010 em®

Problem 2.6
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2.2.4 Solutions: Cross-sectional Area and Position of Centroid

Solution
Topic: Cross-sectional Arca and Position of Centraid
Problem Numbers: 2.1 to 2.6 Page No. 1

Problem 2,13 .

A= [(240 = 15)+ (360 = 10)] = 7200 mm®

X lics on the vertical axis of svmmetry

X = (2402) = 120 mm

F o= [(240 = 15)(36T.5) + (360 = 11807200 = 273,75 mm

Problem 2.2: .

A = (240 = 15)+ (400 = &)+ (180 = 15)] = 9500 mm®

X lies on the vertical axis of symmelry

X = (240023 = 120 mm

¥ o= (240 = 15H422.5) + (400 = B)215) + (180 = 15HT.5))9500 = 234,66 mm

Prohlem 2.3:
A = (3500 10) + (200 = 12) + (300 = &)+ (200 = 12)] = 10700 mm®
X lics on the vertical axis of symmetry
X =(350/2) = 175 mm
¥ = [(350 = 100329 + (200 = 1ZYI18) + (300 = EY162) + (200 = 12)(6)) 10700
= 216,63 mm
Problem 2.4:
A = [(2200= &) + 2 (82 = 15) + 6660] = [0Z80 mm’
- lies on the vermical axis of symmetry
;= (22072 = 110 mm
o= (220 = SHA49.E + 4) + 2(E2 x 15)(449.8 = A1) + (GO60)449.3/2) ) 10580
= 303.51 mm
Froblem 2.5: .
A= [(1420 = 200 ¢ 2 (300> 10) + (1220 = 12)] = 53040 mm”
X ligs on the vemical axis of symmetry
X = {14202 = TI0 mm
F = [(0420 = 200 522) + 2(500 = 10N262) + (1220 = 12)(0)] 53040 = 330,506 mamn

Problem 2.6: .

A = 6660+ 10300 = 17160 mm®

% = [( L0500 208 8/2) 4 (GG60) 208,82 + 062 + 4492/ 2))/17160 = 193,35 mm
lies on the horizontal axis of symmeiny
= (328.32) = 264,15 mum

2.2.5 Elastic Neutral Axes

Consider a beam of rectangular cross-section which is simply supported at the ends
and carries a distributed load, as shown in Figure 2.31.
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[ — uniformly distributed load = w kMNm length

=
cross-section 53

Figure 2.31

The beam will deflect due to the bending moments and shear forces induced by the
applied loading, resulting in a curved shape as indicated in Figure 2.32.

compression
R o ' e ' St L e R

— tengion ———

L

Criginal length of the beam before deformation = L
Final length of the 1op cdge after deformation = (L - 2d,,) iz, shortening
Final length of the bottom edge after deformation = (£ + 28 1.2 lengthening

Figure 2.32

Clearly if the ends of the beam are assumed to remain perpendicular to the
longitudinal axis, then the material above this axis must be in compression, whilst that
below it must be in tension. At a point between the top and the bottom of the beam a
layer of fibres exist which remain at their original length and consequently do not have
any bending stress in them. This layer of fibres forms the ‘neutral surface” and on a cross-
section is indicated by the ‘neutral axis’ as shown in Figure 2.33.

o =T

B g m
> R ERTRRTRS

Thee neutral axis coincides with the centroidal axis discussed in Section 2.2.2

Figure 2.33

2.2.6 Second Moment of Area—I and Radius of Gyration—r

Two of the most important properties of a cross-section are the ‘second moment of
area’ and the ‘radius of gyration’. Consider the area shown in Figure 2.20(b). If the
elemental area A has its centroid at a perpendicular distance ‘r’ from a given axis, the
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second moment of area of the element about the given axis is the product of the area of
the element and the square of the distance of the centroid from the axis, i.e.

Second moment of area /= (84 = rz]

The second moment of area of the total area A is equal to Z(5Ar?) over the whole area.
It is convenient to consider two mutually perpendicular axes which intersect at the
centroid of a cross-section and hence:

— 42 _ 4.2
L= Ar,, and Iy, = Ar,

Alternatively:

XX

Frx = and Foy = 4| —

where ry and ry, are known as the ‘radii of gyration’ about the x-x and y-y axes
respectively.
Consider the rectangular cross-section shown in Figure 2.34.

B B
3 1 — TR
(R g AN
D x___.___.:,If'._ X D ’E._._._.L._E_._E"
B : y e 1 "\l' g
Figure 2.34
f. for element = n’iflf ={Bd xfj 1y for element = Fx' = (D& = )
=2 +R/2
I total area = f By~dy I,y total area = _[ Dx~dy
-z -hr2

i)

3 w2 1
Io=2| 2 =2 Ex[EJ
3 i} 3 2

=_B'D5 I.=2 E*HI:_E Ex Eﬁ :D_H].
12 S 312 12



Ipp = (I + A)Y)

Figure 2.35
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2.2.6.1 The Parallel Axis Theorem

It can also be shown that the second moment of area of a cross-sectional area A about
an axis parallel to any other axis is equal to the second moment of area of A about that
other axis plus the area multiplied by the square of the perpendicular distance between
the axes. Consider the rectangular areas shown in Figure 2.35:

B Q .
™ £y |
I !-1|r | ! T 1y I
i i ]
a i :!
" I ]
) (G o i i . |X (p
' | :
i i
'y ! )
I :
——p o
EBD? , DB "
= +(BD x %) Tog = (I + Ax') = +(BD x x°)

These relationships are used extensively to determine the values of the second moment
of area and radius of gyration of compound sections comprising defined areas such as

rectangles, triangles circles etc.

Consider the cross-sectional area shown in Figures 2.24 and determine the values of
the second moment of area and radius of gyration about the centroidal axes. Data from
Figure 2.24 is indicated in Figure 2.36:

Y
I
104
£ - -
= 'y
S =
E ; X
E K - P — _i-_
50 mm

L 1
g
Er— i
= 'y

Figure 2.36

Area= 3200 mm® (see Figure 2.11)

* * # *
Jop = (Jix + Ay7) for cach rectangle in which PP is
the x-x axis for the whole section.

By )
f.= z + BDw® | for each Mange and the web
12 ’

Ex 1508
L 12
{Note: the second term is zero for the web since the
x-=x axis coincides with its” centroidal axis.

=9

i 3
| Mnﬂnxmxﬂﬂf] +

I, =1507 x 10" mm*
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|QQ:(|W+AX2) for each rectangle in which QQ is the y-y axis for the whole section. In

this case the second term for each rectangle is equal to zero since the y-y axis coincides
with their centroidal axes.

3

3
Iy = DB for each flange and the web = [I{}:-:]{}[l ]+ 1508 = 1.67 % 10°* mm"
_.f ]
s || xx ilS[}T:-:IEI = 68.63 mm: Foy = 'i = ’M =72 85 mm
3200 " A 3200

2.2.7 Elastic Section Modulus—Z

The bending moments induced in a beam by an applied load system generate bending
stresses in the material fibres which vary from a maximum in the extreme fibres to zero at
the level of the neutral axis as shown in Figures 2.33 and 2.37.

The magnitude of the bending stresses at any vertical cross-section can be determined
using the simple theory of bending from which the following equation is derived:

M _E o oMy
I R v a I

Ty,
¥
X cmemebeo e

Bending Stress Diagram

Tsatrom

Figure 2.37

where:

M the applied bending moment at the section being considered,
E the value of Young’s modulus of elasticity,
R the radius of curvature of the beam,
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c the bending stress,

y the distance measured from the elastic neutral axis to the level on the cross-
section at which the stress is being evaluated,

I the second moment of area of the full cross-section about the elastic neutral
axis.

It is evident from the equation given above that for any specified cross-section in a
beam subject to a known value of bending moment (i.e. M and I constant), the bending
stress is directly proportional to the distance from the neutral axis; i.e.

o=constantxy . oy

This is shown in Figure 2.37, in which the maximum bending stress occurs at the
extreme fibres.

In design it is usually the extreme fibre stresses relating to the Ymaximum Values at the
top and bottom which are critical. These can be determined using:

M and o M
7 hattom

“ lop = bottcm

ﬂﬂp =

where ¢ and M are as before,
Ztop is the elastic section modulus relating to the top fibres and defined as
{

XX

}

L top

Zbottom is the elastic section modulus relating to the bottom fibres and
defined as

I

XX

Y botom

If a cross-section is symmetrical about the x-x axis then Ziz=Zotom. IN @Symmetric
sections the maximum stress occurs in the fibres corresponding to the smallest Z value.
For a rectangular cross-section of breadth B and depth D subject to a bending moment M
about the major x-x axis, the appropriate values of I, y and Z are:

BD? D : BD?
== Fmaximum = Z minimum

Ix
12 2 6
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In the case of bending about the minor y-y axis:
_ DB’ B DB

Ymaximum = L yuminimum

12 2 6

‘r}'b'

Consider the cross-sectional area shown in Figures 2.29/2.38 and determine the values
of the maximum and minimum elastic section modulii about the centroidal axes.

Y Y Y4
Gl mm 10 mm S0 mm
- o E L
yi |k )
x T =
%‘&: —* = 85 mn ET
f void [ - "t | =
£ NH il 1A
S - e T -x | E E .
b \§§ \Qs E =
- o
: o — 4 X —_— e

Yo

[ 120mm |
L !

¥ =53 16mm and ¥ =9832mm Area = 21,400 mm’

Figure 2.38

«220° , 3 .
I = ['Eﬂ#+1znxzznxum—as.3zr] _ [5”’:% +50%100x (160 —98.32) ]

= 86.89 x 10° mm*
1 3
Iy = [% +lzuxzzux{ﬁﬂ—54.1ﬁ}=‘] - [%wmmnss—m.mf]

= 26.78 = 10° mm*

i 89x10°
- B689x10° _ ¢¢395 x 10° mm’

2". — an
o boner }.Imll.ml 98'32
i
Lexsop = Lo 8689107 714.09 = 10* mm’
Yoo [22{}—98.32]
f 3 T 3
s = —2— = 26.78x10° = 49446 = 107 mm
Yins 54.16
.I . 4]
Zyyrus = —2— = 2678107 _ 406,74 x 10° mm’
¥ius I:] 20 =54, 1{1}
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2.2.8 Problems: Second Moments of Area and Elastic Section
Modulii

Determine the following values for the sections indicated in Problems 2.1 to 2.6.

(i) the second moment of areas |, and I, and
(i) the elastic section modulii Z,, and Z,,,.

2.2.9 Solutions: Second Moments of Area and Elastic Section
Modulii

Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Mumhber: 2.7 Page No. 1

Section dimensions for Problem 2.1:
\-’
!
240 mm -
1
BRI
= [(360 + 7.5 = 273.75]
=93.75 mm
v2 =[273.75 — 180)
93.75 mm

Y

Ty = Z{fu" + .rI_l'J]

12 12

i 3 3
- [lMJ+{z4nx|5x93_?s-‘]] + [[M]+{Jﬁnx |nx93_?5:]]

= 102.23 = 10" mm”

. 152 240°  360x10° |

ZET0D
{ oy 102.23x10°
.]'-.'wm--ul 2?3-?5

| 102.23x10°
Yup  (375-273.75)

L yre 17.31=10° .
4 L : = 144.25 = 10* mm*
NMiws 120
! Iy . .
= W (yenical axis of symmetry) = 14425 = 107 mm’®
Vas Nins

Zxcx bossom 373.44 = 107 mm°

1009.68 = 10" mm’
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Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Number: 2.8 Page No. 2

Section dimensions for Problem 2.2:

1
~ 240 mm .

¥ =[(15 + 400 + 7.5) — 234.66]
= |87.84 mm

v = [234.66 = (15 + 2007]
= 19.66 mm

¥y = [234.66 — 7.5]
= 227.16 mm

¥
180 mm
1

Y
o = Z{fw“ « Ay?)

3 1
_ [[_3““1’;'5 ]+{240x|5x|3?.84:}:| * [[Ex:;fu ]*(“{3“33“19-“‘3}]

£
¥ l[%J+{IEGxISxEET.I6:}l = 310.37 % 10° mm"

L] a 3
Iyy * Z{a",x‘~ ;)&E"J = [ljxlz;'ﬂ + 4”?;8 " ]5><1I23EI' ] = 24,59 » 10° mm"

Fl= (]
Iy 310.37x10°
Vbt 234'{’:'6

Lx¥iop = Tow M
ENN rops
Frog (430-234.66)

Ty _ 24.59=10"
Kins 120

by _ Ty {vertical axis of symmetry) = 204.92 = 10" mm’
X uis Ve

Zx% botom = = 1322.64 = 10" mm’
= 1588.87 = 10° mm’

=204.92% 10" mm®

Lyvins =

vy s =
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Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Number: 2.9 Page No. 3

Section dimensions for Problem 2.3:

Y

;
350 mm

w =12+ 300+ 12+ 5) - 216.63] 200 mm
= 11237 mm
yo = [(12 + 300 +6) =216.63]
= 101.37 mm
¥i=[216.63 — (12 + 150)]
= 54,63 mm
¥i=[216.63 - 6]
= 21163 mm

l2mm 10 mm

3000 rrimn

e JHmm ——
(]

I = Z(fm.“ + A_'l.':} Y

3 3
- [[%}{mxmmz._wzﬂ : [[%]+{Em:c12x|ﬂl.371]“

N {[8”;"’2““'1]_(s;csm:m.af]] N |:[—H+{2U{Jxllxll{}.ﬁ3z}i|

= 200.58 = 10* mm"

t 3 3
Iy = Z(fm .-.. +\gz}; [Iﬂxlijﬂ +2 [Iile}ﬂ ]4_3(!?;3 ]= 51.74 = 10° mm®

ZETo
1 vy 200.58 = 10"
Vi 21663
Ty _ 200.58x10°
Vep  [334.0-216.63]

L
Iyy _ 51.74x10°
175
Ayvv s = = f’—’ (vertical axis of symmetry) = 295,66 = 10 mm®
Yo Y

L% oo = = 92591 = 10" mm’

= 1708.96 = 10" mm’

£y Niop =

=295.66% 10° mm’

Ly Lns=
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Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Number: 2.10 Page No. 4

Section dimensions for Problem 2.4:
x = [110-7.5]=102.5 mm
vy = [110 = 7.5] = 102.5 mm

v = [(449.8 + 4) — 303.51]
= 15029 mm
= [(449.8 — 41) - 303.51] |
= 105.29 mm ' 1-5/...1”1
.+~ [303.51 — (449.8/2)] - SRRIETE-tS
= TH.61 mm

For 457 x 152 = 52 UB:
=449 8 mm

A = 66.6 cm®

-llsn = 21400 ::I'If'llJ

l,, = 645 em’

Tl = Z(fm“ + xi’_g-‘z:]

20=8 2 )
- {[3-‘“3 ]+[220x8x|50-2g‘}] +2 U”sz +(1582x105.297 ]]
h

l
Y 457=152=52UR

12 )

; [{zldmxm“}-q-[ﬁﬁﬁnx ?g_mJ)'J =323.57 % 10°mm®

oy = Dl +ax’) [Mzﬂﬁ] [52;‘]5 {alesxmzs}}-{msxm*}

12
= 3944 = 10" mm"

Doy 323.57x10°
L 303.51
Zitxaen = T _ 323.57=10°

Vi [449.3-:-8.{}-303.51]

Loy _ 394410

Yiws 10

! . ) )
Zyvans = —X— = —_ (vertical axis of symmetry) = 358.55 = 10" mm’

Yans Y s

1066.09 = 10° mm’*

ZX% bonom =

=2097.16 = 10" mm’

= 358.55% 10° mm’

Zvvin=
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Solution
Topic: Second Moments of Area and Elastic Section Modulii
Problem Number: 2.11 Page No. 5

Section dimensions [or Problem 2.5: v
x = [(1200/2) + 5] = 605 mm A xy —t—
Xy = [(1200/2) + 5] = 605 mm i !
: 1420 mm

31 = [(12 + 500 +10) — 330.56] -, :
= 191.44 mm . M S E O s
va = [330.56 — (12 + 250)] T Tiomm S
= 68.56 mm ._._._____._.?._._f._._.__
1
= 13234“-55;7' - 6] 1 330,56 mm
= L0 T N

e

SRR

e Ll
- ] -
1 1
10 mm | 1204 -mime [ 10 mm
£f I £

hoo= Sl +av?) Y

3 5
- H%]‘{mezuxlm.q#}] +2 M%ﬁ{mxsmmsjﬁz}}

3N
+ l[%k (12201 2:-:314,56"?]} ~2839.47  10° mm"

= Yty +4x)

1 3 a0t )
. 2001420 +3 50010 +{IUXSUHX{1U5:} + 121220
12 12 12 J

= 10248.30 = 10" mm®

Loy 2839.47x10°
- 330.56

= 8589.88 = 10" mm’

Z}{_\: boitom

Yiap
Ty 10248.3x10"
Yus 710

) Iow Iow . ) A
Zyypits = —2— = =2 (vertical axis of symmetry) = 14434.23 x 10" mm’
Y Yins

= 14434.23 % 10" mm’

Syvans =
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Solution
Topie: Sccond Moments of Area and Elastic Section Modulii
Problem Number: 2.12 Page No. 6

Section dimensions for Problem 2.6:

Xy =[193.55 — (208.8/2] = 89.15 mm
Xy = [(208.8/2) + (9.6/2) + (449.8/2) = 193.55] = 140.35 mm

A 2I0=R2UR

For 457 = 152 = 52 UB:
I = 449 8 mm A = 66.6 cm’
Iy = 21400 em® Iy = 0643 cm’

For 533 x 210 x 82 UB:
B = 2088 mm D=35283mm

A=1050em® =96 mm §

I..= 47500 cm’ [, = 2010 cm’ i

193,55 mm
. =

Y

- 2 2
T = (f.,;u + “!\]533 w2 es2um {I“'.u +A}\}+5? « 152 % 52 UB

FETO £ET0

= (47500 10* )+ (645 10° )| - 481.45 * 10° mm*
Fiv = ['r‘?“n' + f'-‘-'lzj_ﬂ.:.z « 200 g2 UR T I[f ” Axy” Jis7 152 520m
—[zumx m*+{msumss}.|53)]+[2|4uu+(mﬁ{}x 140.55 ]]— 235.14 % 10° mm®

Iye _ 481.45x10°
264.15

= 1822.64 = 10° mm’

Z.\:!!! Bantom

-

I | - . .
Zyxpp = =L = X (horizontal axis of symmetry) = 1822.64 = 10" mm’

fep Y bostrom
Iy 235.14x10°
Vars 193.55

=1214.88 = 10° mm’

Lyvns =

7 - 235.14 % 10°
WY.RHS T -

= 643.43 = 10" mm’
Vaus | (208.8/2)+4.8+449.8-193.55
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2.3 Plastic Cross-Section Properties

When using elastic theory in design, the acceptance criterion are based on
“permissible” or “working” stresses. These are obtained by dividing the “yield stress” p,
of the material by a suitable Factor of Safety. The loads adopted to evaluate an actual

working stress are “working loads”.
In a structure fabricated from linearly elastic material, the Factor of Safety (F. of S.)

can also be expressed in terms of the load required to produce yield stress and the
working load. This is known as the Load Factor (1).
Collapse load

Working load

2.3.1 Stress/Strain Relationship

The plastic analysis and design of structures is based on collapse loads. A typical
stress-strain curve for a ductile material having the characteristic of providing a large
increase in strain beyond the yield point without any increase in stress, (e.g. steel) is

given in Figure 2.39.

o ——— e ST LD L LD L ultimate stress
E upper yield stress
= b = =
£ -1~ lower yield stress
& LY .. .
< Py guaranteed minimum yield stress
o
] I | -
|2 o Strain(g) 10 20
Figure 2.39

When adopting this curve for the theory of plasticity (see Chapter 8) it is idealised as
indicated in Figure 2.40
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D F/

ingeption of strain hardening

Stress (Nfmm’)

% Strain (£)

Figure 2.40

If a beam manufactured from material with a characteristic stress/strain curve as
shown in Figure 2.39 has a rectangular cross section and is subjected to an increasing

bending moment only, then the progression from elastic stress/strain distributions to
plastic stress/strain distributions are as indicated in Figure 2.41.

TR —
| <g,

— \

‘\i\\\% :
D2 \.C\
o2 T

-.j]._.;
NN |
NN T E
o2 | T

Elastic  Limiting Elastic Elasto-Plastic Plastic

(a) (b) {e) (d)

Figure 2.41
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Initially at low values of applied moment (a) the maximum stress and strain values are
less than the permissible working values as indicated in Figure 2.41 (i.e. between points
A and B in Figure 2.40).

As the applied moment increases, then the stress and strain values increase until at
stage (b), both attain the yield values g, and p,. This corresponds to point C in Figure
2.40.

A further increase in the applied moment induces yield in some of the inner fibres of
the material. Whilst the extreme fibre strains must now exceed e,, the stress must
obviously remain at py. This corresponds to point D in Figure 2.40 and (c) in Figure 2.41.

As the applied moment increases still further, so the whole section eventually reaches
the yield stress. (As indicated in (d) there is a very small region around the neutral axis
which has not reached yield, but this can be ignored without any appreciable error).
When the whole section has attained yield stress then the section cannot provide any
further moment resistance and a plastic hinge is formed allowing the beam to rotate at the
location of the beam. The value of the applied moment at which this occurs is known as
the Plastic Moment of Resistance (Mp).

2.3.2 Plastic Neutral Axis

Obviously at all stages of loading, the compression force (F¢) induced by the applied
moment must equal the tension force (Ft). This being so, then at the formation of the
plastic hinge where all the material is subjected to the same stress i.e. py, the plastic
neutral axis must be that axis which equally divides the area into two separate parts, i.e.

Fy= Compression Force = (A¢ = py) Fy= Tension Force = (A = py)
where
Ae = Area in compression, Ar = Area in tension

Py = yield stress
and Force in compression=Force in tension

F{' = Fr
(Ac % py) = (Ar % py)
So A=Ay

i.e. Area in compression=Area in tension
In plastic analysis the neutral axis is the equal area axis.

2.3.3 Evaluation of Plastic Moment of Resistance (M,) and
Plastic Section Modulus

In elastic analysis the limiting elastic moment can be expressed in terms of the yield
stress and the elastic section modulus, at the limit of elasticity;
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M. = (p, x Z,) where Z. = elastic section modulus

Similarly in plastic analysis, the plastic moment of resistance can be expressed in
terms of the yield stress and the plastic section modulus.

M, = (p, * 8) where § = plastic section modulus

Consider the section shown in Figure 2.42.

o n
N N,
X ---}-.§ \\§ ......... ﬁ$\k X
nn T Fr e— \\\\\\\ \\lcvcr arm = D/2
| NN
Figure 2'4;55'“““&" I

If the rectangular section is subjected to a moment equal to the plastic moment of
resistance Mp of the section then we can determine a value for the plastic section
modulus.

eg. My=p,x§
M, = (F¢ » lever arm) or [(Fy * lever arm)]
. M, = (stress * area x lever arm)
= [py % (B % DI2) % (D/2)] = p, BD*/4

2
s BD

Hence for a rectangular section the Plastic Section Modulus 4
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The Plastic Section Modulus S,,=1" moment of area about the equal area
axis

2.3.4 Shape Factor

The ratio of the plastic modulus to the elastic modulus (or plastic moment to limiting
elastic moment) is known as the shape factor given by the symbol v.

S  BD'/4

75
Z BD/6

For a rectangle V=

2.3.5 Section Classification

In design codes the compression elements of structural members are classified into
four categories depending upon their resistance to local buckling effects which may
influence their load carrying capacity. The compression may be due to direct axial forces,
bending moments, or a combination of both. There are two distinct types of element in a
cross-section identified in the code:

1. Outstand elements—elements which are attached to an adjacent element at one edge
only, the other edge being free, e.g. the flange of an I-section.

2. Internal elements—elements which are attached to other elements on both
longitudinal edges, including:

— webs comprising the internal elements perpendicular to the axis of bending
— flanges comprising the internal elements parallel to the axis of bending

e.g. the webs and flanges of a rectangular hollow section.
The classifications specified in the code are:

 Class1 Plastic Sections
 Class2 Compact Sections

» Class3 Semi-compact Sections
* Class4 Slender Sections

and are determined by consideration of the limiting values given in Tables of the code.
The classifications are based on a number of criteria.
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2.3.5.1 Aspect Ratio

The aspect ratio for various types of element can be determined using the variables
indicated in the code for a wide range of cross-sections. A typical example is the hot-
rolled I-section indicated in Figure 2.43.

Element Aspect ratio
outstand of compression
flange hT
web at
Figure 2.43

The limiting aspect ratios given must be modified to allow for the design strength p,.
This is done by multiplying each limiting ratio by € which is defined as:

275 |

Py . In the case of the web of a hybrid section ¢ should be based on the
design strength p,s of the flanges.
In addition to €, some limiting values also include parameters r; and r, which are stress
ratios, these are not considered further here.

E=

2.3.5.2 Type of Section

The type of section e.g. universal beam, universal column, circular hollow sections,
welded tubes, hot finished rectangular hollow sections, cold formed rectangular hollow
sections etc. also influences the classification.

The classifications given in codes indicate the moment/rotation characteristics of a
section, as shown in Figure 2.44.

Sections  which  have  full

' plastic  moment  amd  hinge
My | . Class 1 rotation capacity.
= /'/ T Sections which have full plastic
______________.:___‘_ "'-.__\__ " -
= M. Pt —— — Class 2 n‘!crm-:m ca_mcn}' b-u_1 st suUfficient
E o e Cl 3 hinge rotation capacity
=3 rd A58 3 cections in  which  the capacity 18
M| -- "':;,-f-' e Class n.:.-1ri<.'tf:nl ] l]'!'\.‘ Timiting |."|.'Ia-li1.‘ 111:_1rncu|.
rd Slender Scctions  in which the capacity s
rd reduced and based on effective cross—sections.
Rotation

Figure 2.44



Examplesin structural analysis 68

where:

M, = plastic moment of resistance
M. = limiting elastic moment of resistance
M = elastic moment of resistance

These characteristics determine whether or not a fully plastic moment can develop
within a section and whether or not the section possesses sufficient rotational capacity to
permit the section to be used in plastic design.

Consider a section subject to an increasing bending moment; the bending stress
diagram changes from a linearly elastic condition with extreme fibre stresses less than the
design strength (py), to one in which all of the fibres can be considered to have reached
the design strength, as shown in Figure 2.45.

Compression o=y o=y o=y

Tension o<y T o=y o=y

M=(o=Zy) M.=(pyxZy) M= (py % S

Class 4 Class 3 Classes 2 and 1

Slender Semi-compact Compact and Plastic
(a) (b) (c)

where:
Ao = elastic section modulus; 8, = plastic section modulus; o = elastic stress;
. = design strength

Figure 2.45

2.4 Example 2.1: Plastic Cross-section Properties—Section 1

Determine the position of the plastic neutral axis -"p.asﬁc, the plastic section modulus
Sy« and the shape factor v for the welded section indicated in Figure 2.46.
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- p Zo =349 10" mm’
EX mrnnnnnininiiiini e Aram = (A + der + A
= . b
- — 'l”"-z Fcnnlpr:uinn = Frmxinn
— Fey+Fe=Fr

g Fr+—= (Aer % py) + (Aea % py) = (Ar = py)
g — (A + Ac2) = Aq

; ;

Figure 2.46

(i) Position of plastic neutral axis (¥ piastic)

A=[(90x10)+(90x15)]=2250 mm? A/2=(2250/2)=1125 mm?
For equal area axis:

¥ lastic=1125/15=75 mm

(ii) Plastic section modulus (Sxx): (1* moment of area about
the plastic neutral axis)

Sxx=[(90x10)x20]+[(15% 15)><7.5)]3+[(75>< 15)x37.5)]=61.875x10°
mm

(iii)
S S

L XK

Shape factor v = : U= - [
z

7z 34.9x%10°

XX XX

= 3
61.875%10 ] -
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2.5 Problems: Plastic Cross-section Properties

Determine the following values for the welded sections indicated in Problems 2.13 to
2.16,

(i) position of the plastic neutral axis y plastics
(i) the plastic section modulus Sy and
(iii) the shape factor v.

N

1 240 mm -
e~
7 )
8 mm zg 2 mm J? é
% 3
- E
F plastic - |
E
o
XA

Problem 2.13

250 mm

[0} mm

- 100 mm A
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Problem 2.14
e 240 mm e
e |
S
E T e
= 8 mm
==
}_‘pla:uic
E
S ;’,’_ a———
Wy
= B0 mm - /l
Problem 2.15
== 12mm
?
=
Z
g
g
I
E _.,g_._-_--_---_-
o Z
/‘
™l F&E 10 mm I
7 =
z Y plastic
7
PR 7 Rossoenenanay 112 mm l

-,L 100 mim -+~

Problem 2.16
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2.6 Solutions: Plastic Cross-section Properties

Solution
Topic: Plastic Cross-section Properties
Problem Number: 2,13 Page No. 1

T‘ - 240 mm -

7

f OO AR WO
o

&

L

SRS AR

(i) Position of plastic neutral axis (3 PIWK]

A = [2(240 % 10) + 2(360 — 20) * 8)] = 10240 mm®
A2 = (10240/2) = 5120 mm’
For equal area axis:

Vptae = 104 [5120 = (240 = 10)]/(2 = 8) = 180 mm
{i.e. concentric with the elastic neutral axis at mid-height for a symmetrical section)

(11} Plastic section modulus (5.)

5. = 1" moment of area about the equal area axis
=2 = [(240 = 10 = 175)+ 2(170 = § = 85)]
=1302.4 = 10" mm*

(iii) Shape factor (1)
S - I\.\.
v= —2: where Z,=— : -
£ Distance to extreme fibres

- |:240><3603 | 224x%340°

= 199.45 = 10° mm’
12 12

7 — | 199.45x 10*
(360/2)

} = 1108.06 = 10° mm’

Z 1108.06x10°

it

5 1302.4x10°
v= 2 = [—“] - 1.18
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Solution
Topie: Plastic Cross-section Propertics
Problem Number: 2.14 Page No. 1

- 100 mm

T

i e b b

(i) Position of plastic neutral axis {_thw]
A= [2(100 = 10y + (250 = 8)] = 4000 mm’

A/2 = (4000/2) = 2000 mm’

For equal area axis:

Fowe = 104 [2000 = (100 * 10))/8 = 135 mm

{i.e. concentric with the elastic neutral axis at mid-height for a symmetrical section)

(i} Plastic section maodulus (5,.)

Sue = 1" moment of area about the equal area axis
=2 % [(100 = 10 = 130) + (125 = & = 02.5]]
=385 = 10" mm’

{iii) Shape factor (v)
- "'\I
Distance to extreme fibres

where 2,

44.23 = 10* mm*

i 1 =
. - | 100x270 _[hmxzsu]

12 12

44,23%10°
- (270/2)

] =327.63 % 10" mm’

kl
_ [ 38510 t] 18
327.63x10°
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Solution
Topic: Plastic Cross-section Propertics
Problem Number: 2.15

240 mm

5 mm

R NN W R AR AR AR NN

;|1I.w:|¢}

A = [(240 = 15) + (400 = 8) + (180 = 15)] = 9500 mm’
A2 = (9500/2) = 4750 mm”

For equal area axis:

V =15+ [4750 - (180 = 15))/8 = 271.25 mm

< palusiic

(i) Position of plastic neutral axis {,F

(i1} Plastic section modulus (5..)
S = 1" moment of area about the equal area axis
=[240 = 15 = (422.5 - 271.25)) + [(415 - 271.25) = § = (L.5(415 - 271.25)]
+[256,25 « 8 = (0.5 = 256.25)] + [180 = 15 = (271.25 - 7.5)]
= 1601.94 = 10" mm*

(1ii) Shape factor (v)
5 I

v=—": where Z.=

Lt

Distance to extreme fibres

T ER

Z.=1322.64 = 10° mm"  (sec Problem No. 2.8)

" K
oo Sa _ [1&01.?4x10 } 1ol

z 132264 % 10°

AR
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Solution
Topic: Plastic Cross-section Properties

Problem Number: 2.16 Page No. 1

112 mm

RO

235 mm

:x\\\\x\\\w-\\ﬁm\x\\-m\.\\\w&m‘mmw
i
i
i
i
i
i
1
i
i
i
"
L

112 mm 1

);. 1040 mvm y:
(i) Position of plastic neutral axis [Fpmil.]
A = [(235 % 10) + 2(90 x 12)] = 4510 mm’

A2 =(4510/2) = 2255 mm~

For equal area axis:

¥ =[2255 = (20 = 12))/10 = 117.5 mm

¥ .
S plae
(i.e. concentric with the elastic neutral axis at mid-height for a symmetrical section)

(ii) Plastic section modulus (5,,)

5. = 1" moment of area about the equal area axis
=2 4[117.5 = 10 = (117.52)] + [90 = 12 = (117.5 - 6)]}
=378.9 % 10" mm’

(iii) Shape factor ()
. f
where 2y = — e -
Distance to extreme fibres

AN

U:__

oy,

;- |100x2357 [90x211’
LA 12 12

7 ;‘31&%10*
o (235/2)
5 '378.9x%10"
== = —"|(=1.I8
z 320.8x10°

H = 37.69 = 10° mm®
} =320.80 = 10 mm’

o=

X




3.
Pin-Jointed Frames

3.1 Introduction

The use of beams/plate-girders does not always provide the most economic or suitable
structural solution when spanning large openings. In buildings which have lightly loaded,
long span roofs, when large voids are required within the depth of roof structures for
services, when plated structures are impractical, or for aesthetic/architectural reasons, the
use of roof trusses, lattice girders or space-frames may be more appropriate.

Such trusses/girders/frames, generally, transfer their loads by inducing axial tension or
compressive forces in the individual members. The magnitude and sense of these forces
can be determined using standard methods of analysis such as ‘the method of sections’,
‘the method of joint-resolution’, ‘the method of tension coefficients’ or the use of
‘computer software’. The first three methods indicated are summarized and illustrated in
this Chapter.

3.2 Method of Sections

The method of sections involves the application of the three equations of static
equilibrium to two-dimensional plane frames. The sign convention adopted to indicate
ties (i.e. tension members) and struts (i.e. compression members) in frames is as shown in
Figure 3.1.

® + L &
loint Strut — compression member Joint
& > -+ @

Tie — tension member
Figure 3.1

The method involves considering an imaginary section line which cuts the frame
under consideration into two parts A and B as shown in Figure 3.4.
Since only three independent equations of equilibrium are available any section taken through a
frame must not include more than three members for which the internal force is unknown.
Consideration of the equilibrium of the resulting force system enables the magnitude and sense (i.e.
compression or tension) of the forces in the cut members to be determined.
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3.2.1 Example 3.1: Pin-Jointed Truss

A pin-jointed truss supported by a pinned support at A and a roller support at G carries
three loads at joints C, D and E as shown in Figure 3.2. Determine the magnitude and
sense of the forces induced in members X, Y and Z as indicated.

10 kN 10 kN 10 kN
E F
X 5
E
Y <
L
- z [ \
< A J l H G$
L 4 baysat 2.0 m = 8.0 m ‘!\

Figure 3.2

Step 1: Evaluate the support reactions. It is not necessary to know any information
regarding the frame members at this stage other than dimensions as shown in Figure 3.3,
since only externally applied loads and reactions are involved.

10 kN 10 kN 10 kN

e e

P "-.‘ ! .

N | - g
; ' ' : <
i . A P o
H, S A I Ml (;,__ |
ks b
2.0m 2.0m . 20m 20m [
* R R =
Va Ve

Figure 3.3
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Apply the three equations of static equilibrium to the force system:

e ‘TE.F,r 0 Vo = (10 + 10+ 10y + V=0 o+ Vo= 30kN

tve —= XF. =0 L H.=10
#ve JEMy =0 (10 % 2.0)+ (10 % 4.0) + (10 % 6.0) — (Vg = 8.0) = 0
s Fe=15kN ‘I'L
Henece  Vy=15kN 1

Step 2: Select a section through which the frame can be considered to be cut and using
the same three equations of equilibrium determine the magnitude and sense of the
unknown forces (i.e. the internal forces in the cut members).

Section line

i
10 kN 10 kN I’ 10 kN
i
B C D o E F
I— Fie : Fpe < 2 Y
!
Fry : Fg
i
zere 6=Flll| Fy = -l
= A J 1 | H G$
I
15 kN i 15 kN
Part A Section line Part B
Figure 3.4

It is convenient to assume all unknown forces to be tensile and hence at the cut section
their direction and lines of action are considered to be pointing away from the joints
(refer to Figure 3.4). If the answer results in a negative force this means that the
assumption of a tie was incorrect and the member is actually in compression, i.e. a strut.

The application of the equations of equilibrium to either part of the cut frame will
enable the forces X(Fpg), Y (Fg) and Z(Fy) to be evaluated.

Note: The section considered must not cut through more than three members with
unknown internal forces since only three equations of equilibrium are applicable.

Consider part A:
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10 kN 10 kN

B C D .
—————————————————— F DE &

1 1
] 1
1 s e ] =
" " ) T ' . o
! . Part A . ! Fer 5
1 ot o
i _— el
zern—@;——-——-—i --------- > A Far —*
A A J 1
15 kN
| 2.0m 2.0m |
i o
Figure 3.5
. 2 2
Mote: Sinfl= —— =0.707, Cos = —= =0.707,
22 22
+ye f IF~0 +15.0-100-10.0+ Fg Sind=0
F|:|_+ —f.[} =+ ?.“’7 kN
Sind

Member EILis a tic
tve == EF, =0 + Fpe+ Fy +Fg Cos@ =0

bve JEMi=0 4 (15.0%4.0) - (10.0 % 2.0) + (Fpe x 2.0) =0
Fm—. = 20.0 kN
Member DE is a strut
hence .Ir‘.n] - .Fn[g - .F|:| Cosfl=- (— 2{}.“} ={7.07 = CUEH] =+ 15.00 KN
Member HI is a tie
These answers can be confirmed by considering Part B of the structure and applying
the equations as above.

3.3 Method of Joint Resolution

Considering the same frame using joint resolution highlights the advantage of the
method of sections when only a few member forces are required.

In this technique (which can be considered as a special case of the method of
sections), sections are taken which isolate each individual joint in turn in the frame, e.g.
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10 kN 10 kN 10 kN
B CI" D E -'-\\Fh
X 7 4l
y
7 = s
P A J I H L$
15 kN 15 kN

Figure 3.6

In Figure 3.6 four sections are shown, each of which isolates a joint in the structure as
indicated in Figure 3.7.

Feg . ; 10 kN
Fer F FEH F -
Z FH For E Fee
Fen G Fr . | d -
. F Fan .
Fra m H ot Fe .
15.0 kN Fen
Joint G Joint F Joint H Joim E
Figure 3.7

Since in each case the forces are coincident, the moment equation is of no value, hence
only two independent equations are available. It is necessary when considering the
equilibrium of each joint to do so in a sequence which ensures that there are no more than
two unknown member forces in the joint under consideration. This can be carried out
until all member forces in the structure have been determined.

Consider Joint G:

_ tve TR, =0 4150+ Fig=0
Fra Fyg=—15.0kN
v —= EF. =10 —Fou=10
Fon G
Member GH is a zero member
150 kN Member FG is a strut

Consider Joint F: substitute for calculated values, i.e. Fgg (direction of force is into the
joint)
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Fer ¥ tve} TF,=0  +15.0 - Fyyy Cosé=0
;H T Fen=+15.0/70.707
Fru

Fyu=+21.21 kN
150 kN tve—= EF, =0 - Fy— Fpy Sind=0
Fep==21.21 = 0,707
FEFZ = 15.0 kN
Member FH is a tie
Member EF is a strut

Consider Joint H: substitute for calculated values, i.e. Fgy and Fey

Iw:TEF,mD FFept 2121 Sin@=0
F|:||_—21.2|. = 0.707

2121 kN Fen = - 15.0 kN
_ % ive—s £F, =0 - Fyy 4+ 21.21 Cos@=0
Fin 0 Fip=+2121=0.707

H
F||| =+ 150 kN
Member EH is a strut
Member HI is a tie

Fen

Consider Joint E: substitute for calculated values, i.e. Fgr and Feqy

l"] " ve T =0 +15.0 = 10.0 - Fy; Costf=0
15 kN Fy=+35.0/0.707

or Fei=+7.07 kN
'g Y — .}_-..F"-,l =0 o .F'-D[: -15.0 - 1‘"1|5| Sind=10
Fu Fpe=-20.0 kKN
15 kN Member El is a tic

Member DE is a strut

3.3.1 Problems: Method of Sections and Joint Resolution

Determine the support reactions and the forces in the members of the pin-jointed
frames indicated by the “** in Problems 3.1 to 3.4 using the method of sections.

6.0 m %
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Problem 3.1
20 kN 40 kN 30 kN 10 kN
B l < l l D lE 15 kN
A ol F
@i‘ 6.0 m H 6.0 m ? 4.5 m
Problem 3.2
0N 6OKN G0kN  AOKN  60KN  6DKN  30KN
B G l l H _
E..J
o
0% 5 T i 5
E
Wy
A 1 :
_$ J 5 '
| 20m | 20m 20m | 20m | 2.0m 20m |
7 3 7 ] T ] T
Problem 3.3
C D E F G H

] .:;\Z.x I

TSEN T3kN -

9 equal bays at 3.00m cach

Problem 3.4

Determine the support reactions and the forces in the members of the pin-jointed
frames indicated in Problems 3.5 to 3.10 using the method of joint resolution.

30m
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L 4.0m |

Problem 3.5

Problem 3.6

Problem 3.7
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Problem 3.8

25m

25m

Problem 3.9

Problem 3.10
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3.3.2 Solutions: Method of Sections and Joint Resolution
Solution

Topic: Pin-Jointed Frames — Method of Sections
Problem Mumber: 3.1

I0EN

hr=(3.0 = Tan 60%) = 5.196 m

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
+1.rc;} M, =0 + (30 = 6.0)+ (450« 12.0) = (Fr x 18.0) =0 Equation (1)
o Vg =+ 40.0 kN

Consider the horizontal equilibrium of the frame;
tyvg —=ZF =10 FHL=0 Equation (2)

. Hy = zero
Consider the vertical equilibrivm of the frame:
e t F, =0 + Fy—-300-450+ V=0 Equation (3)
Vi = 30.0 + 45.0 - 40.0 o Vy=+350kN 1

Consider a section x—x through members BC, CG and FG:

Readers should consider the
equilibrium of the right-hand-
side of the section x-x and
confirm the walues for the
unknown forces Fye Feg and
lFl'lij.
35.0 kN 30 kN
+w:;) EMg=0 +(35.0=60.0) + (Fac = 5.1960) =0 .. Fape==4042 kKN (Strut)
by 'I‘LL'}. =) + 35,0 — 30,0 % (Feg Sin 60®y =0 ., Feg=—5.77 kN (Strut)
———

tve—=1LF. =0  _4042-577Cos60° 4+ Fes=0 .. Fge=+43.31 kN (Tie)
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Solution
Topie: Pin-Jointed Frames - Method of Sections
Problem Number: 3.2 Page No. 2

Consider section y-v through members CD, DH, DG and FG.

v
nl‘mm clas s e

ARSI LLEE R ARALEE LR i—

A

O
#
IRTAN

= 45% Sind=0.707; Cosél=0.707

fve TH': =0 b 28T = 200 = 40,0+ 7125 + (44,2 = Sin 45°) + Faa =0,
5 Fog ==TL2S KN (Sirut)

te==IF =0 _ 150875+ (442 = Cos 457} + Frg =10 —-—
e F}q.' L) ?.5 k...": ESIruI]

Feaders should consider the equilibrium of the right-hand-side of the seetions x-x
and y-v and confirm the values for the unknown forces Fiyg and £
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Solution
Topic: Pin-Jointed Frames - Method of Sections
Problem Number: 3.3 Iage No, |

RN B0 kM 6N BOKN  GDRN  GEN  3DKN

Y YA Y Y

b
0 K 3 T =-
* -
Hy = _ - = oo
ol N M L K i )
Fa 2l 0m | 20m | 20m | 20m | 1Om "
* + r * Tt + t
Delermine the Suppori Reaclions
Consider the rotational equilibrium of the frame:
tve ) EMy = 0 Equation (L)
+ 6000 % (204 4.0+ 6.0 + 8.0+ 1000)] + (300 = 12.0) = (M = 120) =0
A Fp=4 18000 kN 1‘
Consider e horrzontal equilibrivm of the frame:
tyg —=IF, =) b =0 Equation (2)
2o = rero
Consider the ventical equilibrium of the rame:
+ve bEF, =0 Equation (3)
+ P =300 = (5.0 % 60.0) = 300 + Fy=0 .~ Fy=+3600- 1500
A Vo= 1800 kN T

Consider section x—x through members DE, EG, L0 and LM.
Momually a section which cuts through three unknown forces is considered. In thiz
case use can be made of the symmetry of the frame and loading.

30 kN B0 LN ]
Ix .

o) b ol o

': 41-'*5 ‘_,r."'-“"l-—l'- . Fog c i ;

i *"_.- i "‘_.- ' ‘-J.-Jl' Frgy " r/ £
(1] (= Qe - Qf

e MU o SO B B -
A R AL Fig

ECPD A AL i Fis +
b o hi M [ - Fun
180 kN Jo2om | 20m | ' Joint

The forces in members DE and LM are equal in magnitude and opposite in sense.

AL joimt 0 i1 is evident that the forces in members EQ and LOQ must also be equal in
magnitede and opposite in sense sinee DO and MO have no henzontal components
nf 'Fﬂlfl'.‘. :i.L'. .F|:|| - .F| ] Eﬂd f‘;q - J"I| ip
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Solution
Topic: Pin-Jointed Frames - Method of Sections
Problem Number: 3.3

kN G0 kM G kN
BI ' ] Fi L.q‘\'lﬂ! 157 =25m
;‘“ “":‘_'. i :':.;'g'""“ ”"-ILII - al .',lu =23m
f e i,-'" 5 o Sind=(1.52.5)=06
'] E"'*- P ?"'-., Li] =a;"":;:;; g Cosf= (2025)- 038
¢ ' Taa, o
Fi ] L1 e Mrﬂn—h“u - For==Flu
i N M Fim Feo=—Fig
1500 KN Lom wm, 20m
-m:') TM,=0
4 1800 = 400 = (30,0 = 4.0) = (600 = 200 + (Fap = L3 =(Faa=15=0 _
+480.0 + (=1.5F ) = L5F =0 = Fua =+ 160.0 kN (Tie)
& Fog == 160.0 kN (Strut
sve } £F, =0 bE {Strut)
+ 180.0 = 30.0 = 600 = 60.0 + (Fg Sin & = (F g Sindy = 0 i
+ 3000+ (= DL6Fy ) = 065, =0 S Fg =+ 250 kN (Tic)

v Fg == 25.0 kN (Strut)

Consider section y=y through members DE, EQ, EL, LR and KL.
kN b o 60 kM

[ l I. Mt
e L TR T L T e e TH0AN KN .
H ,.'l-"- :I‘ .“" :I LY ¥ B
P P e e 1 " a
ol Pl QEL T N, =1
e N -
N e e D
#ere *M:mmwﬁ' B A T
N M L *
180 KN . ¥
J 20m | Xhm | 2i0m J
Sinee the frame and leading are symmetrical  Fyy = Fogand Flg = Flg ———
vo Fygy, =+ 1600 kN (Tic)
=
vo Frg =+ 250 kN (Tie
e} £F, =0 H e
+ 180.0 = 300 - 60,0 - 60.0 + (Frg Sin ) - (25.0 = Sinf) + Fg =0 N

FIDE (250 %006 )= (250 = 0.6) + Fiy =0 oo == 3000 KN (Strat)
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Solution
Topic: Pin-Jointed Frames - Method of Sections
Problem Number: 3.4

u_‘ Q P I
. A

TSN T5EN ef.‘-
[

9 equal bays o 100m cach

This frame is similar to the frame given in Chapter 10 Figure 1.21 comprising two
statieally determinate framaes,

There are four unknown reactions, however in addition to the three equations of
static equilibrivm, at support N the magnitude of the forces in members MN and NO
are equal. (Note: the horizontal components must balance each other). This provides
an additional equation which can be used to solve the problem.

Determine the Support Reactions

Consider the rotational equilibrium of the [rme:

bve JEM <0

P70 = P = (T30= 210) = (75.0 = 1800 + (Fy = 13.5)=0 Ecquation (1)

FALOF, = 29250+ 13,58y S P = F 10835 - 056y
Consider the horizontal equilibrium of the frame:
tyg == EF, = () £ =0 Equation (2}

o Hy = 2ero

Consider the verical equilibrivm of ihe frame:

hve TEF_, 0

+ Fa=T5.0-7530+ Fy+ 1y, =0 Equation (3}
o E L0 = Fy -y

Consider scction x-x at support N

Fup Fuyy

:--‘}h—---;/-'—- < Lyo= Ly = 41.5° +1.5% «2.121'm
SN Sind= (1.5/2.121) = 0.707
Lol Cosf= {1.52.121) = 0.707

#ve § EF, =0
+ Vi + (FoSind) +(FuSin@) =0 also  Fip = Fux
bV [2% (Fs % 0.707)]= 0 o Fux == 07070
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Solution
Topie: Pin-Jointed Frames = Method of Scetions
Problem Number: 3.4 Page Mo, 2

Consider section y-v through members DE, EQ and MX,

Fo Sine o

RN TN Y "= - Fpolioas
& bays @ 3.0 meach Lim V™
sl

Lin=v015 4307 = 33584 m
Sine = 3.063.354 - 0.894 Coser = |.5/3.334 = 0.447

e } EMp=0

F{135 = P = (750 = T.5) = (T80 = 4.5) = (Fuw Cost? = 4.5) =0 Equation (1)
+ 1350, - 900.0 - 3.182Fp = 0 5 Fa=+4.243F, - 282,84

From section x=x:  Fyy = = 0T0TF,
= 0707V = + 4243V, - 282,34 &Py = = 006TFy + 6h.66

From Ecquation (1): Fy, =+ 10833 - 050
=016V, 4 6666 =+ 10833 - 0.5y S Fs=+ 12504 kN T

o= — (0167 # 125,14) + 66.66 LWy =+ 4576 kN T

From Equation (3): Fy=+ 1500 = Fy = Vg
=4 1500 -4576- 125,14 S Fp==-209 kN l

Fape = + (4,243 = 45.76) - 28184 & Fay == BE.68 KN (Strur)

bve 1‘ =0

+ Py =750 = 750+ Fy + {Fus Sind) + (FoSine) =0

Fro = [-45.76 # T5.0+ 75,00 - 12514 — (- 88,68 = 0.707))0.594 = 0
2 Fego =+ 46.75 kN (Tic)

+ye—=EF, = 0

+ il + Fpg + lme Costh + {Fi oCosa )= ]

Fog = [zero = (= 8868 = 0.707) = (46.75 = 0.44T)] =0 ——
< Fg == 4180 kN (Tie)
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Solution
Topie: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.5 Page No. 1

Luc =J4.0° +3.0° =50m

Sind = (300500 - 0.6
Cosf = (4.05.0) ~ 0.8

Determine the Support Reactions
Consider the rotational equilibrium of the frame:
e JEMy =0 ¢ (Hax 300+ (120x4.0)=0 Equation (1)
oy = =160 kN
Constder the horizontal equilibrium of the frame: =
dyg—w=IF =0 My + Hy=0 So=100% =0 Equation (2)
oM =4 160 RN
Consider the vertical equilibrium of the frame: -
o T b | Wy + ¥y - 120=0 Equation (3}

' R Rl A
Consider joint A:

A A

Hy —KD Far 16,0 ki T Fac

Fa Py
e
+'|.';.1'.J, ] - ¥y =zero
From Bquation (3} Fi =+ 120 F, v Pe=+ 120 kN T
g —e XF, =0
——

D+ Fyp =0 o Fae = = 160 KN (Strut)

B

Consider joint C: 160 kN o%\.

L Fucw ¢ 120kN
C Ok .

i-'.-.r;l' = I6DKN ;T" 200 kN

12 kM 12N A - : .

16l K —$— 160 KN :
-] I- 12kN

—12.0 + Fy Sind= 0 2 Fa = (12.0/0.6) Fae=+20.0 kX (Tic)

+ye 1' LF,=0
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.6 Page No, 1

15 kN
Lan= o407 4307 =50m
Sind= (3005.0) = 0.6
Cosl= (40500 = 0.8

. Lnc = 207+ 3.07 = 3.606 m
AY Sinfi= (3.003.606) = 0.832
40m | 20m  F CosfF= (20/3.606) = 0.555
L
¥

600

Determine the Support Reactions
Consider the rotational equilibrivm of the frame:
I\':.'J M, =0 F023M+ (150 40— (Mo 60)=0  Equation (1)
5 Vem+ 125 kN T

Constder the horzontal equilibrium of the frame:
fyg—e X =) THy+50=0 Equation (2)
Sy ==50 k!\'*_.

Consider the vertical cquilibrium of the frame:
wedTF a0 FHa- 10+ Fe=0 L K= 150V Equation (3)
Fam 150125 . Fy=+15kN

Consider joint Az

Fan Fag

Hll_ft Far = SOkN 'l‘* : Fa i/
/ 35kN / = Py Costh

Fa

dve—w=EF =0 =50 % F, Cosfl + Fye =10 Equation (a)

we{EF, =0 4254 FyuSin@=0 Equation (b)

From Equation (b): ——
Fap == {2.5/5in#) = - (2.50.6 ) 5 Fap == 417 kN (Strut)

From Equation (a): ——t—

Fro=t50-(-4.17%08) 5 Fye =+ 834 kN (Tic)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.6 Page No. 2

Consider joint C:
Fiag Singt
Fac
B34 kN C

125N

F Cospe-- L5

tvg—=EIF =0 -83d- Fye Cogfi=0 Equation (a)
g T If=0 + 125+ Fye Sinfi=10 Equation (h)

A e

From Equation (a):
Fye = = (8.39/Cos ) = - (8.34/0.555 ) . Fpe=— 1503 kN (Strut)

or

From Equation (b): P
Fye=—(12.5/8in) = - (12.5/0.832 ) 5 Fye=— 1503 kN (Struf)

SKN

L7k 15,08 kX

A /
S0kN '?v ¥ BN

LIKN

The reader should consider the equilibrium of joint B to confirm the calculated
values are correct by checking that:

tve—=EF =0 and #ve III LFy=0
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.7 Page No. 1

Lag =4.0° +5.0° = 6.403 m
I.“,[' = l:l-#ﬂ} [11]

Sind = (5.0/%.403) - 0,751
Cosfl= (4.0/6,403) = 0625

&.0m 40m
HOkN

Determine the Support Reactions
Consider the rotational equilibrivm of the frame:

tve)EMy=0 o+ (200 % 40) - (Ve x 8.0)=0 Equation (1)

o Vem+100kN f
Consider the horizontal equilibrium of the frame:

te—=IF =0 FHy -0 Bquation (2)

oM = vero
Constder the vertical equilibrium of the frame:

e T hX o | + V=200 + F-=0 .. Fy=200-F Equation (3}
' Fa=200-100 - Fy=+100kN $

Consider joint Az

Fan Fan Sindt Fast
A ; A
iy, —f Fin f /

Fa 10,0 kN / = Fayg Conf?
te==EIF, =0+ Fyp Cosll + Fyp =0 Equation (a)

by T IF, =0 + 100+ Fyy Sindd=10 Bquation (b}

From Equation (b): —
Fap = = (10,0818 ) = = (10.0/0.781 ) Lo Fag == 128 kN (Strut)

From Equation (a): i

Fap=~{- 12.8 % 0.625) 5 Fap=+B0KN (Tie)
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Solution

Topic: Pin-Jointed Frames - Joint Resolution

Prablem Number: 3.7

Consider joint D:

Fun

~ I} 3
Fan o =

ROL LN
20 kN W0k

tve—eXF, =50 =801+ Fepmi)

welZF =0 -200+ Fyp=0

From Equation (a):

From Egquation (b):

Consider joint C: (or by symmietry)

Far
o

C
T

10, &N

tug ==X =0 = Fye Cosl = Fep =10

e f R =0 4100+ Fyg Sind=0

From Equation (h):
Fre == {10.0/8ind) = = (10.0/0.781)

From Equation (a);

Fon=-{- 12.8 % 0.625)
B

/AN

128 kN [HE 4

oy, C
TR S 4TS 'f

100EN

e

Equeation (1)
Equatian (b)
—_—
= Fep =+ 8.01{Tie)

L]

-+ Fan =+ 20.0(Tie)

Fir Fiie Sind?

.f'||,|;_' A ﬂ" '

Equation (a)

Equation (b}

o\ Fyg == 128 kN (Strut)

s

o Frp=+B.0KN (Tic)

The reader should consider the
cquilibrium of joint B 10 conficm the
calculated  values are correct by
checking that:

tve—w2F, =0 and +ve }EF, =0
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
I'roblem Number: 1.8

I3 kN HEN
12.0kN

B [ - Log =507 +5.0° = 7,07 m
Lor=7071m
Sind = (3.07.071) = 0.707
Cosf= (5.07.071) = 0.707

Elvm

Determine the Support Reactions
Caonsider the rotational equilibrivm of the frame:
w.;_j M =0 {1200 500+ (500 % 5.0) + (250 % 100) = (1, = 100 =0
Equavien (1)
o Fp=+ 56,0 KN T

Consider the horizental equilibrium of the frame;
typ—wEF = H My 1200 Equation (2)
S Hy == 120kN
e

Consider the vertical equilibrium of the frame:
tvefEF =0 + K -250-500-250+F =0 Equation (3)
S = 1000 - 1y Fo= 1000 =360 o Fy=+4d0kN T

Consider joint A:
Fap

A
Hy Fag

Iy
tvg=wEf =0 =130+ Fy=0 Equation {a)

e ZF =0 4440+ Fy=0 Fquation (b)
—_———
From Equation (a): 2 Fap =+ 120 kN (Tie)

From Equation (h); Co Fap == 440 kN (Strut)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.8

Consider joint B:
15kN AN

B B
[ Fae 120N For

f' T
Fa sk F

#1200+ Fyp Cosél+ Fac =0

g == XF, =0

sveEF, <0 +44.0-25.0 - Fyg Sind= 0
From Equation (bl

Fr =+ (19.0/8inf) = +(19.00.707 )

From Equation (a):

Fe = = 12.0 - (26.87  0.707)

Consider joint C:

S0 kM AN
- X c
Fin: Fep = JLOEN M
For Fer

+3L0+ Fp= O

tvp==EF =
welEF =0 =500-Fey=0

From Equation (a):

From Equation (b):

97

Page No. 2

B 'b‘"" Fap Cosdl

J"". 51"-” Fu..

Equation (a)
Equation (b)

—t—p

‘- Fop =+ 2687 kN (Tie)

P ——
*. Fye = =310 KN (Strut)

Equation {a)
Equation (b)

o, Fen==310 kN (Strut)

o d— -

v Fep==50.0 kN (Struf)
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Solution
Taopic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.8 Page No. 3

Consider joint 1
!5- L:"l .f"|:|| ﬂlmi.l".ll = :
i
D = NN :
Y

Foe ] Fop Fiw Fiy Sind?
Fra: Fre

tyg=em EE =0 4 310 - Fyy Cosl=0 Equation (a)

sve IR =0 - 250 Foe Sind - Fre=0 Equation ()

From Equation (a): ——
Fop = # (310/Cos) = + (31.0/0.707 ) < Fg =+ 43,85 kN (Tie)

From Ecquation (b): e
Fi ™ = 250 = (43.85 = 0.707) 2 Fiyg = = 56,0 kN (Strut)

Consider joint E:

S Fpp = pero member

The reader should consider the
equilibrivm of joint F 1o confirm
the caleulated valucs are corrcet
by ehecking thay:
sORY  4REILN
R KN e == EF =10
and

e LF=0
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 1.9 Page No. |1

Lan=y25 4500 =559 m

Lpg=559m

Ly=y50' 425 =550m

Lig= 559 m

L =25 +25 =3536m

Lm =3536m

Determine the Support Reactions

Consider the rotational equilibrivm of the frame:

+L‘¢D IMy=0  +(10.0= 500+ (150 % 5.00-(Fy= 10.0)=0 Equation (1)
s Fp=+125kN T

Consider the horizontal equilibrium of the frame:

e —=EF =0 +Hy+100=0 Equation (2)

- Hy==100 kN
Consider the vertical equilibrium of the frame: -
e TEF!- =0 +Fo= 150+ =0 2 Fy=150=F Equation (3)

Fp=150-125 . Fy=+25kN T

Consider joint A:

Fan
Far

Fap Siter

A
= 100K

Fap Sind
‘R:;::

25N =i o Cosd

.

A FapCosr

Sind={5.0/559)=0.8%  Cosf=(2.5/5.59) = 0.447
Siner= (2.5/5.59) = 0447 Coser = (5.0/5.59) = 0.894

e =eIF =0 =100+ FuCosf + Foy Cos=10 Equation (a)

e T EF=0 + 254 Fap Sind + Fop Singg= 0 Equation {b)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
PFroblem Number: 3.9 Page No. 2

From Equation (a):
Fap = [+ 10,0 = (Fyp = 0.894)) 0.447 2 Fap =+ 20371 =20F

Substitute Tor Fap in Equation (b)

+ 2.5 4 (22371 = 20F,) Sind + Fyy Siner =0

+2.5 4+ [(22.371 % 0.894) = (2.0F s % 0.894) # (Foy % 0447) =0 —
+225-1.341F=0 S Py =+ 1678 KN (Tie)

————
Frp =+ 22371 - (20 * 16.78) o Fag==1L19kN (Strut)

Consider joint Bt
119 RN

B . 1] B
10 kN —7:— Fiag 1k _?T' Fac, 5 === e Siny
"I . i iy
. TBF gk T : % :\

Fan
B yiosing  FirCosy Fer

Sind=(2.5/5,59)=0.447 Cos/¥=(5.0/5.59) = 0.394
Siny=(2.503.536) = 0.707 Cosy = (2.5/3.536) = 0.707

dye—= I =0 4 100F1LI9 Sing + FypSing + Fe= 0 Equation (a)
+ye |' IF =0 + 11,19 Cogff = Fe Cos p =10 Equation (b)

From Equation (b):
Fe =+ (1119 CosffiCosy ) =+ [(11.19 = 0.89430,707 }] ———
o Fyp=+ 1415 kN (Tie)

From Equation (a):
Fe = =100+ (1119 = 0447y + (14,15 = 0.707)) ——
o Fae® =250 KN (Strut)

Consider joint C:
13kN 15kN

C C
Fe Fn = I50kN Fen

Fer Frr

.
tp—eIf =0 #2504+ Fp=0 & Fep==250kN (Strut)

welZF=0 _150-Fg=0 “ Fep=—15.0 kN (Struf)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Namber: 3.9 Page No, 3

DX" Frg Sinft
Y

Fue = Fog

Consider joint D:

e D
F-;'t:-"'?\: MO 7\[" | Frs !‘-Irl;r'd---; }
For Ror % | :

Fi: Cagfl

e
Sinf= (15/5.59)= 0447 Cosf= (5.0/5.59) = 0.894
Siny={2.53.536)=0.707  Cosy=(2.5/3.536)=0.707
sve—eLF =0 +25.0-Fy Siny + FopSinf= 0 Equation (a)
we}ZF =0 - Fiy Cosy - Fog Cosfi=0 Equation (b)

From Equation (a):
Fre = [ =250+ {Fur = 0700 0,847 ) Frp == 55928 + | 382 F e

Substitute for Fry in Equation (b)

= Py Cosy = Fiye Cosff= 0

= (Fpg = 0.707) = [(=55.928 + 1.582Fpy ) = 0.8M4] = 0 ———
+500 - 2121 Fe =0 2 Fyp=+23.57 kN (Tic)

e
Fog = = 55928 + {1,582 = 23.57) S Fop == 1864 kN (Strut)

Consider joint E:

1864 Costt  Frp Figr Slnar

18,64 Sind

12.5kN 1864 BN Fiy Coser

Sindr=(5.0/3,59) = 0,594 Cosfl= (2.5/5.59) = 0.447
Sing = (L5/5.59) = 0.447 Coser = (5.075.59) = 0,894

e ==L =0 (180 Cosll) - Fe Cosa=0
e =

Fip =+ (1864 % 0.447)0.894 - Fyp=+932 kN (Tie)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.9 Page No. 4

The values obtained above can be checked by confirming the horizontal and vertical
equilibrium at joint F as fol lows:

Joint F: 150 kN

1415 kN 23.5TkN

I6,78 kN 032kN

Siny=(253.536)=0707  Cosy=(5.03.536) = 0.707
Sing = (235,59 = 0447 Cose = [(30/3.59) = 0.8
iyg==5F,

== 6,78 Coza = 14,15 Cosy+ 9,32 Coser + 23.57 Cogy
oo (16,78 % 0.894) = (14.15 = 0.707) + (9.32 = 0.894) + (2357 = 0.707)
= 2070

ive 58, =0
= = 16.78 Sinar + 14.15 Siny=9.32 Singe + 23.57 Siny= 15.0
« = (16.78 % 0.447) + (14.15 % 0.707) = (9.32 x 0.447) + (23.57 % 0.707) - 15.0

“ R
15 kN

B {.'l

M kN 4<iu K% —I-I-Ji.l}
M08k 150kN  I0ET RN

1LI9KY )< ETETRS

1678 kN 633 KN
100 kN

15kN !II_SI:_'\
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.10 Page No. 1

6,0 m E

Lep =307 4907 =948Tm; Lue=Ler=v3i07+30° =4243m
Conzider triangle CEG:

Sind= (309487 =0.316;  Cosd= (2.0/0.487) = 0.940

Sinff= (RE9A8T) =0.949;  Cosf=(309487)= 0316

Consider triangle DEF:
Fnf= (Lpg'Leg) v b = Lep Singd= (0.0 = 0.949) = 5,692 m

Consider triangle DED":
3““?: ‘.r.|:||;|'|r.lr.|;||':| 8 |r.|;||;| L .F.|1| S!Iﬂfj - [s,ﬁllll X 03 I.f:l] . IS m
Cozdt= {LepdLog) S bep = LppCosfl = (5602 x0.040) =54 m

| 3_?'r5!:n

- 3602 m
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.10 Page No, 2

F
O m ——

Jm | Jm

Determine the Support Reactions

Consider the rotational equilibrivm of the frame:

+ve JEMy=0 It isconvenient lo consider joint E in this case

{1200 P+ (120 % Fy) #0300 Hy) - (12,0 = 9.0) - (4.0 = 9,487} - (240 = 54)
= (B0 = 5692 =0

SO L0V, 120V, ¢ 3.0H, = 3210 Equation (1)
Consider the horizontal equilibrium of the frame:

bye —=EF, =0

AT b Fig = (40 Cosgf) = (8.0 Cosf - (4.0 Cosfh= 0

Sob Myt M= 1264 = 2528 - 1264 =0

S+ Hy =506 Equation (2}
Consider the vertical equilibrium of the frame:

e T EF, -0

FFa+ Py = 120 - (4.0 8inf) - 24.0 - (8.0 Sinf) - 120 - (4.0 SinH =0

F P+ P = 1203790 -24.0 - 7,392 - 12.0-3.7% =0

SRy Ky = 0308 Equation (3}

Consider joint B:

Fg = zern

From Equation (3):  + Fy + Fy = 6318 s Fy=+63L18 I;NT
From Equation (1);  + 120F, + 12,00 + 300, = 3211 —
P10 = 63 08) + (308 ) = 3211 O Mg m = 145,69 kN
From Equation (2):  + Fy + Hy = 506 —
+ - 145.69 = 5.06 o Hy =+ 15075 kN
g —e=EF =) ——

g+ Fue =1 o Fyp =+ 14569 kN (Tic)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution

Problem Number: 3.10 Page No. 3

Consider joint A:

[EIUR o

6LIEKN
Sing = (A04.243) = 0.707  Cosa = (3.0/4.243) = 0.707
tvg=—s=LF, =0 + 15075 + Fap Cos + Fog =10
e EF, =0 k63184 Fyc Singe = 0
From Equation (k) Fye=-(63.15/0.707) =0 o Fac=—
From Equation (a):  Fag == 150,75 = (- §9.36 = 0.707)

e F.“F —

Consider joint G:
Feg

. L =
Fag Fra BTATEN

Far

4
1 i
o
1
e oy Coser
A AL

Equation (a)
Equaten (b)
-l —
§9.36 kN (Strut)

=

87.57 kN (Strut)

o —
Hg—=LF =10 =817+ Fg= 0 o Frg=—871.57 KN (Strut)

¥re T Lhy=0 +Fg=0 2 Fg = 2zero member

Consider joint C:
12 kN

12 kN
A kN
145,60 KN s ,
Frn
RO36 k3

et Foy

- C oo FepSiOEL.,
i
T .
FenCosfi Fen

b Siner

m

8036 Coser Fer

Sine = (3.0/4.243) = 0,707 Coser= (3.04.243) = 0.707
Sinfi= (9.0/9.487) = 0,949 Cosfi= (3.09.487) = 0316

20 Coxyll
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number; 3,10 Page No. 4

by == T,
= 14569 + 59,36 Coser - 4.0 Cosfi+ Foy Siner + Fop Sinfi= 0

= 145,69 ¢ (8930 = 0.707) = (4.0 = 0.300) + (Fop = 0.707) ¢ (Fopp * 0.949) =1
= 83776 + 0707 F o + 0495, = 0 Equation {a)

sve 2F, =0
= 12,0+ $9.36 Sinee — 4.0 Sinff - Fop Coser — Fep Cosf=10

= 12,0+ (89,36 = 0.707) — (4.0 = 0.949) — (Fiz = 0.707) - (Fep = 0.316) =0
+ 47,382 = 0707 Fey = 0.3 168 = 0 Equation {l)

From Equation (a):
Fep = (= 83,776 - 0.949F,) 0,707 S Fep e RS = 13428,

Substitule For Foy in Equation (k)

#7382 = 0.707Fr = 031050 = 0

$47.382 = [0.707 % (1185 = 1.342F)] = 0.316Fp = 0 it
+364+0.633F=0 5 Fep=+5150 kN (Tie)

———

A Fop =+ 1185 = (1342 = 57.5) & Fey w4 4134 kN (Tie)

Consider joint F: A
. L34 KN o
AN For & £

T £ LY . *-{'. .
S13TkN E Fer 4,34 Cosir F

Siner = (3.0/4.243) = 0,707 Coser= (3.0/4.243) = 0.707
Singi= (9.0/9.487) = 0.949 Cosfi= (3.009.487) = 0,316

typ=e BF =0 + 8757 - 4013 Coser+ P Cosf + Py =0 Bquation (a)

Fve 1' i =10 +41.34 Sines + Fige Singi= 0 Equatien (b)

From Equation (b):

Fip = =(401.34 Sinee (Singd) = = [(41.34 = 0.707)/0.949)] s
2 Fup==30.3 kN (Strut)

From Equation (a):

Fip 7= 8757+ (413 = 0.707) = (- 308 = 0.316) . Fyp=—48.61 kN (Strat)
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Solution
Topic: Pin-Jointed Frames - Joint Resolution
Problem Number: 3.10

Consider joint E:
12 kN 12kN

AWN 4N | FE i
Fin = Fi | \ﬁy
Fiy JE61 KN P

E E | J'IL ||.C1:~$ﬂ

Sind= (3.0/9.487) = 0316 Cosél= (9.000.487) = 0,949
Singd= (9.0/9,437) = 0,949 Cosfi=(3.0/9.487) = 0316
dye—=LF,

+ 48061 - 4.0 Cozff- Fep Cosd=0 Equation (a)
Frp = [48.61 = (4.0 = 0.316))10.949 2 Fyp =+ 49.9 kN (Tic)

——
or

sve bEF, <0

= 2.0 = 4.0 Sind + Fypy Sind = 0 Equation (b}
Fep = [12.04 (4.0 = 0.949))0.316 2 Fgp=+49.9 kN (Tic)

——i—

BEN

12kN

PILN
l/-l kN
E

48,61 kN

"‘l.‘.l‘:l‘
1
S8 kN

F

TIrn
IS0TSKN 5 A I
ELATRN 5 ELET AN

6118kN

The reader should consider the equilibrium of joint I to confirm the calculated values
are comect by checking that: tve —= 2F, =0 and H.'¢1' LR =0
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3.4 Method of Tension Coefficients

The method of tension coefficients is a tabular technique of carrying out joint
resolution in either two or three dimensions. It is ideally suited to the analysis of pin-
jointed space-frames.

Consider an individual member from a pin-jointed plane-frame, e.g. member AB
shown in Figure 3.8 with reference to a particular X-Y co-ordinate system.

If AB is a member of length Lag having a tensile force in it of Tpg, then the
components of this force in the X and Y directions are Tag CosO and Tag Sind
respectively.

If the co-ordinates of A and B are (Xa, Ya) and (Xg, Yg), then the component of Tag
in the x-direction is given by :

X, - X
% = fap (X — Xa)

AR

x-component = Tap

¥p

¥Ya

- X
Figure 3.8
where
7
Iap = 22
L.—".H

and is known as the tension coefficient of the bar. Similarly, the component of Tag in
the y-direction is given by:

Y, —Y
y-component = Tag = ——2 = 1,5(¥5 — ¥4)

AR
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If at joint A in the frame there are a number of bars, i.e. AB, AC ... AN, and external
loads Xa and Y, acting in the X and Y directions, then since the joint is in equilibrium
the sum of the components of the external and internal forces must equal zero in each of
those directions.

Expressing these conditions in terms of the components of each of the forces then
gives:

TR R (TR O I Ay P VAR ) I A - X+ X, =0
1)

fan (Yp =Y ) Fhace(Ye=Y)+. oo Py =Ya)+ Ya=0

(2)

A similar pair of equations can be developed for each joint in the frame giving a total
number of equation equal to (2xnumber of joints)

In a statically determinate triangulated plane-frame the number of unknown member
forces is equal to [(2xnumber of joints)—3], hence there are three additional equations
which can be used to determine the reactions or check the values of the tension
coefficients.

Once a tension coefficient (e.g. tag) has been determined, the unknown member force
is given by the product:

Tap = taplap ( Note: Tap=Tga)
Note: A member which has a —ve tension coefficient is in compression and is a strut.

3.4.1 Example 3.2: Two-Dimensional Plane Truss

Consider the pin-jointed, plane-frame ABC loaded as shown in Figure 3.9.

10 kN

L_.“; =50m
Lac=T.0m
L]_r,{' =4.243m

“11
A_‘. | 4.0 m J 30m T Cy

Figure 3.9
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Construct a table in terms of tension coefficients and an X/Y co-ordinate system as
shown in Table 3.1.

The equilibrium equations are solved in terms of the ‘t” values and hence the member
forces and support reactions are evaluated and entered in the table as shown in Table 3.1.

Consider joint B:

There are only two unknowns and two equations, hence:

Adding both equations

= Aot e +20=0

= Mg = 3pe—=10=10

= Tiap +10=10 fap=+143
substitute for £4g in the first equation fer=—4.76
Force in member AB=fyp= Lg=+ ({143 =2 50) =+ T.15kN TIE

Force in member BC = fge % fpe == (4.70 x 4.243) == 20.2 kN STRUT

Joints A and C can be considered in a similar manner until all unknown values,
including reactions, have been determined.

The reader should complete this solution to obtain the following values: Fac=+14.28
kN A,=+20 kN A,=—4.29 kN C,=+14.28 kN

Joint Equilibrium Equations | Member f Length | Faree
(m) {kN)
A X A+ Tap+  Ay=10 AB + 143 5.0 + T.15
Y 3ag + ff:.. =0 AC 7 7.0 7
BC - 4.76 4.243 [ =20.20
B X | =dtap®3pc+20 =0 Support Reactions (KN)
Y | =3tap—=3pc =10 =0 Component X ¥
C X =Tipe = e = Support A
Y| S L =) Suppert C ZETD
Table 3.1

In the case of a space frame, each joint has three co-ordinates and the forces have
components in the three orthogonal X, Y and Z directions. This leads to (3xNumber. of
joints) equations which can be solved as above to determine the ‘t” values and
subsequently the member forces and support reactions.

3.4.2 Example 3.3: Three-Dimensional Space Truss

The space frame shown in Figure 3.10 has three pinned supports at A, B and C, all of
which lie on the same level as indicated. Member DE is horizontal and at a height of 10
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m above the plane of the supports. The planar dimensions (z-x, x-y and z-y) of the frame
are indicated in Figure 3.11.

Determine the forces in the members when the frame carries loads of 80 kN and 40 kN
acting in a horizontal plane at joints E and D respectively as shown.

Figure 3.10

z (m)
b n,E

10

X (m)

» (m)

Figure 3.11
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Solution:

Leagth of members: L= {.!.': +_}*= +z’}

Lig = 100 m Le = [(10.0° +15.0° +10.0°) <2062 m
Lap = |(10.0° +5.0° +10.0%) = 15.0m L= \[(10.0° +5.0 +10.0°) = 15.0m
Lep™ ,j{m.n-‘ +5.0° +10.0°) = 15.0m g™ J{l 0.0° +5.0° +10.07) = 15.0m

The equations from the Tension Coefficient Table are used to determine the ‘t” values.
Since only three equations are available at any joint, only three unknowns can be
determined at any one time, i.e. identify a joint with no more that three unknown member
forces to begin the calculation; in this case the only suitable joint is D.

Solve the three simultaneous equations at joint D to determine the tension coefficients
tap, IDE and tcp; i.e.

Consider Joint D: Equations (10), (11) and (12)

Equation (12) =10 % 100gp=0 fan=0
Equation (11) 30 = Sep = Wi +40=10 == fye =+ 4.0
Equation (10} =100y = 100 =10 fep=0

Similarly for the next joint in which there are no more than three unknowns, i.e.
Joint E
Consider Joint E: Equations (13), (14) and (15)

Ellluﬂliﬂl'l {|3} —Iﬂ;..“g - IUIHFE + ]ﬂ'ﬂ'_‘i: +80=0 Iag = 0
Equation (14) 1580 = St * Siep * 10inpg = 0 =Pty =+ 4.0
Equnliun {IS} —Iﬂf..“g - IU-’H[E - Inﬁ_'l: =1 fep=— 4.0

The support reactions can be determined after the tension coefficient values have been
determined using Equations (1) to (9).

The sum of the reactions in the X, y and z directions should be checked by ensuring
that they are equal and opposite to the applied load system.
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Joint Equilibrivm Equations Mem ber ¥ Length Foree
L (kN)
1 w0 | 10+ W +ix =0 Al o 15.0 ]
2 | Ay | S-S oAy =0 Al ] 0,62 (1]
3 # | #1006 + Wiy g =D [HE + A 15.0 + 60.0
4 N+ W + By =0 ch o 15.0 o
sl By |*5w +Be=0 CE -4 150 — 60,0
[ AT W + iy =0 I¥E + 4.0 ([T1] + 40.0
T % | = When = 100 gm0 Support Reactions (KX)
gloc| v |*3e-Ra + =0 Compoment x ¥ =z
L] £ | 10 = Mgy #LE=0 Support A TeFe zero IeFe
10 x| =100~ 100 =1 Support B — 40,0 =200 =400
M| o | v | *Han— Fop— 10gg v AHr =0 Support C — 40,00 — 2000 + 40,0
12 i =108 g = 1y =
E Applicd forces in x-direction = + 80 kN
13 w [ =100 = 106 + Wiy & 0= 0
I - E Applicd forces in y-direction = + 40 kN
W B E T R R ] 0
14| F b L - o . I Applied forces in g-direction = zero
15 | 100y = 105 — 100y =
Table 3.2

3.4.3 Problems: Method of Tension Coefficients

The pin-jointed space-frames shown in Problems 3.11 to 3.16 have three pinned
supports at A, B and C as indicated. In each case the supports A, B and C are in the same

plane. Using the data given determine:

(i) the member forces and
(ii) the support reactions,

when the frames are subjected to the loading indicated.

Problem 3.11

40.0 kN
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Problem 3.12

Problem 3.13
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Problem 3.14

Problem 3.15

Problem 3.16
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3.4.4 Solutions: Method of Tension Coefficients

Solution
Topie: Pin-Jointed Frames = Method of Tension Coefficients
Problem Number: 3,11 Page No. 1

g

£y = (tan 30° % 2.0} = 1.16 m
L= 20741167 =231 m

Length of member: L= [J.': +_'|.'! +z!}|

Lengih of members AD, BD and CD: Lap,ao,co = 4 {2.':}r +1.16% + 6.0’} =543 m

See Equations in Tension CoefTicient Table

Consider Joint D: Equations (10, (11) and {12}
Eq“ﬂtl-ﬂ.'ll'l (107 =200+ 200y + 150=10
Equation (11} = L16fn — L16tgn + 2.3 =0
Equation (12} = 6.00ap = 6.0fn = 0.00p =40 =0

fan=* 153
=0 fen = — 597
[ i 222

Consider Joint A: Equations (1), (2) and (3)
Equation {1} 2Ny + A =0

Equation {2) + L1ty + A, =0
Equation (3) +6.Myn+ A, =10

Ay==3.06kN
Ay=— 176 KN
A =—918 kN

Consider Joint B: Equations (4), (5) and (6)
Equation (4)  — 2.0/, + B, =0 B.=-11.94kN
Equation (5) + L6ty + B, =0 } = [, =+ 687 kN

Equation (6)  +6.00p+ £, =0 B,=+ 3582 kN

Consider Joint C: Equations (7), (8) and (%)
Equation (7) +C=0

Equation (8) =23 e # Cy= 0

Equation (%) +0 e+ O =0

= zero
mmp = =511KkN
Cr=+ 1332 kN




Note:
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Solution
Topic: Pin-Jointed Frames - Method of Tension Coefficients
Problem Number: 111

Page No. 2

+ve tension coefficient valpes indicate tension members
=ve tension coelMicient values imdicate compression members

Equilibrium Equations

Member

Lengih {m})

Farce (kN)

#20 LT =0
* Iutﬁrup ‘r[.'ﬂ
60 yp b= 0

AD
B
ch

LR k]
L]
643

+ 084
=15
= 14.27

=30 LT + A, =0
& 1,06 tag + M. =0
+ 60 fyy

=, =i
=23 ke

00 iy +{,=0

=10+ 20 iy * 15.0 =i
—l.lbfm = 1.1% fyp * 231 I =1

=0l = 6.0 g =000 e = A0 =10

Support Reatlions (k)

Component

X

¥

SUpPOFL A
Support B
support ©

L

= 1.76
+6.87
=511

=9,18
+3882
#1332

E Applied forees in x-direction = + 15.0 kN

Z Applied forces in yedirection = zerop

Z Applied forces in Z-direction == 400 kN




Examplesin structural analysis

Solution

118

Topic: Pin-Jointed Frames - Method of Tension CoefMicients

Problem Number: 112

Page No. 1

z{m)
Solution:
Length of members: L = [xz sy 4 r.’}

Length of member AD: Lyp =,((8.0° +8.0° + 4.0°) = 120 m

Length of member BD: Ly =,[(2.0° +4.0° £+ 4.0° ) =6.0m

Length of member CD: Lep =,||{3.01 +40°)=50m

See Equations in Tension CocfTicient Table.
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Solution
Topic: Pin-Jointed Frames - Method of Tenzion Coelficients
Problem Number: 312 Page No, 2

Consider Joint D: Equations (10), {11y and {12)

Equation (1) = B0Fn = 200+ i = O Iap™+ 2.5 kN
Equation {2) = B.0ip + 4.0fpp =0 E=p fpp =+ 30EN
Equation (3) = 4.0 = 4.0tgn = 400 + 700 =0 fen =+ 10O KN

Consider Joint A: Equatians (1), (2) and {3}

Equation {13 + 8.0 # .4, =0 Ay ==200kN
Equation (2) t Bt =0 Ay == 20,0 kN
Equation (3) + 400+ A, =0 A== 100kN

Consider Joint B: Equations (4), (3) and (6)

Equation {4) + 200+ 8, =0 == 100 kN
Equation {3)  —<.0fp+ 8, =0 8, =+20.0kN
Equation (6)  +4.0fp+ 8, =0 fe=-200kN

Consider Joint C: Equatiens (7, (8) and (9}
Equation (7)  =30fp+ =0 Co=+30.0kN
Equation () + =0 m==p = o

Equation (9)  +4.0rp+ €, =0 == 40.0 kN

Note: +ve tension coefficient values indicate tension members
—vie tension coefMicient values indicate compression members

Juint Equilibrium Equations Member r Length (m)
+ Bun +dy =0 Al +14 (]

*EDian tA, =0 BD +40 i)
AR R A, =0 Cly = g 0

A

+ 2.0 B, =0 Suppert Reactions (k)
= &gy + B, =D Camponent x ¥

+ 4.D|'|ﬂ, + H: =i SI.IPPUII A =20 =20

3 ien b =0 Suppori B =10 + 20
FE, =0 Support C + 10 o
T +C,m

iy - 200 * e I Applied forces In x-direction = zero

= M = MM = MM = M

B + 4.0 I Applied forces in yedirection = zero
E Applied forces in z-direclion = + 70 kN
=40ty = 4. 0Wpp = 4 TR0 = 0 PY

[
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Solution
Topic: Pin-Jointed Frames - Method of Tension CoelMicients
Problem Number: 3,13 Page No. 1

x{m)

15

Solution:

Length of members: L =||{ ¥ eyted)
Length of member AD: Lin =, f[s_u’ +5.0°450°) =866m

Length of member BD: Lyp = [E.EII’ +5.0° +5,{F:| =866 m
Lengih of member CD; fep=3.0m

Length of member CE: Lep = ,[{m.u’ +80%) = 1281 m
Length of member DE: Ly = 1&['3.0!‘.-3.1]:] = 1044 m

Sce Equations in Tension Coefficient Table.
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Solution
Topic: Pin-Jointed Frames - Method of Tension CoefMicients
Problem Number: 3.13 Page No, 2

Equation (13} = 10.00pe = 10.00e =0
Equation {15} = 3.0fpg = 800 = 200 =0

fop = —40.0

Consider Joint E: Equations (13) and (15)
} = =+ d00

Consider Joint D: Equations (107, (11} and {12}

Equation (10} = 508 = 5.0 + 100855 = 0 fan™ +40.0
Equation {11} =500+ 5.0 =0 gy =+ 40,0
Equation (12} =5.00u = 500 + 3.0 - 5,00 =10 I =—56.0

Similarly, the support reactions can be obtained by substituting the values of the
tension coelficients in Equations (1) to {9).

Note: +ve tension coelficient values indicate tension members
=v¢ tension coelMicient values indicate compression members

Joint Equilibrium Equations Mem ber f Length {m)
* 5 0an +d, =0 AD + 400 B

+ 50 +4,=0 Bl +400 B
+ 500 +4, =0 ch - 56.0 50

A

+ 5. ig b, =0 CE - 400 1281
= 5.0y +h=0 DE + 400 1044

* 5.0 +8=0 Support Reactions (kN)
*+ M lrey +0,=0 | Component x ¥

FC =0 Support A — 200
1‘5‘.““1 +E.E||’l-|: + f.-! = s-l.lppl:l\ﬂ. B = 204

=30 = S00e+ 100G =0 Support C + i)

=500 v 50N =0
=50ty =500 * 3 0pg =50 = O | E Applied forces in x-direction = zero

= D0 = DDy = | ZApplied forces in yedirection = zero
Z Applied forees ln z-direction = = 200 kN

LU - - - U - I -

= 3Migp = Bllreg = 200 =
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Solution
Topic: Pin-Jointed Frames = Method of Tension CoeflMicients
Problem Number: 3,14 Page No. 1

ym)

Solution:
Length of members: L= [f +y -*z’]l

Length of members AD and AE: Lp a =,’{3.u* +1.0'+1.0) =3.32m

Length of member BD: Lup =,[(3.0° +1.0° +207) =374 m

Length of member BE: Ly =,[{3.ﬂ= +30°+20°)=4.69m

Length of member CE: Lo = (307 +3.0°) = 424 m

Length of member DE: Leg=2.0m
See Equations in Tenston Coefficient Table
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Solution
Topic: Pin-Jointed Frames - Method of Tension CoelMicients
Problem Number: 314 Page No, 2

Consider Joint D: Equations (10, (11 and {12)

Equation (10} = 3.0fp = 3fgp =1 fan= ¥ 10.0
].':ﬂl.h"l.liﬂll'l {_I. IJ + I..'Dﬂq.lp - I..']f||.|::| * E.Dfn[_ - "“}.ﬂ o ﬂ f|u:| o= I.D.[.
Equation {12}  + L0p=200s=300=0 Ipp =+ 10.0

Consider Joint E: Equations {13}, (14) and (15)

Equation {(13) =300 - 300 - 300 =1 Iap=+ 182
Equation (14) = 1.0z — 3.0 — 2.0 =0 fpp=—1.28
quli'lii'ﬂl'l {I.S) + I.'Elm.-, = lﬂﬁn; - j.ﬂ-l'c[-; =0 Ig=+ 546

Similarly, the support reactions con be obtained by substituting the values of the
tension coefficients in Equations (1) to { 9).

Note:  +ve tension coefficient values indicate tension members
=v¢ bemsion coclTicient values indicate compression members

Length
)
300 Y300 . 4,=0 AD 10,0 133

Equilibrium Equatiens Member I

= W = Ly =0 AE + 1,82 i
=Ly = Ly +d4,=0 Bl — 10 1M

+ 1wy + 3.0m +, =0 BE -7.28 A6
+ Lilign + 3.0rgp + B, =0 CE + 546 44
+ 20 + 2.0 +8,=0 DE + 100 20

+ 30y =0 Suppori Reactions

FC=0 Camponent x ¥ z

+ 3y P 0 | SupportA | _3sskN | +82KN | +ILEKN
= 30 ~HMan =0 | SupportB |+ 58 pn | + 308 kN | + M6 KN

# L0 =1 0 # 2.0 = 0.0 =0 Support C | _ pa4 kN o — 164 kN
Ly —2 0y =30 =0
= 3l = By = 3y =0
= L0y = 3005 =20 =0

Z Applied forees in x-direction = zero
I Applied forees in v-direction = = 40 kN

I Applied forces in 2-direction == 30 kN
+ LNy — 2.0y —j.ﬂfl'r m )

Ml = N = M= R = N
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Solution
Topic: Pin-Jointed Frames - Method of Tension CoefMicients
Problem Number: 3.15

= ()

Solution:

Length of members: L=, [{x* + y* + %)

Length of members AD and AE: Lap, ae =r,|||[2.lil-t +6.00 +4.ﬂl:] =748 m

Length of members BD, DE and CE: L, pegp = 4.0m

Length of member BE: Lyg =1||{4.{I? +4.0! } =566m

See Equations in Tension Cocflicient Table,
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Solution
Topic: Pin-Jointed Frames - Method of Tension CoefMicients
Problem Number: 3.15 Page No. 2

Consider Joint D: Equations (109, (11 yand {12}

]‘:ﬂ"ﬁ'liﬂl'l (1  + ?-Uﬁ.u"' 400 =0 fap=+05
Equation (11} =&.0np+3.0=10 e g == .75
Eguation (12} =400y = 4055 = 3.0=0 Inp ™ =025

Conslder Joint E: Equations (13), (14) and (13)

Equation {13} =200 = 401 = 4.00pg + 20 =0 fpm+05
Equation (14}  —6.0pp+3.0=0 =+ 05
Equation {15) - 4,06z — 4,00 — 4.0 - 5.0=10 fe=—-2325

Similarly, the support reactions can be obtained by substituting the values of the
tension coefficients in Equations (1) to { 9).

Mote: +ve tension coefficient values indicate tension members
=v¢ tension coelMicient values indicate compression members

Equilibrium Equations Aember I Lengthim) | Force (kN)
=2+ 2y ¢ d=0 Al +i4 748 +3.74

+ 600 + G0y =l AE +05 748 +174
b '1'.{'1'4“ ¥ ".{,IIM' L 1] BI¥ =178 4.0 =70

+ 4.0y BE w8 566 + 283
CE |-z 40 - 00
+4.0p + 400 DE | -nas 40 -10

Support Reactions (kN)
Componeni G ¥ z

+ 4,0egg Support & —GOKN | —40KN

20 + AN E-I.Ipp[lﬂ B 0 +EOKN

= b = MMM =S N =

= Blltag Support C zers | +DOKN
- 40t = 400 - 500

]

Z Applied forees in x-direction =+ 2 kN
Z Applied forees In y-directlon =+ 6 kN
Z Applied forees In z-direction =+ 10 kN

= 2.00ng - igg ~40ipg + 20=0
= El.ﬂ';,r +30=0

U -5

=40 =400 - 4.{"‘1 =50=0
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Solution
Topic: Pin-Jointed Frames - Method of Tension CoefMicients
Problem Number: 3,16 Page No. 1

Jr(m)

C.F
lm  3ETY

I0 kN 10 kN
i E

Solution:
Length of members: L = {.tz w7+ z’]

Length of members AE and AF: Lypar = {4_03 +2.{Il) =447 m

Length of member CE: Leg =,||{:.n:|= +20°)=283m

Lengih of members AD, BE, CFand EF: Lanprcrsr=20m
Length of members DF and DE: Lpppe = 4.0 m

See Equations in Tension Coeflicient Table,
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Solution
Topic: Pin-Jointed Frames - Method of Tension CoefMicients
Problem Number: 3,16 Page No. 2

Consider Joint D: Equations (10), (11} and {12)
1':qllﬂ.1i€l|'| {IDJ + I.DF[H: - I.ﬂﬁ e [J .FM) — ":”:l
]';qllﬂ.‘iﬂl'l '“ |1|| + 3.3-”];': + J.ETFDF + 3{] = u j|:||: == ,03
Equation (12} =200~ 20.0=0 fr == 103
Consider Joint F: Equations (16), (17) and (18)
]-un.'ninn (16)  + L0fe+ L0 + 200 =10 fap=+1.03
Equation {17}y =381 =387 =0 I = 2210
Equation (18) =206 = 200 = 200 = 0 g ==101.03
Consider Joint E: Equations (13), (14) and {15}
qutaﬁan (13} = L0ny: — 200 — Lilvpg— 200 =0 fap=+1.03
Equation {(14) = 3.8Tre = 38T =0 = fu=-1103
Equation {15} = 200 = 2.0icg = 200 = 200 =0 fep = 2era
Similarly, the support reactions can be obtained by substituting the values of the
tension coefficients in Equations (1) to { 9).
Note: +ve tension coefTicient values indicate tension members

—vie tension coefMicient values indicate compression members

Jolint Equilibrium Equations Member i Lengih im) | Force (kN)

+ 00y = Ly +dy =0 AD - 1 0 =200
*1ETN 4 38Ty A0 AE | +1m 447 + 461
* 200+ 2+ 200 + A, =0 AF | 10 447 + 441

t B =0 BE ~10.03 20 =21206
+h =1 CE e 283 TEr0
+20igp + =0 CF ~10,0% 20 =212.06

s o= R =

+ 2 =0 DE - 1,03 40 =413
s OF - 103 40 -4.03

+ 2ig + iy *O=0 EF D 10 zerD

+ Lloe = Livgr =0 Support Reactions (kN)
+ 387 + 18T +80 =0 | Component ¥
= i.ﬂ'*p =200 =0 S‘LIP_PIII'I A

= By =200y =180y = 200 = 0 SUPPD" B
= 38Ty =387 =i | Suppert C
= 2y =20y =2ty = 200 = 0

I Applied forces in x-direction = zero

Wiy + Wiy * 200y =0
= MTIM = 3.3-”1“ “{
- ].D&'_w - l{h’n’ =200 ={

E Applied forces in ydirection = + 8 kN
E Applied forces in z-direction = = G0 kN

- B - - - - [
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3.5 Unit Load Method for Deflection

The Unit Load Method of analysis is based on the principles of strain energy and
Castigliano’s 1% Theorem. When structures deflect under load the work-done by the
displacement of the applied loads is stored in the members of the structure in the form of
strain energy.

3.5.1 Strain Energy (Axial Load Effects)

Consider an axially loaded structural member of length ‘L’, cross-sectional area ‘A’,
and of material with modulus of elasticity ‘E’ as shown in Figure 3.12(a)

Fixed g % e P
support
{ LAE I | LA E ‘L&I
(a) (1)

Figure 3.12

When an axial load ‘P’ is applied as indicated, the member will increase in length by
‘3L as shown in Figure 3.12(b). Assuming linear elastic behaviour 6L =P, this
relationship is represented graphically in Figure 3.13.

Load
A

P P TS

» Extension

AL
Figure 3.13
The work-done by the externally applied load ‘P’ is equal to:

(average value of the forcexdistance through which the force moves in its line of
action)
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P
e, Work-done = [E ® 5.{.]

For linearly elastic materials the relationship between the applied axial load and the
change in length is:

ST = PL

AE
Work-done = (Ex Y ]: (EXEJ = ﬂ
2 2 AE 2AF

This work-done by the externally applied load is equal to the ‘energy’ stored by the
member when it changes length and is known as the strain energy, usually given the
symbol ‘U’. It is this energy which causes structural members to return to their original
length when an applied load system is removed; (Note: assuming that the strains are
within the elastic limits of the material).

.. Strain energy=Work-done by the applied load system

_PL
24E

r

(Note: the principles of strain energy also apply to members subject to shear, bending,
torsion etc.).

3.5.2 Castigliano’s 1% Theorem

Castigliano’s 1% Theorem relating to strain energy and structural deformation can be
expressed as follows:

‘If the total strain energy in a structure is partially differentiated with respect to an
applied load the result is equal to the displacement of that load in its line of action.’

In mathematical terms this is:

24=2Y
oW
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where:

U is the total strain energy of the structure due to the applied load system,
W is the force acting at the point where the displacement is required,
A is the linear displacement in the direction of the line of action of W.

This form of the theorem is very useful in obtaining the deflection at joints in pin-
jointed structures. Consider the pin-jointed frame shown in Figure 3.14 in which it is
required to determine the vertical deflection of joint B.

Figure 3.14
Step 1:

The member forces induced by the applied load system are calculated, in this case
referred to as the ‘P’ forces, as shown in Figure 3.15.

A B

Pag \

Pan Pap Pyc

\ \ P-forces
—& M P

Figure 3.15
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Step 2:

The applied load system is removed from the structure and an imaginary Unit load is
applied at the joint and in the direction of the required deflection, i.e. a vertical load equal
to 1.0 at joint B. The resulting member forces due to the unit load are calculated and
referred to as the ‘u’ forces, as shown in Figure 3.16.

HAD Mg HEC u-forces

Figure 3.16

If both the Step 1 and the Step 2 load systems are considered to act simultaneously,
then by superposition the total force in each member is given by:

Q=(P+ pu)

where:

P is the force due to the applied load system
u is the force due to the applied imaginary Unit load applied at B

B is a multiplying factor to reflect the value of the load applied at B (since the unit
load is an imaginary force the value of p=zero and is used here as a mathematical
convenience.)

The total strain energy in the structure is equal to the sum of the energy stored in all
the members:

_S Q7L
U=2. 5k

Using Castigliano’s 1* Theorem the deflection of joint B is given by:
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and

AU U ﬁQ Z H=zw+;§fu .

Since B=zero the vertical deflection at B (Ag) is given by:

PL
ﬁlﬁ = — U
AE

i.e. the deflection at any joint in a pin-jointed frame can be determined from:

PL
o= —H

AE
where:
) is the displacement of the point of application of any load, along the line of

action of that load,

P is the force in a member due to the externally applied loading system,
u is the force in a member due to a unit load acting at the position of, and in the

direction of the desired displacement,
L/A s the ratio of the length to the cross-sectional area of the members,

E is the modulus of elasticity of the material for each member (i.e. Young’s
modulus).

3.5.3 Example 3.4: Deflection of a Pin-Jointed Truss

A pin-jointed truss ABCD is shown in Figure 3.17 in which both a vertical and a
horizontal load are applied at joint B as indicated. Determine the magnitude and direction
of the resultant deflection at joint B and the vertical deflection at joint D.
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Assume  the  cross-
sectional area of all
members is equal to A4
and all members are
made from the same
material, i.e. have the
same modulus  of
clasticity E

Figure 3.17

Step 1: Evaluate the member forces. The reader should follow the procedure given in
Example 3.1 to determine the following results:

Horizontal component of reaction at support A Ha=—20.0 kN -—
Vertical component of reaction at support A Va=—4.29 KN l
Vertical component of reaction at support C Vc=+14.29 KN T

Use the method of sections or joint resolution as indicated in Sections 3.2 and 3.3
respectively to determine the magnitude and sense of the unknown member forces (i.e.
the P forces).

The reader should complete this calculation to determine the member forces as
indicated in Figure 3.18.

IO k™
20 kM
B
+ve —  tension member
—e -  compression member
+ IS kN zero force —20.20 kN
20 kN + 14.29 kN ———l e + 14.29 KN

B
429 kN P — forces 14,29 kM

Figure 3.18

Step 2: To determine uhe vertical deflection at joint B remove the externally applied
load system and apply a unit load only in a vertical direction at joint B as shown in Figure
3.19. Use the method of sections or joint resolution as before to determine the magnitude
and sense of the unknown member forces (i.e. the u forces).

The reader should complete this calculation to determine the member forces as
indicated in Figure 3.19.
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.0
. Applied unit load

RN

> + 0.57

X
043

Zero

force

—— & 0,57

o o

The u forces for vertical deflection at joint B @ °>"
Figure 3.19
PL
The vertical deflection Ova= Z AE"
This is better calculated in tabular form as shown in Table 3.3.
Member| Length Cross- Modulus | P forces u PLxu
(L) section (A) (E) (KN) forces | (kNm)
AB 50m A E +7.15 | -0.71| —-25.38
BC 424 m A E —20.20 | -0.81| +69.37
AD 40m A E +14.29 | +0.57 | +32.58
CD 3.0m A E +14.29 | +0.57 | +24.44
BD 3.0m A E 0.0 0.0 0.0
>| +101.01

Table 3.3
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The +ve sign indicates that the deflection is in the same direction as the applied unit

load.

Hence the vertical deflection

Eu.ﬁ=2%u=+um.mmm |

Note: Where the members have different cross-sectional areas and/or modulii of

elasticity each entry in the last column of the table should be based on (PLxu)/AE and not

only (PLxu).

A similar calculation can be carried out to determine the horizontal deflection at joint
B. The reader should complete this calculation to determine the member forces as
indicated in Figure 3.20.

+ (.71

+0.43

B 1.0
zero force -0.61
D
&+

Figure 3.20
PL
Ong =Z

The horizontal deflection AE
Member| Length Cross- Modulus | P forces u PLxu
(L) section (A) (E) (kN) | forces | (kNm)
AB 50m A E +7.15 | +0.71| +25.74
BC 424 m A E -20.20 | -0.61| +52.25
AD 40m A E +14.29 | +0.43 | +24.58
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CD 30m A E +14.29 | +0.43 | +18.43
BD 30m A E 0.0 0.0 0.0
>| +121.00
Table 3.4

Sus ZZEH =+ (121.00/4E) —
Hence the horizontal deflection AE
The resultant deflection at joint B can be determined from the horizontal and vertical
components evaluated above, i.e.

T ={121.00/4E)
o-
R= (100101 +121.0°) 1AE = 157.62/4E L
L]
0=Tan'(121.00/101.01) = 50.15° T .
(101.014g) ~ '3T62ME

A similar calculation can be carried out to determine the vertical deflection at joint D.
The reader should complete this calculation to determine the member forces as
indicated in Figure 3.21.

B
—-0.71 + 1.0 - 081
A D F 3 C
FErD +0.57 ————p— + (.57
u t k
0.43 1.0 0.57

The member u forces for vertical deflection at joint D

Figure 3.21
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PL
vp= ) —U
The vertical deflection AE
Member| Length Cross- Modulus | P forces u PLxu
(L) section (A) (E) (KkN) [ forces| (kNm)
AB 50m A E +7.15 |-0.71| —25.38
BC | 424m A E -20.20 |-0.81| +69.37
AD 40m A E +14.29 | +0.57 | +32.58
CD 3.0m A E +14.29 | +0.57 | +24.44
BD 3.0m A E 0.0 +1.0 0.0
¥| +101.01
Table 3.5

Hence the vertical deflection

Svp= 2%1.' =+ (101.01/4E)

3.5.3.1 Fabrication Errors—(Lack-of-fit)

During fabrication it is not unusual for a member length to be slightly too short or too
long and assembly is achieved by forcing members in to place. The effect of this can be
accommodated very easily in this method of analysis by adding additional terms relating
to each member for which lack-of-fit applies. The 3L term for the relevant members is
equal to the magnitude of the error in length, i.e. A, where negative values relate to
members which are too short and positive values to members which are too long.

PL
AL term =——

(Note: under normal applied loading the

AE )

—
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3.5.3.2 Changes in Temperature

The effects of temperature change in members can also be accommodated in a similar
manner; in this case the 3L term is related to the coefficient of thermal expansion for the
material, the change in temperature and the original length,

i.e. SL=alL A
where

a is the coefficient of thermal expansion,
L is the original length,

At is the change in temperature—a reduction being considered negative and an
increase being positive.

Since this is an elastic analysis the principle of superposition can be used to obtain
results when a combination of applied load, lack-of-fit and/or temperature difference
occurs. This is illustrated in Example 3.5.

3.5.4 Example 3.5: Lack-of-fit and Temperature Difference

Consider the frame indicated in Example 3.4 and determine the vertical deflection at
joint D assuming the existing loading and that member BC is too short by 2.0 mm,
member CD is too long by 1.5 mm and that members AD and CD are both subject to an
increase in temperature of 5°C. Assume 0=12.0x10¢/°C and AE=100x10° kN.

r 10 kM
Applied load /B/TT: 0k Unit load /'n/{\\

+TISKN 0 -2020LN -n.71 +10  —08l
+ [L5Y +[LET
A 1] [
Lo
4. IP kN 1429 kN bdF 043
B Change in B
Lack-oF-it Hie==20mm lemperatiure
Aep =+ 1.5 mm ATyp = ATep =+ 5°C
AN NN
e A ] (& Y ] C®

Figure 3.22

The 8L value for member BC due to lack-of-fit A, =—2.0 mm
The 8L value for member CD due to lack-of-fit A_.=+1.5 mm
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The &, value for member AD due to temperature change =+ o Land ran
=4 (12 % 107% « 4000 = 5.0)

Ag=+0.24 mm

The & value for member CD due to temperature change =+ o fepd ren
=+(12% 10" % 3000 x 5.0)
Ag=+0.18 mm

Member|Length|AE (kN)| P- |PL/AE| 4. | 4r u |(PL/AE+A +A47)X
(mm) force | (mm) {(mm)|(mm) (mm)
(kN)
AB 5000 [100x10°| +7.15 | +0.36| 0 0 [-0.71 -0.26
BC 4243 100x10°|—20.20| —0.86 | -2.0| 0 |[-0.81 +2.32
AD 4000 |[100x10°[+14.29| +0.57 | 0 [+0.24[+0.57 +0.46
CD 3000 [100x10°|+14.29|+0.43 | +1.5 [+0.18(+0.57 +1.20
BD 3000 [100x10°| 0 0 0 0 1.0 0
¥=+3.72
Table 3.6

The vertical deflection at joint D due to combined loading, lack-of-fit and temperature
change is given by:

5\PD=Z[%+ A +d,]xu =+3.72 mm l

Note: Statically determinate, pin-jointed frames can accommodate small changes in
geometry without any significant effect on the member forces induced by the applied
load system, i.e. the member forces in Example 3.5 are the same as those in Example 3.4.
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3.5.5 Problems: Unit Load Method for Deflection of Pin-Jointed

Frames

A series of pin-jointed frames are shown in Problems 3.17 to 3.20. Using the applied
load systems and data given in each case, determine the value of the deflections

indicated. Assume E=205 kN/mm? and a=12x10"%/°C where required.

[z I
Vﬁ* 40m l 4.0'm 4.0m ! Fo
.o - s . e
Problem 3.18

Jn o Un L

!

The cross-sectional area of all
members 5 equal to 1500 mm®,

Determine the wvalue of the
resuliant deflection at joint D.

The  cross-sectional  area  of
members AD, BC and CD s equal
1o 500 mm®,

The eross-sectional anca of all other
members is equal 10 250 mm>.
Member BE is oo short by 3.0 mm,

Determine the wvalue of the
wvertical deflection at joint F and
the horizental deflection at joint
B.

The cross-sectional area of all members is

equal tao 1200 mm~.

IDetermine the wvalue of the horizomtal

deflection at joime D,

Problem 3.19
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3.5 m " 35 m 3.5 m i
C[ D | e
b 2 kN :
E
wy 10 kN
— B
Fr
E
vy
e The cross-sectional area of members AG.
BG, CF CG, FG, and EF is equal to

400 mm®.

The cross-sectional area of all other
members is equal to 100 mm?>.

All members are subjected to a decrease in

temperature equal to 20°C.
Determine the horizontal deflection at

joint F.

Problem 3.20
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3.5.6 Solutions: Unit Load Method for Deflection of Pin-Jointed
Frames

Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3,17 Page No. 1

The cross-sectional arca
of all members is equal to
1500 mm’,

Determine the value of
the resultant deflection at
joint v

E =205 kN/mm®

=4
- ~ .
Al 40m Ve 40m l“"i'*'-“

Sin@=G05.0M=06 Cosf=(4.005.00=08
AE 500= (1500 % 205) = 307.5 = 10" kN

Determine the Support Reactions
Consider the rotational equilibrivm of the frame:
e JEM =0 +(12.0 = 3,00+ (500 = 400+ (1000 = 803 — (Fe = 40) =0

o Pp=+ 2590 kN
Consider the horizontal equilibrivm of the frame: —
tve—=EF, =0 +Hy+120=0 5 Hy=—1L0KN

Consider the vertical equilibrium of the frame:
+ve T IF=0  +Fy-500-500-100.0+ =0 S F=2000-Fe
¥y = 2000 - 259,0 L Vy=—500kN |

Assume all unknown member forces to be tension and use joint resolufion to
determine the P—forces in the frame.

Consider joint I):

Fen

sve | EF,=0  =100.0 + FepSind= 0 Equation (a)

Fr D dyg —wEE =0 = Fy = FeCosfl=10 Equation (b)
From Equation (a); Fio=+ 1667 kN (Tig)

ok From Equation (b): Fpg = = 1333 kN (Strut)

Consider joint E:

Fey;
g ==EF = =1333=Fu=0 Equation {a)
+ve t EfR=0 +Fe+259.0=0 Equation (b)
From Equation (a); Fup == 1333 kN (Strut)
From Equation (b): Fep = =259.0 kN (Strut)

1333 kN

2500 kN
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Solution
Tapic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3,17 Page No. 2

Consider joint B:
S0 kN

e —=EF =0 + 20+ Fue=0 Equation (a)
12k Fue Ve T IR=0 =500-Fp=0 Equation (k)
B From Equation (a): Fe == 120 kN (Strut)
Fin From Equation (b): Fyn==50.0 kN (Strut)
Consider joint C:

kN
v —= IF, =0 £ 12,0+ 166.7Cos0 = FyeCosld=10
.F:“_' =+ Ial;’ kN {Tit}

—

12kN

P - forces —SOOLN  * ISLTRN

= 2500 kN
1LO KN -'IMJL'\ = LA RN
[LET]

SAOKN IW.I] kM

Vertical deflection at joint I):
Apply a Unit Load in the vertical direction at joint [ and determine the values of the
u-forees using joint resolution as before,

Itl'lil

+ .67

IJET =20
rrm% 133 % -1ﬂ>y

Complete the Unit Load table to determine the value of &vgp
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 117 Page No, 3

Member | Length (mm) | AE (kM) | P-force (kX)) | PLAE (imm) [PLIAE } % u

AB J0H 3075 10" - 500 ; 0

AC S000 75 % 10 + 181.7 L f +4.93
AE 4000 3075 = 10 - 1333 . : + 231
BC 4000 3075 x 10" = 120 1 0

[5) 3000 Wisx 10 |+ kT . : +4.53
CE 3000 WA 10| -2500 ! 2 + 505
DE A0H0 5= 10 = 1333 . N + 231

Tar10.3 |
ﬂrs';:'z[%]xr: =+ 19,13 mm

Herizontal deflection at joint D:
Apply a Unit Load in the horizontal direction at joint [3 and determine the values of
ihe r-forees using joini resolution as before,

EI-

—;q!:_ l—:.n

e
Complete the Unit Load I:nl:lll.: 1o determine the value of & p

Member | Length (mm) | AE(kN) | Poforee (kX) | PLIAE (mm) (PLIAE ) % 1
AB 3H 3075 10" - 40 - 044 i
AC 000 075 % 10 + 181.7 + 208 [i
AE 400 WRsa 10t - 1333 - L7 k - L7}
BC 400 3075 10" = 10 =16 ]
o RTET] 3075 % 10 + 1667 =27 i
CE 300 Wi 0 | =250 =151 i
IHE 400 075 = 10 =133} =1.73

dup*™ Z[ ]xrr-—ﬂdﬁmm —

Resuham deflection at joint [ = &y p= 1||II"EJ. I32 + 3.462 i = 1944 mm JI* 103"
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 318 Page No, 1

TThe cross-sectional arca of
members AR, BC and CD

= equals 500 mm’.

T The eross-sectional area of all
p | other members 15 equal to
230 m.

vp Member BE is wo short by
L0 mm.

Determine the value of the vertical deflection at joint F and the horizontal
deflection at joint B.

E=205 kMimm’ and =12 % 10700, #=45° Sinf=0.707, Cosff=0.707
Lengih of members AB, BE and CD Laspeen =v40° +4.0° = 5,657 m
AEwn= (500 205) = 1025 % 10° KN,  AEwo=(250% 205)=51.25 % 10° kN
Determine the Support Reactions
Congider the rotational equilibrium of the frame:
'Wl:;) EMy=0 +{250x=4.0)+(25.0 = 80— (/= 12.00=0

5 M=+ 250 kN

Consider the horizontal equilibrium of the frame:
+e—=EF. =0 ~ Hy=gero

Consider the vertical equilibrium of the frame:
e [EF =0 +F,-250-250+Fp=0 . Fy=500-250

s Vo=+250kN |
Assume all unknown member forces to be tension and use joint resolution to

determine the P-forces in the frame,
Consider joint A:

+yg TEF, =0+ 250+ FySind=0 Equation (a)

dyg = LF w4 Fop 4 FyCosll= 0 Equation (b)

From Equation (a): Fyp==35306 kN (Strut)
2tk From Eguation (b): Fop=+ 250 kN (Tie)

Consider joint F:
FiF .
_ tve =+ EF =0 - 250+ Fp =10 Equatian (a)
B0 | Fir  avelrr=0 4 Fyg-250=0 Equation (b)
F From Equation (a): Fyp=+ 250 kN (Tie)
From Equation (b): Fup=+ 150 kN (Tig)
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Solution
Tapic: Unit Load Methed for Deflection of Pin-Jointed Frames
Problem Number: 3,18 Page No. 2

Consider joint B:

Fur 4ye I' Lh=0 # 35.365m8 - 250 - FpCosti=10
Fui Equatian (a)
+yg == EF =0 +3536C0s8 ¢ Fe + FgSing=0
Equation {b)
Fram Equation (a): Fy = 2610
From Equation (b): Fue == 250 kN (Strut)
By symmetry:
Frp==3536 kN (Strut), Fup=+250kN (Tie), Feyp=+250kN (Tie)

B =250k~ C

=356 kN - 3536 kN
+ 250 kN + 280 kN

F E
+ IS0 kN + 350 kN + 150 kN

250 kN N LN 250 kN

Lack-of-fit(4,)

Vertical deflection at joint F:
Apply a Unit Load in the vertical direction at joint F and determine the values of the
n=forces using poant resolution as before,

B =043 .
- D.i-;jﬁ 0A7 =047
& - forces + 140 ": + 033
ara A 0,67 —Fg— + 067 - +10,13 -
0.67 Lo

0.33

Complete the Unit Load table to determing the value of &y
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3,18 Page No. 3

AE P-farce | & (PLIAE+ & = u
k) {kXN) {mm)
AR 1025« 10" | = 3536 Lk ; + .53
AF 4000 | 5125« 10" | +250 5 \ +1.31
BC 4000 | 102510 | - 250 . . +i.32
BE 687 | s1ass 0| 0 I . + 141
BF 4000 | 5125 00" | + 250 ik y + 1,95
ch 5657 | 1028« 10° | ~3536 0 ? 0.0
CE 4000 | 5125 107 | 4250 t ] + (.64
DE 000 | 50235 10° | 4250 i T + 064
EF 000 | 5135w 0" | ¢ 20 LT ! + 1.31

L=+ 10L33
H
Fvy =Z[.ji_:_.]xn =4 1033 mm l

Horizontal deflection at joint B:
Apply a Unit Load in the horfzonal direction at joint B and determine the values of
the i-forces using joint resolution as before.

=33
+ .47 ‘ =], 47 2&:47

o = forees S 033

Iero
1 +w—L+w

03y

Complete the Unit Load table 1o determing the value af &y

Length AE Pforee | PLIAE | 4 (PLIAE+ 4 ) % w
mm) | 6 | N | (mm) | m | " fenm)

AB 687 | 1025w 10" [ -3536 [ <155 | O | +047 - (.42
AF 000 | 5125w 10' | +250 | w005 | 0 [ +087 +1.31
BC 4000 | ozde 0t | -2%0 | -09s 0 =033 +10.32
BE 5657 | S12%swi' | 0 i 0| =047 4 1.41
BF | 4000 | 51.25%10° | +250 | 4195 | 0 | 0 0

Ch 5657 | 1025w 10" | - 3536 | 108 - 0,47 + 042
CE 4000 | 5135w 10" | #2800 | 4108 +0.1% + (L4
DE 000 | 5125w 000 | #2500 | 40195 +0,13 + (14
EF 000 | S1a% w00t | #3250 | 4195 + 0,67 + 1.3
E=+563

Member

Sun= ZI ]xu—lﬁmmm—r
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Solution
Tapic: Unit Load Methed for Deflection of Pin-Jointed Frames
Problem Number: 3,19 Page No. 1

The cmss-—sm:'li.ong] arca of all members is
equal to 1200 mm®,

Determine the value of the horizontal
deflection at joint D

E =205 kN/mm®

Log = Lee = Lyg=2.88Tm

Lep=2887m  Lee=3819m

;.“_ = I.-l‘l'j m .Ir.r."; L j.ﬂ m

&= tan”{4.33/2.5) = 60°
f=1an"(2.887/2.5) = 49.11¢
Sing=08606  Sind=0.756
Coso=10.5 Cosfi= 0,655
Tanee= 1,732 Tanfi= 1155

Ay = (1200 = 205) = 236.0 = 10° kN
Determine the Support Reactions

Consider the rotational equilibrium of the frame:
e JEM=0  —(50%78)-(Fpxd33)=0

o Fe=—B66 kN l’

Consider the horizonal equilibrium of the frame:
tve—=Ef =0 +H +H;-50=0 & Hg=50-1,

Consider the vertical equilibrium of the frame:
+ve ‘TEF, =0 +F=300+F;=0 . F,=300+3066
s v=+3866kN 1

Assume all unknown member forces to be tension and use joint resolution to
determine the Pforees in the frame,

Consider joint A:

Fau g TEF, = 38664+ Fapm0 Equation (a)
g —= X =0 +H,=0 Equation (k)
From Equation (a): Fup==38.66 kN (Stru1)
From Equation {b): H, = zero
He=50kN—*
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 319 Page No. 2

Consider joint D:
HOEN o= TF, =0 - 5.0+ FueSind0°=0 Equation (a)
ave [EF, =0 =30.0 = Fop= FyyCos30° = 0 Equation (b)
S0kN o 3o
From Equation {a): Fyg =+ 10,0 kN (Tic)
Fep o From Bguation (b): Fep== 3866 kN (Strut)

Consider joint E: Resolve forces perpendicular and parallel 1o Fiyg and Fyy
100 kN
e T Ll pepensonns =0 = FeSinG0%= 0 Equation {a)
E E
“ te \ Dusa=0 -+ Fog - Fp + FeCosb0° =0
Equation (b)
From Equation {a): Fre = zer0
From Equation {b): Fyg=+10.0 kN (Tie)
Consider joint C:

Fer

3866 KN
tve—e B, =0 + FopSind = 0 Eguation {a)

tve {EF, =0 - 3866~ Fuc - FuCosfi=0  Equation (b)

From Equation {a): Fep=2cro
From Equation (b): Fpe==38.60 kN (Strut)

Consider joint F: Resolve forces perpendicular and parallel to Fig

100 kN
e o EFerentictse = 0 = FrsSin60° = 0 Equation (a)

+-.re_-‘\ SFuna=0  +10.0 - Fig + FyyCost0° =0
Equation {b)
From Equation {a): Fyg=zero

From Equation {b): Fyg =+ 10,0 kN (Ti¢)

Consider joint B:
RN

tvg== TF =0 + FpSing=0
Fy; = zero
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3,19 Page No. 3

Herizontal deflection at joint D:
Apply a Unit Load in the horizontal direction at joint I3 and determine the values of
the g-forces using joint resolution as before,

kN

+ 100 kN N

g3 wmera +20

i

Ler

366 kN

P=forces o = forces

Complete the Unit Load table o determine the value of 85

Member Lengih AE Pofarce | PLAE (PLIAE]) %
{mm) (k) (kN) | (mm) (mm)

AR 2500 | 2460 210" | - 3866 | -0.39 b (LGS
[i18 2500 | 246.00" | - 1866 | 039 + (6%
BF 2RT | 26000
14 00 | 26000
ch 2500 | 2460 410"
CE 1443 | 2460 «10"
F 819 | 2460 210"
DE 28T | 246.000" | 4 100 #0231
EF 2887 | 246010 | 4100 #0233
G IRT | Mb010t | + 100 +0.13

E=+373

S = Z[%]x r=+273imm +4+—
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 320 Page No, |

The cross-sectional area of members
AG, BG, CF, CG, EF, and FG is |Jqll.'1|
T 0400 mm',

The cross-sectional arca of all other
members is equal to 100 mm’,

All members arc subjected to a decrease
in temperature equal to 20°C.
Determine the horizontal deflection
al joint F.

" E=205 EM/mm® and ge=12 3 10 e
Aly Lacnegesr =¥3.5° 3.5 =4950 mm’
T Sind5® = 0707,  Cosds*= 0707

A AE o= (1002 205) =205 = 10" kN
AEuwn = (400 5 205) = 82,0 10" kN

The &L value for members AG, BC, CF and EIF due to temperatire change:

Ap= gl Ap= = (120 107" % 4950 = 2000} = = 119 mm
The 4L value for all other members due to temperature change:

Ap= =gl A =—={12 % 107% % 3500 » 200) = - 0.84 mm

Determing the Support Reactions

Consider the rotational equilibrium of the frame:
e JEM =0 —(20%70)+(10% 10.5) - (Fx7.0)=0
o F}' =+ I-}.ﬂ k:\l T

Constder the horizontal eguilibriem of the frame:
He—=EE, =0 +H,-20=0 LH,=+20kN —

Consider the vertical equilibrium of the frame:
el BF,=0 4K, 100+ F=0 . Fy=100-130
A Vi=-30KN |}

Assume all unknown member forces 1o be tension and use joint resolution o
determine the P-forces in e frame,

Consider joint A:
tyg== LF =0 + 20+ FygCosdd® =0 Equation (a)

Fam
4y T EF =0 =30+ Fy+ FgSindi® =0 Equation (b)

Fats

From Equation (a): Fu:==2.83 kN (Strut)
From Eguation (b): Fun=+ 50 kN (Tic)
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Solution
Topic: Unit Load Method for Deflection of Pin=Jointed Frames
Problem Number: 320 Page No. 2

Consider joint B:
+vie TEF, =1 =50+ FeSinda* =10 Equation (a)
tve —e EF =0 F Fpt FpeCosd3®=10 Equation (b)
From Equation (a): Fye=+ 707 kN (Tie)
From Equation (b): Fg == 5.0 kN (Strut)
Consider joint G:
wve EF,=0  + 283Cosd5® +Fg=0  Equation ()
Frg ve=+=EF, =0 +350+2.835ind5°+ Fg=0 Equation (b)

From Equation {a): Fog == L0 KN (Strut)
From Equation {b): Fye=="70 kN (Strut)

Consider joint C:

e 1' IF =10 # 2.0 = T075i0d 5% = Fop Sind5% = 0
I ,;,‘LL'" Equation {a)

o tve—= IR =00 20 - T07C0sd5° + FrypCosd3® + Fep =0
20my for Equation (b)
From Equation {a): Fep==4.24 kN (Strut)
From Equation (b Fep =+ 100 kKN (Tie)

20k C

T.07 kN

Consider joint D:

I00EN D dyg == IF =0 =100+ Fy=0 Equation {a)

Fre:
we fER =0 -Fy=0 Equation (b)

From Equation {a). Fop =+ 10,0 kN (Tie)
From Equation {b): Fip=2ero

Consider joint E:
kN E

T3 tvg == IR =0 = 100 = FgCosdi® =10

Fip 100 kN Fpp==14.14 kN (Strut)
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Solution
Topic: Unit Load Method for Deflection of Pin-Jointed Frames
Problem Number: 3.20 Page No. 3

Haorizontal deflection at joint F:
Apply a Unit Load in the horizontal direction ot joint F and determine the values of
the i=forces using joint resolution as before,

kN . + 10,0 kN D-'-Ilil.l.'lh.N -
7Iiﬂlif'-'

C
TEFD
=071 I =071

+ 707 KN —4H KN = M4 kN
=LOKN

+SOEN = LRMKN 150 kN

P - forces

& = forces
0.5

The &L value for members (AG, BC, CF and EF) due to temperature change:

A== 1L19mm
The & value for all ather members due 1o femperature change: Ap = = 0,84 mm
Complete the Unit Load table 1o determine the value of &

Length AE Puforce | PLIAE | 4 (PLIAE + A3) x 1t
[mm}) (kM) (kM) | {mm} | {mm) {mm}

AR 5o | MSxI0" | 50 | +085 | 084 = {,0]

AG 4050 | S20wi0? | =38) | =017 | =109 = 1,52

8 950 | 3510 | +707 | #0171 | =119 -10,17

B 156 | 82010 | =50 | =021 | =084 - 0,53

(a1} 5ol | 2S<00" [ 4000 | #0710 | -084 [1}

C¥ 4950 | 20x107 | 424 | 026 | -119 + 1,02

i 3500 | BLO0w0’ | -20 | —0.0% [ -0.8 = (.53

DF, enn | wss0' [ oo | 07 | =084
DF 1500 | 205 .10 ] 0| =084
EF 4950 | 820010" | = 1404 | =088 | =119
Fi; Ao | &ro=iet [ 70 | 000 | -o8d

fuF= E(%}‘ i == d.45 mm +—

Member
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3.6 Unit Load Method for Singly-Redundant Pin-Jointed
Frames

The method of analysis illustrated in Section 3.5 can also be adopted to determine the
member forces in singly-redundant frames. Consider the frame shown in Example 3.6.

3.6.1 Example 3.6: Singly-Redundant Pin-Jointed Frame 1

Using the data given, determine the member forces and support reactions for the pin-
jointed frame shown in Figure 3.23.

C

The cmss-mtimgn] arga of all members is
equal to 175 mm=.

E =205 kN/mm®

30m

Figure 3.23

The degree-of-indeterminacy Ip=(m+r)—2n=(5+4)—(2x4)=1

Assume that member BD is a redundant member and consider the original frame to be
the superposition of two structures as indicated in Figures 3.24(a) and (b). The frame in
Figure 3.24(b) can be represented as shown in Figure 3.25.

Figure 3.24
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B C 3
Fin
= % Fun
Fup
i‘ D
} y
Figure 3.25

To maintain compatibility in the length of member BD in the original frame the
change in length of the diagonal BD in Figure 3.24(a) must be equal and opposite to that
in Figure 3.24(b) as shown in Figure 3.26.

>3 Fap =0

b 10 kN

Figure 3.26

(8'p due to P-forces)+(58"gp due to unit load forces)xFgp=0

. PL ul . , PL ul.
K3 Z iE u + [Z‘A‘E"] % Fan=10 S Fap=- Z AEH/Z AEH

Using joint resolution the P-forces and the u-forces can be determined as indicated in
Figure 3.27.

™
0Tl L0
l('.l'l kN
1414 kN +0 0 -031 rx Fap=0
.o
A 1]
10.0 kN Tero =07
\ e 4
1000 kKN 10 kN 0.
P - forces i - forces

Figure 3.27
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Member|Length| AE (kN) P- [PL/AE| u [(PL/AE)xu|(uL/AE)xu|Memk
(mm) force | (mm) (mm) (mm) force
(kN)
BC 3000 [35.88x10°|+10.00| +0.84 |-0.71| —0.59 0.04 +4.3
CD 3000 [35.88x10°|+10.00| +0.84 |-0.71| —0.59 0.04 +4.3
DA | 3000 |35.88x10°| 0 0 |-071 0 0.04 —5.6:
AC 4243 |35.88x10°|-14.14| —1.67 [+1.00| —1.67 0.12 —6.2.
BD 4243 |35.88x10°| 0 0 [+1.00 0 0.12 +7.9
¥=-2.85 | £=+0.36
PL ul

-—H/Z—H = +2.85/0.36 = + 7.91 kN (Tie)

The final member forces=[P-forces+(u-forcesx7.91)] and are given in the last column

of the table

I =+ 10,0 — (0.71 x 7.91) =+ 4.38 kN

o= 4 10,0 + zero =+ 1000 kN
Fa= wero + (0LT7] = 7.921) = + 5.62 kN
iy =—10.0 + zero = — 10.00 kKN

L0 kN

= + 43BN ———
5.62 kM

IO kN

Figure 3.28

+ 701 kN

4.38 kN

1
I

Final member forces and
support reactions
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3.6.2 Example 3.7: Singly-Redundant Pin-Jointed Frame 2

Using the data given, determine the member forces and support reactions for the pin-
jointed frame shown in Figure 3.29.

The cross-sectional area of all members is equal to 140 mm?. Assume
E=205 kN/mm?

0.0 kN

‘Ir j0m J 30m J 30m

Figure 3.29

All member lengths L=3.0 m
AE=(140x205)=28.7x10% kN

Sin60°=0.866 C0s60°=0.5

Consider the applied load as two components  30.08in60° = 25.98 kN i
30.0Cos60° = 15.0 kN —»
The degree of indeterminacy lIp=(m+r)—2n=(8+7)—(2x7)=1

Consider the vertical reaction at support F to be redundant. The equivalent
system is the superposition of the statically determinate frame and the
(unit load framexV¥E) as shown in Figures 3.30 and 3.31.
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2598 kN

Figure 3.30

( \

Figure 3.31

Using joint resolution the P-forces and the u-forces can be determined as indicated in
Figures 3.32 and 3.33.

1508 kM

VANV AVEA

g = A0 kN reTH Lo LT

P . forces

A 150 kN

zero IR0E KN

Figure 3.32
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1 - farces

Figure 3.33

Mem|Length| AE (kN) | P- |PL/AE| u |(PL/AE)|(uL/AE)xu|Member
ber (mm) force | (mm) xU (mm) forces

(kN) (mm)
AB | 3000 [28.7x10°| © 0 0 0 0 0
BC | 3000 [28.7x10%| 0 0 0 0 0 0
CD | 3000 |28.7x10°| 0O 0 [+0.58 0 0.035 0
DE | 3000 [28.7x10%| 0 0 [+0.58 0 0.035 0
DF | 3000 |28.7x10°| 0 0 |[-0.58 0 0.035 0
CF | 3000 |28.7x10°| 0 0 |[-0.58 0 0.035 0
CG | 3000 [28.7x10°| © 0 [+0.58 0 0.035 0
BG | 3000 [28.7x10°|-30.00|-3.14| 0 0 0 —30.00
¥=zero | X=+0.18
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ie. ZPL [ZI:LE ]xif..:u

.PL ul
V.——Z —r;‘ﬂfﬂ]ﬂ—zcro
The final member forces= [P forces+(u forces><0)] and are given in the last column of the
table.

Ve=+25.98 kN T

He=—15.0 KN =+—

All other reactions are equal to zero.

'!"ilmk\

150 kXN ern <
Final member forces
and support reactions

TEro =300 kN Edd 4]

Eero TEre
A 150 kN G F E

F 1598 kN T Tero

Figure 3.34

3.6.3 Problems: Unit Load Method for Singly-Redundant Pin-
Jointed Frames

Using the data given in the singly-redundant, pin-jointed frames shown in Problems
3.21 to 3.24, determine the support reactions and the member forces due to the applied
loads. Assume E=205 kN/mm? and a=12x10"°/°C where required.

kN 100 & S0kN The cross-sectional area of
members AH, GH. EF and
FG is equal 1o 200 mm’,

The cross-sectional area of
all other members is cqual 1o
500 mm®.

The support at G scttles by
12 mm.
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Problem 3.21
. B c
-,'-E! The  cross-sectional
e I¥ area of all members
-E;T}h L {5 equal to 130 mm®.

| sem | 60m

Problem 3.22

The cross-sectional area of member
BD is equal to 100 mm’,

The cross-sectional arca of a]l ollver
members is equal to 300 mm’,
Member AD is too long by 1.5 mm
and all members are subject 1o an
increase in temperature of 10°C.,

H

¥, Fr-
Problem 3.23
Ve
E
=
(o]
B 25kN .
. The cross-sectional area of all
members is equal to 150 mm”,
20m 2.0m
4o D Member BD is 2.0 mm too short
g Iy
Fp

Problem 3.24
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3.6.4 Solutions: Unit Load Method for Singly-Redundant Pin-
Jointed Frames

Solution
Topic: Unit Load Method for Singly-Redundamt Pin-lointed Frames
Problem Number: 3.21 Page No. 1

[LE R

Jc

The cross—sectional arca of members AH, GH, EF and FG is cqual to 200 mm’
The eross-sectional area of all other members is equal to 500 mm?.

The: suppant at G settles by 12 mm.

£ =205 kN/mm~

Lspo, 06,0 = 4307 +3.0° = 4243 m

Sind=(3.04.243)= 0707  Cosf =(3.0/4.243) = 0.707
AEa = (200 % 205) = 41,0 x 10" kN

A ™ (500 3 205) = 1025 = 10° kN

Consider the vertical reaction at support G to be redundant,
The equivalent system is the superposition of the stafically determinate frame
and the {unit load frame x ;) as shown:

SOkN 10k SDEMN

u - forces
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3L21 age No. 2

Determine the Support Reactions for the statically determinate frame.

Conszider the rotational equilibrium of the frame:
dve JEML =0 (5000 = 3.0) = (100 = 6,00+ (50.0 = 9.00 - (15.0 = 3.0}
S(F % 120)=0 Ve =+9625kN |

Consider the horieomal equilibrivm of ke frame:
tye—=EF =0 +H'-150=0 S = IS0KN —»

Consider the vertical equilibrium of the frame:
+'.-.:|' EF,=0 + Fy =500 = 1000 =500 + M =0 o0 Ky =2000-96.25
S Fy =+ 103,75 kN

Assume all unknown member forces to be tension and use joint resolution o
determing the P-forces in the feame,

Consider joint A:
Fan e TEF, =0+ 10375+ FaSing=10 Equation (a)

Ay e T om0 & |30+ Fypt FypCosff= 0 Equation (b)

From Lguation {a): Fuyp=—= 146,70 kN (Strut)

10575 kN From Equation (b): Foi =+ 88,75 kN (Tic)

Consider joint H:
el EF =0 #Fu=0 Equation (a)

Fo +vg —= IR, =0 = 88.75 + Fau =0 Equation (b)
BETS kN Fan | . . .
Fram Equation {a): Fuon = zero

H From Exguation (b): Fey =+ 88.75 kN (Tic)

Consider joint B:
5048 el BF, =0 - 500+ 146.7Cos0 - FacCostd =0
Equation (a)
v == EF =0 + [46.75ind + Fyg Sind + Fye=0
Equation (b}

From Equation (a); Fyg; =+ 700 kM (Tic)
Fram Eguation (b): Fye =— 15745 kN (Strut)
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 321 Fage No, 3

Consider joint C:
1000 kN
157.45 K e fEFR =0 —1000-Fa=0  Equation (a)
. tve —w EE, =0 +#15745+ Fop=0 Equation (b}

From Equation {(a): Feg == 100.0 kN (Sirut)
From Equation (b): Fen== 15745 kN (Strut)

Consider joint G:
100.0 kN
ThOkY Fog Ve T' IR =0 = 00,0+ 76,0 Sind + FpgSind=10
7 g Equation {a)
IS G Fig dve —=EE =0 8875 - 16.0C0s8 + F,,.,C_'gﬁf? + Fg=10
Equation (b)

From Egquation (a): Fpe: =+ 6542 kN (Tie)
From Equation (b Fyg =+ 96,25 kN (Tie)

Consider joint F:

+ve 1' =0 + Fae=10 Equation {a)
tvg=—s= ZF =0 90,23+ Fr =0 Equation (b}

Fra

W25k F fpp From Equation {a): Fuyy = zcro
From Equation (b Fyp™+ 96,25 kN (Tie)

Consider joint E:
Foe
) dve—e= B =0 98325 - FryCosdh=1
D625 kN Fog = — 136,12 kN (Strut)

FOEN [[C1T 5 kN

=157 48 kN =£—-I5?.-I5 ] 15 kM
C

96T kN
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.21 Page No. 4

Apply a Unit Load in the verical direction at suppert G and determine the values of |
the u-forces using joint resolution as before.

[ C (1]
+ 10 ===+ 1.0
+0.71 i-n.'u =071 i +0.71 i - forces
/ mro
—u.s—'L—ﬂ.ﬁ =

0.5

(& g due to P-forees) + (8 v due 1o unit forees) x 15 = - 12,0 mm

) . tel

e T =12,

o ) JE [EAE"]K : 0
L ul

et ("Im : Z‘AE"J/ZJE"

Complete the Unit Load table 1o determine the value of Fy

Length AE P-ferce | PLIAE (PLIAE ) p | (wlIAE ) 2w
""'""'b" (mm) (KN} kry | ey | ™ {nam) {mm}

Al 4243 1025wl | -146.70 | -6.07 40,71 - 4. 203 + {021
Al Sy 410 x10° B TS el | =050 - 3.7 + L01E
£ 105 w10t | -157.45 —1.61 + 1.0 — AHE + {1,029
1] 1025 10 |+ 7600 +3.15 | -0.71 e | + L0210
1EH ] VK25 i 0 [} [ i i
cn fg i’ | =15745 | 460 | «no0p ]|  -4608 + 0,029
(& ¢] S wld® | -100.00 | -2.93 i} 1] i
I}E xS w0t | -136.02 | -563 +0. 71 — 3984 + {021
L IES:HI'DJ' w542 #2327 | -0.71 — 18915 + {021
[H3 1025 =10° 0 [1] i 0 [1]
EF 40000 | #9625 |+ | 00| -3 +{L01%
Fi; 000 | 400x10" | +o628 | 70 | -080 | - 3521 + Q018
Gl K 400 =10 ] e AR | =050 - 3.7 + D018
E=-15169 | E=+0.215

Vo= {wllﬂ - E-PL-HJ/E-:‘;_« =[- 12.0 - (- 35.169))0.215 = + 107.76 kN T

AE
The final member forces = [P-forces + (w-forces x 107.76)] and are given in the last
column of the table
Foo= 10375 - (0.5 = 107.76) = + 49.8T kN Hy=+ 150 kN —»
Fe=96.25 — (0.5 = 107.76) =+ 42.37 kN
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 322 Fage No. 1

,l 1ivm 6.6

LY

The cross-sectional arca of all members is cqual to 130 mm’.
£=1205 kNfmm®

Loan o= 3606 m Loy e =5162 m Ly oy = 6708 m
Sine= (3.0/3.606)=0.832  Coser=(2.0/3.606) = 0.555
Singi= (6.0V6.708) = 0.894  Cosff = (3.006,708) = 0.447
Sind= (3.0/3.162) = 0.949 Cosf = (103G 162) = 0316
A= (180 x 205) = 36.9 = 10 kN

Consider member CF to be redundant.
The equivalent system is the superposition of the statically determinate frame
and the (unit load frame x Feg) as shown:

i = forces fpx Foy
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.22 Page No. 2

Determine the Support Reactions for the statically determinate frame.

Conzider the rotational equilibrium of the frame:
+\*¢.)L'-f;.= 0 +(A0.0=30) - (M= 1203=0 & Fy' =+ T RN T

Consider the horizontal equilibrium of the frame:
tve=—+=EF, =0 +H'= S H = zero

Consider the vertical equilibrium of the frame:
+ye T EF, =0 + VS =400+ ' =0 SoF =400 - 100
s FY =4 3000 kN

Assume all unknown member forces 1o be fension and use joint resolution (o
determine the P-forces in the frame,

Consider joint A:
+ye 1'1‘.:?", s #3300+ FupCosar = FapCosf= 0 Equation (a)
tyg = L =0 + FygSing + Fue S5ind=0 Equation (b

From Egquation {a): Fyp==36.06 kN (Strut)

S0 kN From Equation (b): Fyp=+ 316 kN (Tic)

Consider joint F:
- Ve TEF, =0  +3L6Cosd - 400+ Fpe=0  Equation (a)
¥ v —e LF, =0 = 316500+ Fip= 0 Equation (b)
& From Bquation (a): Fap =+ 30.0 kN (Tie)
From Equation (b): Fyp=+4 300 kN (Tie)
400 kM

Consider joint B:
= +'-'¢'|'£r-', =0 =300+ 36,06 Coser— FaCosfd=10
B i

Equation (a)
a ﬂ' g —= 1.F'-|| =0 + 36.065ina+ .P'.|||; ﬁiﬂﬁ"‘ f'.".r; =10
{ Frr Equation (b)

From Equation {a); Fyg,==12.34 kN (Strut)
Fram Equation {(b): Fye == 100 kKN (Strut)
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.22 Page No. 3

Consider joint E:
Fex
nIN b tve == EF, = 0 = 30.0 4+ 22.348in# + FoeSind= 0
[ Equation (a)
mokn B fve ter =0 -2234C0sp + FuCost + Fee r= LU th)
Squation

From Equation {a): Fpp = + 10.57 kN (Tie)
From Equation (b): Frp=+ 06,65 kN (Tic)

Consider joint I
foo tve == LF,=0 = 10.575inf- FepSing =0

¢ o Fep = = 12.06 kN (Strut)

15T kN s
&

100 kN

= 0.0 kN

=12.06 kN
=2LHEN +6E5 kN

= 1057 kM
+ MO EN
100 kN

Apply a Unit Load at joints ¥ and C in the direction of member FC and determine
ihe values of the w-forces using joint resolution as before.
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Solution
Taopie: Unit Load Method for Singly-Redundant Pin-lTointed Frames
Problem Number: 322 Page No, 4

(& due to F-forces) + (8 p due to unit forces) = Fz =0
i E-j—i-u + [E%HJ % Fep™ i

.PL / m’
- Fop™

:!.F Z ;I.F..

Complete the Unit Load table o detemmine the value of F

Ncsabér Length .-1.EI P~ﬁn:n PLIAE & (PESAE Y o | (wEfAE Y w | Member
{ram} (KN} (kX)) | {mm) {mii) { o i} forces
AR 3606 | 369 =00° | -F60s | - 352 o L o = M504
AP 3162 | 369=10" | + 3060 [ + 271 ] ] 0 + 3160
1% G| 36.9 00" | <1000 | < 1,63 | <089 + 1,454 + 0,130 =213
BE 6708 | 369 =10" | -2234 | - 406 | 100 = 4041 + 0152 =869
i 3000 | 369 wi0* [ + 3000 | + 344 | =045 = 1.0 F LG + 3435
LN} It | 369w=10" | -1206 [ - LIR 1] ] 0 = 1206
CE I 369 x10° [+ 66d v .54 | - 045 ~ 11242 + DA G + 1.0
CF 6708 | 35.9 =107 1] L] 1,000 1] 0182 * | 165
INE 362 | 369 =10 | + 1057 [ +0.9) o ] o + 10.57
EF GO0 | 369 =10" | + 30000 [ +4.88 | —089 = d,361 = (1340 + 18,60
L=-§30 L=+ 0,656

m’

B.3000.636 = + 12.65 kM {Tie)

The final member forces = [P-forces + (e-forces = 12.65)] and are given in the last

column of the Lable

P, =+ 30,0 kN 1‘ Hymzere V= 10,0 RNT
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.23 Fage No, 1

The cross-sectional area of member BD is equal to 100 mm®. .

The eross-sectional arca of all other members is cqual to 300 mm®,

Member AD is too long by 1.5 mm and all members are subject to an increase in
temperature of 10°C,

E =205 KN/mm® =12 1090

.E.,i.n.:-u_'= 3162 m L.u},.;'u- = 3041 m L}u} =05m

The ol valug for all members due o lemperature change:

Ay ampe ™= celAr ™ = {12 % 107" =% 3162 = 10,0) = + 0.38 mm
Apapen=— ol == {12 = 107" % 3041 = 10.0) =+ 036 mm
Appn = = el == (12 2 107% 2 500 = 10,0} =+ 0.06 mm

Sinee= (1.0/3.162) = 0.316 Cosa = (3.0/3.162) = 0.949
Sind=(0.5/3.041) = 0.164 Cosf = (3.0/3.041) = 0.957
AE 0= (100 x 205) = 20.5 = 10" kN AEx = (300 3 205) = 61.5 x 10" kN

Conzider member BI) to be reduondant.
The equivalent system is the superposition of the statically determinate frame
and the (unit load frame x Fygp) as shown:
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.23 Fage No, 2

e P
Determine the Support Reactions for the statically determinate frame.

Caonsider the ratational equilibrivm of the frame:
+1-M:J'L"J'|-f;.= 0 +@E0.0=3.0) = (F x60)=10 o Fe =+ 15.0kN T

Consider the horizontal equilibrium of the frame:
g —e EF =0 + S+ H =0 He' == Hy'

Cﬂniider the vertical equilibrium of the frame:

e

EF,=0 + =300+ F'=0 P =300-150
LW =+ 150KN T

Aggume all unknown member forces 1o be tension and uge joint resolution o
determine the P-forces in the frame,

Consider joint B:
300N svePEF =0 30,0 - FuSing — FycSine=0 Equation ()
B g —e IR =0 — FyCosee + FpeCosa=10 Equanion (b}

From Equation {a): Fuy, ==4747 kN (Strut)
Fan Fac From Eguation (b} Fue ==4747 kN (Strut)

Consider joint A:
ATATEN tve TEF, =0 + 150 -47475ina + FppSind=0  Eguation (a)
e .‘_ tve —w EF =0 #f — 474705 + FapCosd?=0  Equation (b}
Al
A \E' From Equations {a): Fun=zero
From Eguation (b): Hy =+ 450 kN

130 kN
He==45.0 kN
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 323 Fage No, 3

Consider joint C:

e T IF =0 + 15.0=47.475inee + FepSind=0  Equation (a)

ATATKN
Frp=zero

Fen )
Fa g 150 kN
& =gs™

15.0kN

= 4TATKN =47 AT KN
P - forces

IS0 kN

Apply a Unit Load at joints B and D in the direction of member BD and determing
the values of the w-forees using joint resolution as before.

—1sgkN YL pagpn

{ypdue to P-forces) + (B due o ounit forces) = Fyp =10

f

. 'L il
£ ) | =—tdd + 4 + —_— Fen= 0
o X o o+ [Sha) < o
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Solution
Tapic: Unit Load Method for Singly-Redundamt Pin-Jointed Frames
Problem Number: 3.23 Page No. 4

PL : .
The term Z[? e+ Ar] is evaluated separately here for convenience, normally

this would be incorporated in one table,

Lengih AE Peforce | (PLIAE) Temp. [PLIAE 44, 4 Ay )
{mmi) (kM) (k™) (mm} change {mm}
362 |61 axint | <4747 <244 HIEE - 3,00
362 | 618xi0t | -4747 | -244 + 10 - 2,04
500 | 208 x10* 0 o + 1 + 0.0
T TS i [ + 10 i 0.3
3ol | eLs =10t [ 0 . + 1 + 1,56

Member

Complete the Unit Load table to determine the value of & gp

.| PLUE 2 : "
Member | LEORIR | AE - (PLAE +4 + dd = | (rEIAE Yxar | Member

{mm} (kM) tmm} {mim} {mm}) forges
Al ilo? | aLSae | - 2ih + 3261 +U129 | = 2540

ne 362 | 6ls=00 | - X | +,129 —29.80 |
By S| 208wl | - 00 + 0L +004 | = 1117

L1 31| GLEx107 | - 036 + L1 + 0457 | - 33407
DA | 3061 | 6LSxIP |« 186 + 5671 + 0457 | = 3397
T= & 13363 E=+ L15G

Fop=- E( :;i+1,_ ‘4, )n/z ":‘;r.— =~ 13.363/1.196 = — 11.17 kN (Strut)

The final member forces = [f-forces + (w-forees = (=} 1.17)] and are given in the
st column of the able

Fy =+ 150+ zero =+ 15.0 kN
Hy=+450 - (1.5 = (- LIT) =+ 6176 kN —*

Fe-=+ 15.0 + zero = + 15.0 kN t
He=— 450+ (15 (<117} = - 6176 KN *+—
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 324 Fage No., 1

The cross-sectional area of all members is
coual o |30 mm-,

Member BLY is 2,0 mm too short,
E = 205 kMNimm®

AEpen= (150 = 205) = 30.75 = 10" kN

b Sin 45° = 0,707
* ity Cosd45°=0.707
;ﬁk

1]

Conszider member AB to be redundant,

The equivalent system is the superposition of the statically determinate frame
and the (unit load frame % Fyg) as shown:

i =:|

(& = forces) x Fug
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3,24 Page Mo, 2

Assume all unknown member forces 1o be tension and use joint reselutien to
determine the P-forces in the frame.

Consider joint B:
Foc g —e EF =0 # 2500+ Fyp Cos =0 Equatien (a)
et EF =0 + Fue - Fup Sind=0 Equation (b)

HOkN
From Equation (a): Fup==35306 kN (Strut)
Fars From Equation (b): Fue == 25,0 kN (Strut)

Consider joint C:
Yol e tEl =0 +250+ Ko =0 Equation {a)
c e g = Ef =+ H =0 Equation (b)
180 kN From Equaticn (a): K" = =250 kN l
From Equation (b): Hy' = zero

Consider joint D

3RI6EN bve fEF, =0 —35368in8 + 1y’ =0 Equatien (a)
byg == EF = 0 4 35.36Cos0+ Hy' =0 Equantion (b)
iy
' ! From Equation {a): Fy' =+ 25.0 kN
From Equation (b): Hy' ==250kN +—

250 kN

C

F = forces Lack=of-fit

I5kN B
o g == L0 mm
= 3536 kN
2r0 i_l_qu 45y I 254 kN A I

TS
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Solution
Tepic: Unit Load Mcethod for Singly-Redundant Pin-Jointed Frames
Problem Number: 3.24 Fage No, 3

Apply a Unit Load at joints A and B in the dincction of member AB and determine

the values of the w-forces using joint resolution as before
142

5

i = forces

is evaluated separately here for convenience, normally this

The 11:‘1111.2'{

would be mn:.urim::llcct in one table,

Lemgih AE PLIAE LIAE +,
—— n:::] (kN) ‘ mml;’] | tmm;m
Al 2000 | 30075 <10 [ 0
ie 2000 | 3075 <10 I - 163 - 163
000 | 307500 | - 35 - 230 i - 4,300
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Solution
Topic: Unit Load Method for Singly-Redundant Pin-Jointed Frames
Problem Number: 3,24 Fage Mo, 4

Complete the Unit Load table io determine the value of Fuy

Length AE (PLIAE+4,) (PLIAE +4 1% u | (whidE Y= w
{mim) (kN) {rmm {mm} ()
a0 | 30,78 w10 [1] 0 + (LGS
Ta | 30,75 <10t = 163 = 2313 +iL131
o0 | 30,75 xja’ ] = 4 1) OGS

I=-6a615 T=+0.26]

Fap=- Z[;; +4_] " / ¥ ‘:i,ar + 6.615/0.261 = 25,34 kN (Tie)
- Fef -

The: final member forces = [Pforces + (u-forees » 25.37)) and are piven in the last
column of the table

Vy = zero — (0,71 % 25,34} = — 17.00 kN l
Iyo= zero = (0,71 ® 25.34) = = 17.99 kN +-—

Fo= =250+ (142 x 25.34) = + 10.98 kN T
He = zero

Vp=+ 250 {071 x 25.34) =+ T.01 kN
Hp==250+ (LTl x 25.34) == THI KN  =—




4.
Beams

4.1 Statically Determinate Beams

Two parameters which are fundamentally important to the design of beams are shear
force and bending moment. These quantities are the result of internal forces acting on the
material of a beam in response to an externally applied load system.

4.1.1 Example 4.1: Beam with Point Loads

Consider a simply supported beam as shown in Figure 4.1 carrying a series of secondary
beams each imposing a point load of 4 kN.

B B B R N

6 @ 600 mm = 3600 mm

Figure 4.1

This structure can be represented as a line diagram as shown in Figure 4.2

4kN 4KN  4kN  d4kN 4kN
A B c D E F G
Va I 6 @ 600 mm = 3600 mm 1 Vo
Figure 4.2

Since the externally applied force system is in equilibrium, the three equations of
static equilibrium must be satisfied, i.e.
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+ve 1 ZFy=0 The sum of the vertical forces must equal zero.

+v¢") YM = (0 The sum of the moments of all forces about any point on
the plane of the forces must equal zero.

+ve— XF,=0 The sum of the horizontal forces must equal zero.

The assumed positive directions are as indicated. In this particular problem there are no
externally applied horizontal forces and consequently the third equation is not required.

(Note: It is still necessary to provide horizontal restraint to a structure
since it can be subject to a variety of load cases, some of which may have
a horizontal component.)

Consider the vertical equilibrium of the beam:

+ve t2F =0 o
+ I):'l._{,j 3‘:4‘“}-!- !""q';: ﬂ a I-':\_+ V{;Z Eﬂ ].{N 1qua.t|0n
Consider the rotational equilibrium of the beam: 1)

+ve ) ZM, =0

Note: The sum of the moments is taken about one end of the beam (end A) for
convenience. Since one of the forces (V) passes through this point it does not produce a
moment about A and hence does not appear in the equation. It should be recognised that
the sum of the moments could have been considered about any known point in the same

plane.

+ (4.0 % 0.6) + (4.0 x 1.2) + (4.0 x 1.8) + (4.0 x 2.4) + (4.0 x 3.0) - (Vs x 3.6) =0

V= 10kN H
Substituting into Equation (1) gives S = 10kN (Ezc;uatlon

This calculation was carried out considering only the externally applied forces, i.e.



Examplesin structural analysis 180

4 kN 4 kN 4kN 4 kN 4 kN
l l l J l structure
........................... e
A B C 1] E F G
& @ 600 mm = 3600 mm
K

Figure 4.3

The structure itself was ignored, however the applied loads are transferred to the end
supports through the material fibres of the beam. Consider the beam to be cut at section
X=X producing two sections each of which is in equilibrium as shown in Figure 4.4.

N o

. 8 B'8 B B : :
E X ue g cut surfaces E
E]:'H.H:Imr.n

—

T AkN kN kM RN JEN AEN AkN AN JEN 4kN

Pl s
10 kN ke gogn [1300mm L 2100mm g

Section A .xl Section 13
Figure 4.4

Clearly if the two sections are in equilibrium there must be internal forces
acting on the cut surfaces to maintain this; these forces are known as the
shear force and the bending moment, and are illustrated in Figure 4.5

oL AKN AEN 4KN
l l shear force V¥ l l l
| _ bending moment M T
"‘I B c ‘l - Nl E F ]u
. 10BN
10kN shear force V¥ ok
Seclion A Section B

Figure 4.5
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The force V and moment M are equal and opposite on each surface. The magnitude and
direction of VV and M can be determined by considering two equations of static
equilibrium for either of the cut sections; both will give the same answer.

Consider the left-hand section with the ‘assumed’ directions of the internal
forces V and M as shown in Figure 4.6.

e +1v=:'|I IF, =0
M
l 1 I F10-40-40-F=0 - F=2KN
A B C \lj
10 kN : +ve Y M =0
- 600 |3|:n:|i + {40060+ (40= 1.2 - (Fx 1.5 -M=0
' ~ M=102kNm

Figure 4.6

4.1.2 Shear Force Diagrams

In a statically determinate beam, the numerical value of the shear force can be obtained
by evaluating the algebraic sum of the vertical forces to one side of the section being
considered. The convention adopted in this text to indicate positive and negative shear
forces is shown in Figure 4.7.

e — — l l

— ——
l L= —

shear induced by a +VE shear force shear induced by a —VE shear force

Ffr
A

k4

—

r,.
\I{f.

Figure 4.7

The calculation carried out to determine the shear force can be repeated at
various locations along a beam and the values obtained plotted as a graph;
this graph is known as the shear force diagram. The shear force diagram
indicates the variation of the shear force along a structural member.

Consider any section of the beam between A and B:
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4 kN

I B 0 <x <600 mm
10 kN

T

Note: The value immediately under the point load at the cut section is not being
considered.

The shear force at any position x = Z vertical forces to one side
=+ 10.0 kN

This value is a constant for all values of x between zero and 600 mm, the graph will
therefore be a horizontal line equal to 10.0 kN. This force produces a +ve shear effect, i.e.

e N
o ——— [ —— ,)
= > :

+ve shear effect

— ——

T S — o

Consider any section of the beam between B and C:

I4kK ]-IkN

A B C 600 mm = x < 1200 mm
10 kM

The shear force at any position x = Z vertical force to one side
=+ 10.0 -4.0=6.0 kN

This value is a constant for all values of x between 600 mm and 1200 mm, the graph will

therefore be a horizontal line equal to 6.0 kN. This force produces a +ve effect shear
effect.

Similarly for any section between C and D:

Jq kN Iu-:-.' uh‘l

A B C D
10 kN =

1200 mm = x < 1800 mm
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The shear force at any position x = Z vertical forces to one side
=+ 100-4.0-4.0=2.0kN

Consider any section of the beam between D and E:

ld kN dkN 4 kN 4 kN
l | I
A B C (] E
10 kM X

1800 mm < x < 2300 mm

-

The shear force at any position x = E vertical forces to one side
=+10.0-40-40-40=-2.0kN

In this case the shear force is negative:

Similarly between E and F 2400 mm < x < 3000 mm
The shear force at any position x = X vertical forces to one side

=4 100-40-40-40-40=-60kN
and

between F and G 3000 mm < x < 3600 mm
The shear force at any position x = I vertical forces to one side

=+ 100 -40-40-40-4.0-4.0=—10.0kN

In each of the cases above the value has not been considered at the point of application of
the load.

Consider the location of the applied load at B shown in Figure 4.8.

_ K AN
=—— l
e

e —— i

L= A B
= | 600 mm

L GO0 mm ) )

Figure 4.8
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The 4.0 kN is not instantly transferred through the beam fibres at B but instead over the
width of the actual secondary beam. The change in value of the shear force between
Xx<600 mm and x>600 mm occurs over this width, as shown in Figure 4.9.

| 4 kN
: B ] secondary beam
e
Ae——————
10 kN
&00 mm
10 kN 10 kN |
6kN

Figure 4.9

The width of the secondary beam is insignificant when compared with the overall span,
and the shear force is assumed to change instantly at this point, producing a vertical line
on the shear force diagram as shown in Figure 4.10.

10 kN 10 kN
| 6 kN

-
I N,
I

Figure 4.10

The full shear force diagram can therefore be drawn as shown in Figure 4.11.
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4 kNl 4 k?'w.'l 4 kNl 1-1 kN 14 ki

A B C 1] E F G
rﬂ‘ =10 kN ﬁ’:_:iﬁﬂﬂmm=36ﬂ0mm ih:]ﬂk:{
IO ERN |
+ye lﬁ.lcN -~

6N | "
Shear Force Diagram L [IDEN

Figure 4.11

The same result can be obtained by considering sections from the right-hand side of the
beam.

4.1.3 Bending Moment Diagrams

In a statically determinate beam the numerical value of the bending moment (i.e.
moments caused by forces which tend to bend the beam) can be obtained by evaluating
the algebraic sum of the moments of the forces to one side of a section. In the same
manner as with shear forces either the left-hand or the right-hand side of the beam can be
considered. The convention adopted in this text to indicate positive and negative bending
moments is shown in Figures 4.12(a) and (b).

Bending inducing tension on the underside of a beam is considered
positive.

tension on underside tension on underside

+ve bending

Figure 4.12(a)

Bending inducing tension on the top of a beam is considered negative.
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tension on to . ‘ tension on lop

l p\:' ;X XL/ i

e or [
V/J:"‘ X

=ve bending

Figure 4.12(b)

Note: Clockwise/anti-clockwise moments do not define +ve or —ve bending moments.
The sign of the bending moment is governed by the location of the tension surface at the
point being considered.

As with shear forces the calculation for bending moments can be carried
out at various locations along a beam and the values plotted on a graph;
this graph is known as the *bending moment diagram’. The bending
moment diagram indicates the variation in the bending moment along a
structural member.

Consider sections between A and B of the beam as before:

ln—w

A B

0 <x<600mm

[0 KN | X

Bl

In this case when x=600 mm the 4.0 kN load passes through the section being considered
and does not produce a bending moment, and can therefore be ignored.

Bending moment = E algebraic sum of the moments of the forces to one side of a section.
=X (Force = lever arm)
M= 1002 x = 100x kNm
Unlike the shear force, this expression is not a constant and depends on the value of ‘x’

which varies between the limits given. This is a linear expression which should be
reflected in the calculated values of the bending moment.

x=0 M,= 10.0x0=zero

x=200 mm My=10.0%0.2=2.0 KNm
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x=400 mm M,=10.0x0.4=4.0 KNm

x=600 mm My=10.0x0.6-6.0 kNm

Clearly the bending moment increases linearly from zero at the simply supported end to a
value of 6.0 kNm at point B.

Consider sections between B and C of the beam:

In.-x 4 kN
I

A B | [
1 kM

L

600 mm = .x = 1200 mm

Bending moment = E algebraic sum of the moments of the forces to ‘one” side of a section
M=+ (1000 2 x) = (4.0 = v = 06] )

JA kN
bending ellect of I\*_ bending cffect off l iension
10.0 kN boad is +ve ===TT=n WOk boadis-ve . 4 "™
100N wension —
— X —n 'I_ *—s

x=800 mm My =+(10.0%0.8)—(4.0%0.2)=7.2 KNm
x=1000 mm M,=+(10.0x1.0)—(4.0x0.4)—8.4 KNm
x=1200 mm My =+(10.0%1.2)—(4.0%0.6)=9.6 kNm

As before the bending moment increases linearly, i.e. from 7.2 kNm at x=800 mm to a
value of 9.6 kNm at point C.

Since the variation is linear it is only necessary to evaluate the magnitude
and sign of the bending moment at locations where the slope of the line
changes, i.e. each of the point load locations.
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ldkh’ l-ikN 4ILN1

D

A B C
10 kN x |

x=1800mm M, =(10.0 x 1.8) — (4.0 x 1.2)— (4.0 x 0.6) = 10.8 KNm

Consider point D:

Consider point E:

lum l.u.w 4kh-'l 4RNI

A B C 1] E
10k ¥

=200 mm M. =(100x%24)=(4.0= 1.8) = (4.0 = 1.2) = (4.0 » (L.6) = 9.6 kNm

Similarly at point F:

x=3000mm M, =(100=30 - (4.0x24) - (4.0 = L3 - (4.0 = 1.2) = (4.0 = 0.6)
=60 kNm

The full bending moment diagram can therefore be drawn as shown in Figure 4.13.

‘1 } } l l !r 1o
"o ST

0.6 kN 6 kN
m 108 KNm b kNm

Bending Moment Diagram

Figure 4.13
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The same result can be obtained by considering sections from the right-hand side of the
beam. The value of the bending moment at any location can also be determined by
evaluating the area under the shear force diagram.

Consider point B:

10 kN —l
kN
\6 X C2EN
E AT 1
G mum ] kN & kN
N0 kN
T | | "
e _ i -
6.0 kNm  — 50 kNm

9.6 kNm 108 kNm M6 KNm
Bending moment at B=shaded area on the shear force diagram

Mg=(10.0%0.6)=6.0 KNm as before

Consider a section at a distance of x=900 mm along the beam between D and E:

unm—l—
o kN

| Q00 mm 2N
%

6N l

] 11

6.0 KNm i 6.0 kNm
9.6 kMm

10 kN

e 9.6 kNm
Bending moment at x=shaded area on the shear force diagram
M,=(10.0x0.6)+(6.0x0.3)=7.8 kNm as before

Consider a section at a distance of x=2100 mm along the beam
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between D and E:

10 kN
- 6kN o ares
: 3 kN Vi A

+ v area 'I+'
2100 mm 6 kN
g

| IOkN

G0 KNm

0.6 kNm 10.8 kNm 9.6 kNm

Bending moment at x=shaded area on the shear force diagram

M, =(10.0 x 0.6) + (6.0 x 0.6) + (2.0 x 0.6) — (2.0 x 0.3)
=10.2 kNm

(Note: A maximum bending moment occurs at the same position as a zero shear force.)

4.1.4 Example 4.2: Beam with a Uniformly Distributed Load (UDL)

Consider a simply-supported beam carrying a uniformly distributed load of 5 kN/m, as
shown in Figure 4.14

3.0 kN/m

.&f TB
9 kN 9 kN

3.6m |

Figure 4.14

The shear force at any section a distance x from the support at A is given by:
V,=algebraic sum of the vertical forces
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o S0 ENm
The foree inducing +ve shear = 9.0 kN
eI 1he force inducing ~ve shear = (5.0 x x) = 5.0x kN
A
kN . -
k x A F,=+90-3.0¢

This is a linear equation in which V, decreases as x increases. The points of interest are at
the supports where the maximum shear forces occur, and at the locations where the
maximum bending moment occurs, i.e. the point of zero shear.

V,=0 when +9.0-5.0x=0 .". x=1.8 m

Any intermediate value can be found by substituting the appropriate value of ‘X’ in the
equation for the shear force; e.g.

x=600 mm V =+9.0—(5.0%0.6)=+6.0 kN
x=2100 mm Vy =+9.0—(5.0%2.1) =—1.5 kN
The shear force can be drawn as shown in Figure 4.15.
QRN [ GKN
|-
L 600 mm | Tl 9kN
2100 mm

. : Shear Foree Diagram

Figure 4.15

The bending moment can be determined as before, either using an equation or evaluating
the area under the shear force diagram.

Using an equation:

5.0 kN/m
BTSN
[ 1 A
0 kM

L J
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Bending moment at x: M, =+(9.0xx)—[(5.0xx)x(x/2)]=(9.0x—2.5x%)

In this case the equation is not linear, and the bending moment diagram
will therefore be curved.

Consider several values:

x=0 My=zero

x=600 mm M, =+(9.0x0.6)—(2.5%0.6%)=4.5 kNm
x=1800 mm x =+(9.0x1.8)—(2.5%1.8%)=8.1 kNm
x=2100 mm My =+(9.0x2.1)—(2.5%2.1%)=7.88 kNm

Using the shear force diagram:

x=000mm gpyr— 6kN

T

w600 mm T BkN

M,=shaded area =+[0.5%(9.0+6.0)x0.6]=4.5 KNm

x= 1800 mm * “'T ——

1800 mm
- PEMN

M,=shaded area =+[0.5x9.0x1.8]=8.1 kNm

x=2100 mm



9 KN —

1800 mm 300mm; LSkN -Ve

2100 mm I TT— 9 kN

-

M,=shaded area =+[8.1—(0.5x0.3x1.5)]=7.88 kNm

The bending moment diagram is shown in Figure 4.16.

T

788 kNm
B.1 kINm
Bending Moment Diagram

Figure 4.16

The UDL loading is a ‘standard’ load case which occurs in numerous beam designs and
can be expressed in general terms using L for the span and w for the applied load/metre
or Wiqai(= WL) for the total applied load, as shown in Figure 4.17.

w kMim OR W kN
i i
2 '. : ! 2 ll'.:-:__l ! . '. ]IIz a
L [ L
2 F] =
wll B [ -
Shear Foree Diagram % Shear Foree Diagram Lz'i
u_f.'!. Woaa £
8 8
Bending Moment Diagram Bending Moment Diagram
Figure 4.17

Clearly both give the same magnitude of support reactions, shear forces and bending
moments.

In cantilever beams, all support restraints are provided at one location, i.e.
an ‘encastre’ or “fixed” support as shown in Example 4.3.
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4.1.5 Example 4.3: Cantilever Beam

Consider the cantilever beam shown in Figure 4.18 which is required to support a
uniformly distributed load in addition to a mid-span point load as indicated.

Fixed

Suppﬂﬂ\ 15 kN 6 kN/m —

Figure 4.18

Support Reactions

Consider the rotational equilibrivim of the bemin: -H'u:) M, =0

My + (6.0 x 6.0)(3.0) + (15.0 x 3.0) =0 oM, =— 1530 kN m)
Consider the vertical equilibrium of the beam: e T ZF=10
+ V= (6.0 % 6.0) = 15.0=0 - vio=+510kN |

Shear force at B:
VB=[51.O—(6.O><3.O)]=33.O kN

and=(33.0-15.0)=18.0 kN
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S1.0 kN

A B C
Shear Force Diagram

Bending moment at B:
Mp=—(6.0*3.0%2)=-27.0 kNm

153.0 kNm

Bending Moment Diagram

tension lopside

4.1.6 Problems: Statically Determinate Beams—Shear Force and
Bending Moment

A series of simply supported beams are indicated in Problems 4.1 to 4.10. Using the
applied loading given in each case:

i) determine the support reactions,
i) sketch the shear force diagram and
iii) sketch the bending moment diagram indicating the maximum value(s).

12 kN — 8 KN/m

Problem 4.1
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6 kN/m — 15 kN — 12 kiN/m

Problem 4.3

BkN 1ZkN

— 6 kN/m

3 kMNm —

B C
20m J10m, 30m | 30m
= =

Problem 4.4

Problem 4.5

~— 5 kMN/m

10 kN/m —

1.0 m\LI.ﬂ mx;\

Problem 4.6



4 kM/m

Problem 4.7

6 kMim = 5 kNfm —; 4 kMim -

4_|.n$n.1

Problem 4.8

20kN  — 4kN/m

E

N

20m

Problem 4.10
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4.1.7 Solutions: Statically Determinate Beams—Shear Force and
Bending Moment

Solution
Topic: Statically Determinate Beams = Shear Force and Bending Moment
Problem Number: 4.1 Page No. 1

vact

Support Reactions
Consider the rotational equilibrium of the beam: +-.-¢;]| IM,=0

120 % 3,00+ (8.0 % S.0K4.0) — (Ve = 8.0) =0 o Ve=+365kN 1
Consider the vertical equilibrivm of the beam: e 1' ZF =0
=120 =(8.0x B0y = Fem i) S K =+ 305KN T

Shear Force Dingram

SN 15.5 kN
" 15 kN -
[}
- x | \1]5_5 KN

Position of xero shear force x= [3.0+ (3.5 8.0)] = 3438 m
(This corresponds with the position of the maximum bending moment in the beam,)

Bending Moment Diagram
My =+ {395 = 3.438) — (8.0 = J43852.0) — (12,0 = L438) = + 83.3 kNm

Alternatively, calenlating the arca under the shear force diagram:
M, =+ [0.5(30.5 + 15.305.00] + (0.3 = 0438 = 3.5) =+ 833 kiNm

A B

I I

------------------------------ w .

tension undgrside
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Solution
Topic: Statically Determinaie Beams = Shear Force and Bending Moment
Problem Number: 4.2 Page No, 1

G LM — r 12 KNim

Support Reaciions -
Consider the rotational equilibrium of the beam: +"¢,‘) LMy =0

(6.0 20010y + (15,02 2.00 + (12,0 % 6.002.0 + 3.0) - (Fe = 8.0) =0
o Vo= 4 50025 kN

Consider the vertical equilibrium of the beam:  *v¢ t IFy=0
#F P =(00x2.0)=150=-{120=60)+ Fe=0
SV =+ 48,75 kN T

Shear Force Diagram
M6, TERN

A
B 1

Pesition of zere shear foree x = [2.0+ (21751200 = 3.813 m
(This corresponds with the position of the maximum bending moment in the beam.)

Bending Moment Diagram
M, =+ (48.75 % 3.813) = (6.0 * 2003813 - 1.0) = (15.0 % 1.513) - (12.0 = 1.313%2)
=+ 105.2 kNm

Altematively, calculating the area under the shear force diagram:
M, =+ [0.5(48.75 + 36.75)(2.00] + (0.5 = 1.813 x 21.75) = + 105.2 kNm

A

B
]} ||| ||||||| T ||.|';|5|\|2||||‘|:L|;|1I ||| ““ T
1 L U LLLTNETIIREE

tension underside
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Solution
Topic: Statically Determinate Beams - Shear Foree and Bending Moment
Problem Number: 4.3 Fage No., 1

SkN

Suppori Reaciions
Consider the rotational equilibrivm of the beam: +vc;) EML=0

& (3.0 % 2.0)(1.0) + (5.0 x 2.0) + (2.0 x 4.0§4.0) + (10.0 x 4.0) + (5.0 = 6.0)
£ (4.0 % 2.0)7.0) = (Vy % 8.0) =0

o Ve=+ 2175 kN T

Consider the vertical equilibrium of the beam: +ve T b |
FHA=(30x2N=-50-20x40)= 100=-50- (4.0 = 20+ Fy=0

s Vy=+2025kN |
Shear Force Diagram

10.25 kN Ll
l\w‘ms kN b
A m Ti= E
BIEN g
1075 kN IL75 kN

* X -

Posilion ol zero shear force x=4.0m
{This corresponds with the position of the maximum bending moment in the beam.)

Bending Moment Diagram
My =+ (20025 = 4.0) = (3.0 = Z0K30) = (5.00= 200 = (2.0 = 2.0 1.0) = + 49.0 KNm

Alternatively, caleulating the area under the shear foree diagram:
M=+ [0.5(20.25 + 14.25)2.00] + [0.5(9.25 + 5.25M2.00] = + 49.0 kNm

~

_ E

TR
tersbon underside
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Solution
Topic: Statically Determinate Beams = Shear Foree and Bending Moment

Problem Number: 4.4 Fage No. 1

C

| 1om {

Support Reactions
Consider the rotational equilibrivm of the beam: +1.rc;) EM,=0

+ (3.0 % 2.0)(1.0) + (8.0 % 2.0) + (6.0 x 6.0)6.0) + (12.0 x 6.0) = (Fy % 9.0) =0
o W=+ 3Madint

Consider the vertical equilibrium of the beam: v T EF, =10

- (3.0 2.00 - 80— (6.0 60) - 120+ Fe=0
s Va=+2756 kN T
Shear Foree Diagram
e ILSGRN
2756 kN " 1sek

C

444 k."\"l

. 16HEN

T M4 RN

Position of 2ero shear foree x= [3.0+ (13.56/6.0)] = 5.26 m (3.74 m from E)
(This corresponds with the position of the maximum bending moment in the beam.)

Bending Moment Diagram
M=+ (34,44 = 3.74) — (6.0 = 5.74%2) — (12,0 = 0,74) = + T7.96 KNm

Alternatively, calculating the arca under the shear foree diagram:
M, =+[0.5(34.44 + 16.44)(3.00] + (0.5 = 0.74 = 4.44) =+ 77.96 kNm

A [y E

Iy
anyill I'I.llf.lllrlc:lcl."lilr;r'.' T |||| |||| il T
1

tension wniderside
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Solution
Topic: Statically Determinate Beams = Shear Force and Bending Moment
Problem Number: 4.5 Fage No. |

GkMm — 1ZkN

Fn

Support Reactions
Consider the rotational equilibriom of the beam: +1.-..::) EML=0

# (2.0 % 4.0)2.0) + (6.0 % 2.045.0) + (12,0 % 6.0) - (V% 4.0) = 0
s V=+370ky 1

Consider the vertical equilibrium of the beam: e 'I EF:=0
F V= (20 = 40— (6.0 = 20) - 120+ Fy=0
W Va=-SOKN

Shear Foree Diagram

RN INF‘ kM

PPosition of #ero shear force x=4.0m
{Thirs corresponds with the positien of ke maximuim bending moment i Uwe beam.)

Bending Moment Diagram
M= = (5.0 * 4.0) = {2.0 = 4.072) = = 36.0 kKNm

Alternatively, ealeulating the area under the shear farce diagram:
M= = [0.5(5.0 + 13.0)4.0)] = = 36.0 kNm

il IIIIII|||||[M|||"|||||||III|||m..._.
1 .

ftension topside
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Solution
Topic: Statically Determinate Beams = Shear Force and Bending Moment
Problem Number: 4.6 Fage No. 1

| - 5 kN/m

B o= C
|
— [I.tﬂll\ U}T\.

Support Reactions
Consider the rotational equilibriom of the beam: "'""fj IMy=0
10002 600300 + (5.0 = 2OUT0) + (8.0 = T0) - (V= 6.0 =10
S Fa=+ SLO KN

Consider the vertical equilibrium of the beam: +ve } EF=0
+ Fy = (10,0 = 6.0) - (5.0 % 2.0 - 8.0 + Fg=10
o Va=+270kN §
Shear Foree Diagram
ITO RN

13.0 kN

S0 kN

KLY il

Positions of zero shear foree:  x=(27.00/100)=27Tm and x=60m
(These correspond with the positions of the maximum bending moments in il beam, )

Bending Moment Diagram
M= +{370= 2.7y = (10.0 = 2.772) = + 36.5 kNm
Mg = = (5.0 « 20K 1.0y = (8.0 » 1.0) = = 18.0 kNm

Alternatively, ealeulating the arca under the shear force diagram:

My==(0.5= 2.7 =27.0)=+ 365 kNm

My == [0.5(18.0 + 1306100 + (0.5 = 1.0 = 500 =+ 180 kNm
180 kNm

. ||||"|IIIIIII..IIII.I' | | 17 B C n
36,5 kNm |

lemsbon underiide B m c B

tension topside
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Solution
Taopic: Statically Determinate Beams = Shear Force and Bending Moment
FProblem Number: 4.7 Fage No. |

G RMNm 4 kNim

Load between A and B = (0.5 = 1.0 = 6.0) = 3.0 kN: centre of gravity is 0.67 m from A
Load between B and C = (6.0 = 3.0) =180 kN:centre of gravity is 2,50 m from A
Load between C and D (005 x 1.0 x 6.0) = 3.0 kN: centre of gravity is 4.33 m from

Support Reactions
Consider the rotational equilibrium of the beam: "'"‘:) EMy=0
F (3.0 06T+ (180 % 250 + (3.0 = 4.33) + (2000 = 5.0) + (4.0 = 4.0%7.0)
=(Fex9.00=0
s Vp=+30220N 1

Consider the vertical equilibrium of the beam:  +ve f EFy=10
+F—30-180-30 —200-(4.0x4.0)+ Vy=0 o Va=+2978 kN T

Shear Foree Diagram  (Note: the diagram is curved from A to B and from C o 1)
2678 kN

29,78 kN
8,78 kN
A 578 kN E
- x “'2.,.: — 30.31 kN

Position of #ero shear force x=50m
{This corresponds with the position of the maximum bending moment in the beam.)

Bending Moment DMagram: {consider the right-hand side)

M, =+ (310,22 » 4.0) - (4.0 = 4.07/2) = + 88.9 kNm
Alternatively, caleulating the arca under the shear force diagram:
M=+ 0.5(14.22 + 30.2244.0) = + BB.9 kNm

A_B c_ 1
e

| 84,9 kNim

.

tension underside




Beams 205

Solution
Topic: Statically Determinate Beams = Shear Force and Bending Moment
Problem Number; 4.8 Page No. |

.Supporlx Reactions
Consider the rotational eguilibrium of the beam: +'.'|.-:j EMp=0

(6.0 % 1OND.5)+ (0.5 % 8.0 % 5.0§4.0) + (0.5 * 2.0 % 4.049.0) - (Fp ¢ 8.0} = 0
s Vy=+14.03 kN |

Consider the vertical equilibriom of the beam: e t EF =0
=00 = 10y + Fy=(0.5 =80 = 50)=(05=20=40)+ V=

5 Fp=+158TkN T
Shear Force Dingram

|4 E
1013 kN

5 kNim (i) = (500400 =~ b= 125

1]
B _,.,...m]i[ﬂl]l[lﬂ“[” ¢ Foree over length x = (0.5 = x * 1.251) = 0,625+
p—x —4 This force must equal 978 for zero shear at x
- 40m- -
Pasition of zero shear foree x: 9.78 = 0.625¢ ., x = 3.956 m from B
Sk (125 = 3.056) = 4045
Bending Moment Diagram
M, = — (6.0 % 10K 4.456) + (15,87 = 3.956) - [(0.625 = 3.956")(3.956/3.0]
=+ 23158 kNm
My=—(60% 1092 == 30 kNm;  My=—(0.5 = 2.0 =4.001.0) = + 4.0 kNm
J0kN

C
(NI

tension topside

___________ f“““"“““‘ﬂ@ E F

fension underside
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Solution
Tapic: Statically Determinate Beams = Shear Force and Bending Moment
FProblem Number: 4.9 Fage No., 1

EkNim 1 kNI

Support Reactions
Consider the rotational equilibrium of the beam: +1.-1_~:) EMy =0

My (B0 2000100 + (2000 = 200 + (4.0 = 1 3H2.T5) =0 LM ==TL5 J-:_'\'a

Consider the vertical equilibrium of the beam: +ve I' EF.=0
1 = (8.0 = 2.0) = 200 - (4.0 % 1.53=0 o Fam+ 42,0 Ic.";T

Shear Foree Dingram

42,0 kN
260 kN
G0 kN

A B C

Bending Moment Diagram
My ==-TL5 kNm
M == (4.0= L53Y0.75) = - 4.5 kNm

Alternaiively. caleulating ihe arca wnder ihe shear force diagram:
Mo = = [05(42.0 + 26,00 2.0)] = (0.5 = 1.5 = 6.0) = = T2.5 kNm
Mu==(05* 1.5 = 6.0)= - 4.5 kNm

TLERNm
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Solution
Topic: Statically Determinate Beams = Shear Force and Bending Moment
Problem Number: 4.10 Page No. 1

10 k’.\'l

B
1.0m ly 1L0m

Support Reactions
Consider the rotational equilibrium of the beam: m.-;) EMe=0

— (100 % 500 (8.0 x L0N20) - {150 2.0+ My =0 = Mp=+ 1440 kN C

Consider the vertical cquilibrium of the beam: *ve i EF =0
= 100 = (B0 = 4.0) = 1504+ Fp =10 S Fp=+ 5740 I:NT

Shear Force Dingram
A B [ o
T
10 kN 1000 k™

Bending Moment Diagram

My = My = zero

Me=—{10.0 % 1.0) = - 10.0 kNm

M =—(10.0 % 3.0) - (8.0 = 2.0%2) = - 46.0 kNm
M= = 144.0 KNm

Alternaiively. caleulating ihe arca uwnder ihe shear force diagram:

Mo= = (100 = 1.0)= = 10.0 kNm

Mp == (10,0 = 1,00 = [0.5(10.0 + 26.0)(2.0)] = - 46.0 KNm

Me== (1000 = 1.0) = [0.5010.0 + 26.002.00] - [0.5(41.0 + 57.0)2.0)] = - 144.0 kNm

Lizgram straight )
from B s—r—sCurved from C ool 144,00 kNm

ECr0 ol
from A 1o [§
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4.2 McCaulay’s Method for the Deflection of Beams

In elastic analysis the deflected shape of a simply supported beam is normally assumed to
be a circular arc of radius R (R is known as the radius of curvature), as shown in Figure
4.19.

dg

Figure 4.19

Consider the beam AB to be subject to a variable bending moment along its length.
The beam is assumed to deflect as indicated.

R is the radius of curvature,

L is the span,

I is the second moment of area about the axis of bending,
E is the modulus of elasticity,

ds is an elemental length of beam measured a distance of x from the left-
hand end
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M is the value of the bending moment at position x.

The slope of the beam at position X is given by:

Slt)prf:— —_— = J—ch

.fh

Differentiating the slope with respect to x gives:

n*{p_ M

dx’ Ef

Ay
d’

Integrating Equation (1) with respect to x gives

o IM.rir

dv

Integrating Equation (2) with respect to x gives

Ely = H( Mdx )dx

Equation
(1)—
bending
moment

(M)

Equation
(2)—
Elxslop
e (El109)

Equation
(3)—
Elxdeflectio
n (Elo)

Equations (1) and (2) result in two constants of integration A and B; these are determined
by considering boundary conditions such as known values of slope and/or deflection at

positions on the beam.
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4.2.1 Example 4.4: Beam with Point Loads

Consider a beam supporting three point loads as shown in Figure 4.20.

5 kN 10 kN 8 kN

l |

A B C D E
Va Ve

,20m | 40 m | 3om |lom
I |3 h T 1

Figure 4.20
Step 1: Formulate an equation which represents the value of the bending moment at a
position measured x from the left-hand end of the beam. This expression must include all
of the loads and x should therefore be considered between points D and E.

5kN 10 kN 8 kN
A T B C D
Fa X

¢ >
Figure 4.21
Consider the vertical equilibrium of the beam:
+ve } TR, =0 0
Va—-50-100-8.0+ V=0 S Va+ Pe=23kN
Consider the rotational equilibrium of the beam:
+ve ) EM, =0
J =M (ii)

(5.0 % 2.0) +(10.0 x 6.0) + (8.0 x 9.0) — (Vg x 10.0)=0
. Ve=14.2KkN
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Substituting into equation (i) gives .. V4=8.8 kN

The equation for the bending moment at x:

d_}
El—5 =M, =+8.8x—5.0[x—2] - 10.0[x - 6] - 8.0x— 9] Equation
dx 1)
The equation for the slope (0) at x:
88 » um
EIS ’ = [Mav =+ 228 - 2 k2P - o[k —6F - 2= [x— 9 +
I =T 2 ¥ [ 2y Le-oF [T l Equation
)
The equation for the deflection () at x:
. L 88, 50 = mu 8.0 .
Ely= Melx Jodx = -—-1. - [_'r—'l] - —|x —If-] [x—‘]] +Ax+ 8 .
‘ .U'[ als Equation
@)

where A and B are constants of integration related to the boundary conditions.

Note: It is common practice to use square brackets, i.e. [], to enclose the
lever arms for the forces as shown. These brackets are integrated as a unit
and during the calculation for slope and deflection; they are ignored if the
contents are —ve, i.e. the position x being considered is to the left of the
load associated with the bracket.

Boundary Conditions

The boundary conditions are known values associated with the slope
and/or deflection. In this problem, assuming no settlement occurs at the
supports then the deflection is equal to zero at these positions, i.e.
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whenx=0, y=

”" Sﬂ\f mh\\‘\ —E;GT‘\—.D]—AHE 0

ignare ignare ignare

Substituting for x and y in equation (3) .- B=0

whenx= 104, y=0

EE:ztm’-—[m Zj—M[]ﬂ rj——[m 9 + {4 % 10)=10

(14663 10" — (0,426 % 107y — (0,106 2 107 ) - 133+ 104 =0
oA = =03 265

The general equations for the slope and deflection at any point along the length of the
beam are given by:

The equation for the slope at x:

Y = prg=+ 832 Ei:'[_-—zf _100 [x-6) - 50 [x - 9] - 93.265 )
dlx 2 2 2 2 Equation
(4)
The equation for the deflection at x:
Ely=EI§ =+ —rl’- —[ 2P - 'H| v—6] - 5.0 [1'—9]}—93.'165.1' .
Equation
(%)

e.g. the deflection at the mid-span point can be determined from equation (5) by
substituting the value of x=5.0 and ignoring the [] when their contents are —ve, i.e.

Ely _+_5_5“[5_11—1”\5Ji ~(93.265 x 5)

ignore ignore

Efp=+ 18333225 -4066.325 Sopm-

3053 305.5 107
— m == - num
1) &f
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The maximum deflection can be determined by calculating the value of x when the slope,
i.e. equation (4) is equal to zero and substituting the calculated value of x into equation
(5) as above.

In most simply supported spans the maximum deflection occurs near the
mid-span point this can be used to estimate the value of x in equation (4)
and hence eliminate some of the [] brackets, e.g. if the maximum
deflection is assumed to occur at a position less than 6.0 m from the left-
hand end the last two terms in the [] brackets need not be used to
determine the position of zero slope. This assumption can be checked and
if incorrect a subsequent calculation carried out including an additional
bracket until the correct answer is found.

ASSUME Ymaximum OCCUrS between 5.0 m and 6.0 m from the left-hand end
of the beam, then:

The equation for the slope at x is:

HE'TE . 58 P 50 [x=2] - I[m\lxﬂjz = Bﬁ\t\—:}i’ =93.265 =0 fOr Vs
dy 2 2 2 2 l

fgnare ignare

This equation reduces to:

L
b
g

1.9x7 + 10x — 103.265 = 0 and hence x=

since x was assumed to lie between 5.0 m and 6.0 m ignoring the two [] terms was
correct. The maximum deflection can be found by substituting the value of x=5.2 min
equation (5) and ignoring the [] when their contents are —ve, i.e.

. B8 .3 20 1. 3 .
El Yo =+ == 5.2 = <= [5:2 - 21 - TT']\;; o] —H;-Lsiz -9 - (93.265 % 5.2)
igmore igmove

. 306
"-"I-J"I:nmluu =+ 2[”&.2: - 2?31 — 8495 =+ Vst = —

m

Note: There is no significant difference from the value calculated at mid-span.
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4.2.2 Example 4.5: Beam with Combined Point Loads and UDLs

A simply supported beam ABCD carries a uniformly distributed load of 3.0 kN/m
between A and B, point loads of 4 kN and 6 kN at B and C respectively, and a uniformly
distributed load of 5.0 KN/m between B and D as shown in Figure 4.22. Determine the
position and magnitude of the maximum deflection.

4,0 kN 6.0 kN
— 3.0 kN/m ~ 5.0 kN/m

Figure 4.22
Consider the vertical equilibrium of the beam:
e I' IF, =0 )
Fa=(3.0=20)-4.0-60-(50x40)+ Fp=0 S Pt Pp=36kN ()
Consider the rotational equilibrium of the beam:
+ve ) EM, =0
(3.0% 2.0 % 1.0) + (4.0 % 2.0) + (6.0 x 4.0) + (5.0 x 4.0 x 4.0) - (Vo x 6.0)=0 (i)
SV = 19.6T kN
Substituting into equation (i) gives .. Va=16.33 kN
40 kN 6.0 kN
— 30 kN/m — SOKN/m
|
A ]
16,33 kM 19,67 kM
Figure 4.23

In the case of a UDL when a term is written in the moment equation in square brackets,
[1, this effectively applies the load for the full length of the beam. For example, in Figure
4.23 the 3.0 kN/m load is assumed to apply from A to D and consequently only an
additional 2.0 kN/m need be applied from position B onwards as shown in Figure 4.24.
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40 kN 6.0 kN
— 20 kN/m
ERTERRRRAVEVRE AR PRRVEEVRVRAY ETRRUREAVRVE TS RRR T NET NI AL

— 3.0 kNfm

TN
A F 3 )]
16.33 kN 19.67 kN
Figure 4.24
The equation for the bending moment at X is:
e - 16330 31:} 2 op-20-20E=2L g op -4 i
F_ =30 - 4.0[x - -]“—-T" Ofx - 4] Equation
@
The equation for the slope at x is:
dy i i [x-2] [¢-2f = 411
E[~ =(@)=+ 1633 =— -30— -4. -2 .
rdx (fy=+1633 2 30 G 0 2 o 6 ~60 2 Equation
(2)

The equation for the deflection at x is:

1 1 A Al 4T
s.ary={5}=+1:'..3si-3.4::"—-4.4:;"1r 2] -2.0 2] -ﬁ.nl" 4 + dx+ B )
6 24 6 24 6 Equation

®3)

where A and B are constants of integration related to the boundary conditions.

Boundary Conditions
In this problem, assuming no settlement occurs at the supports then the deflection is equal
to zero at these positions, i.e.

when x = i].

i
#1633 -302 —40]\—\{]‘ 20&; 450\[3\— +Ax+B
6 24

l'gﬂ{.'.l!‘(.’ IEJ'J'I:’H'L* J'g” e

Substituting for x and y in equation (3) .". B=
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whenx =60, y=10

1

4 ) I
+1633 5 _3.u£ —40 [e-2] _z_u[x'jll _.5_:1!"“'1 +Ar=0
6 6 6

24
4 1 £
+1633 80 umﬂ ~4030 50390 (02 L coa=0
& 24 & 24 &

oA ==58.98

The general equations for the slope and bending moment at any point along the length of
the beam are given by:

The equation for the slope at x:

“rJ' =+ 163 3_H30_,,_¢|uu_...2ﬂ[—]—n60[—]— - 58.98

Equation
4)
The equation for the deflection at x:
3 4 ] _a _aF
E;v=+|a.33"——3.ui—4.n[“ 2] -z.u[" 2] -a.u[" 4 ~58.98 x .
. 6 24 6 24 6 Equation
®)

ASSUME Yaximum OCCUrS between 2.0 m and 4.0 m from the left-hand end of the beam,
then:

The equation for the slope at ‘X’ is:

dy _ N % [.1' - 2]: [.t' - E]] \{N:.( 4]2 _
E! 16.3 3- = 3.0 r 4.0 3 20 z 6.0 . 58.98=0
ignore

This cubic can be solved by iteration.

Guess a value for x, e.g. 3.1 m

(16.33%3.1%)/2—(3.0x3.1%)/6—(4.0x1.1%)/2—(2.0x1.1%)/6-58.98=1.73
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>0

The assumed value of 3.1 is slightly high, try x=3.05 m

(16.33%3.05%)/2—(3.0%3.05%)/6—(4.0x1.05%)/2—(2.0%1.05%)/6-
58.98=0.20

This value is close enough. x=3.05 m and since x was assumed to lie between 2.0 m and
4.0 m, ignoring the [x—4] term was correct.

The maximum deflection can be found by substituting the value of x=3.05
m in equation (5) and ignoring the [] when their contents are —ve, i.e.

3 ¥ Y L i
E Yonaimam = + m.as"?—mfr—_‘-a.o [ :] 20l _E] —G.GN —~ 5898 x

24 6 =
ignore

= 114.4
ET Vo =+ TT22 = 1082 =077 =01 = 1TEY L Voo = — T m

4.3 Equivalent Uniformly Distributed Load Method for the
Deflection of Beams

In a simply supported beam, the maximum deflection induced by the applied loading

always approximates the mid-span value if it is not equal to it. A number of standard

frequently used load cases for which the elastic deformation is required are given in
Appendix 2 in this text.

In many cases beams support complex load arrangements which do not
lend themselves either to an individual load case or to a combination of
the load cases given in Appendix 2. Provided that deflection is not the
governing design criterion, a calculation which gives an approximate
answer is usually adequate. The equivalent UDL method is a useful tool
for estimating the deflection in a simply supported beam with a complex
loading.
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Consider a single-span, simply supported beam carrying a non-uniform
loading which induces a maximum bending moment of M as shown in
Figure 4.25.

—uniform loading —— iy
B 11

| hm-[ﬂllrmh

B L1 1

M
T ey
Bending Moment Diagram

Figure 4.25

The equivalent UDL (w,) which would induce the same magnitude of maximum bending
moment (Note: the position may be different) on a simply supported span carrying a
uniform loading can be determined from:

. , w, I
Maximum bending moment M= “E
= S M
4 L-z

where w, is the equivalent uniform distributed load.

The maximum deflection of the beam carrying the uniform loading will
occur at the mid

a Slt’tL"

384E1

span and will be equalto & (see Appendix 2)

Using this expression, the maximum deflection of the beam carrying the non-uniform
loading can be estimated by substituting for the w, term, i.e.
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8M Y
L = 2
Cswirt T\ _0104M L
384K 1 384 ET ET

The maximum bending moments in Examples 5.4 and 5.5 are 32.8 kNm and 30.67 kNm
respectively (the reader should check these answers).

Using the equivalent UDL method to estimate the maximum deflection in
each case gives:

0104 Af 12 3411 305.5
= m  (actual value = ——m)
Ef El El

2
Example 4.5 Suimum = ﬂ'mt;;f L.l E:g m  (actual value = %m)

Example 4.4 Savioum =

Note: The estimated deflection is more accurate for beams which are predominantly
loaded with distributed loads.

4.3.1 Problems: McCaulay’s and Equivalent UDL Methods for
Deflection of Beams

A series of simply supported beams are indicated in Problems 4.11 to 4.15. Using the
applied loading given in each case determine the maximum deflection. Assume all beams
are uniform with Young’s Modulus of Elasticity=E and Second Moment of Area=I

6 kN/m | 15 kN 12 KN/m

A

Problem 4.11
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5 kN 10 kN 5 kN
— 2 kN/m — 4 KN/m

Problem 4.12

B kN 12 kN
3 kMNm — ) — 6 kIN/m

Problem 4.13

10 ki 8 kM/m 15 kN

Problem 4.14

10 kMN/m

B C
1.0 m\!xl,ﬂ m\‘!k_

Problem 4.15
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4.3.2 Solutions: McCaulay’s and Equivalent UDL Methods for
Deflection of Beams

Solution
Topic: Statically Determinate Beams = Deflection
Problem Number: 4.11

15 kM GENm  (Total e = 12N m)
LN L AR L AR ATy

ARTS KN x - 5038 kN
-

(See Problem 4.2 for the suppornt reactions)
The equation for the bending moment at v is:
-‘; Y M, =+ 48,750 = (602 - 15.0[x - 2] - 6.0[x ~ 2]'12 Equation {1)
X

£l

The equation for the slope at x is:

H% = Eff=4 24387 - = TS =2F =[x -2 + 4 Equation {2}

4

The equation for the deflection at x is:
Ely = EI§=+8.13¢ —025x* = 2.5[c = 2] = 0.25[x = 2]' + Ax+ 8 Equation (3)

where 4 and & are constants of integration related 1o the houndary conditions.

whenx =0, y=0 and substituting for x and y in equation (3)
EL0) =+ 8.13(0) - 0.25(0)° - DS 2 - 03[ 2] + 4(0) + B

Fmare ignory

whenx =80, p=0 and substituting for x and y i cqun.tiﬂn (3)
EN{0y=+%.138.00" - 0.25(8.0)" = 2.5[6.00" — 0.25[6.0]" + 4(5.0)
soA==284.32

The general equations for the slope and deflection at any point along the length of the
beam are given by substituting for A and B in equations (2) and (3)

The equation for the slope at x; .
Erg=+ 24387 = o = 1.5[x = 21 = [x = 2] - 284,32 Equation {4)

The equation for the deflection at x:
ElS=+ 8,13 = 0,25 " = 2.5[x = 2] = 0.25[x = 2]" = 284.32¢ Equation {3)
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.11 FPage No, 2

The position of the maximum deflection a1 the point of zero slope can be determined
from equation (4) as follows:
Assume that zero slope occurs when 20 2 v = 8.0 and neglect [ | when negative

Elg=0=+2038 =2 = 7.5[x - 2] =[x - 2] - 28432

Solve the resulting cubic equation by trial and error,

Guesz x=39m (e shightly o e left of the mid-gpan)

23R =39 = TA9Y = (1L = 28432 = = .75 Increase x
iy x=395

+ 24,383,950 - 395 = 7.5(1.95) = (1.95) = 28432 =~ | 49 Increase x
v x=396

+243R03.96Y - 307 - TS0.97 - (1.97) - 28432 =— 0.4

Accepl x=3.96m

The maximum deflection is given by )
Fo = P+ B3(3.96) = 0.25(3.96) T = 2.5(1.96) - 0.25(1.96)" - 284.32(3.96)1 /5]

Brn, = — TOS03EF

Equivalent Uniformly Distributed Load Method:
")i-m.ll. Y (&' I 04-‘ r|||.1r\.i.'rurllr-':.‘:l'r"?‘r

The maximum bending moment = 1052 kNm (see Problem 4.2)

S = = (0,104 = 105.2 = $.0°VES = = TO0LE]
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.12 Page No. 1

3 0

20.25 lh‘i ] L - 21LTS RN
{See Problem 4.3 for the support reactions)

The distributed loads must continue o the end of the beam from the point where they
begin. An equivalent load system is therefore required to ensune that the applied loads

are represented in the equations,

Equivalent Load System:
SkN

The equatien for the bending moment at x is!

u-:% = M, =+ 20,255 = (37)2 - $.00c - 2]+ 1.0[x - 2142 — 10.0[x - 4]
X

- 50[x - 6] - 2.0[x- 15]:.":-! Equation {1}

The equation for the slope at x is:
it = prg=+ 10,038 - 0.5 = 250 = 21 + 0.1 7[ = 21" - 5.00x - 4]

ik

= 25[x= 6] = 0.33[x = 6] + 4 Equation (2)
The equation for the deflection at x is:
Ely = EIf=+ 338" - 0.125¢* - 0.83[x - 2] + 0.0d[x - 2]' = 1.67[x - 4]’
—0.83[x—6]" = 0.08[x - 6]'+ dx + B Equation (3)

where 4 and & are constants of integration related 1o the boundary conditions.




Examplesin structural analysis 224

Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.12 FPage No, 2

. whenx =0, p=0 and substituting for x and y in equation (3)

- 0.08<6.0]' + AQD) + B ignore imare fgnore
fignarc LB=0
whenx =80, =0 and substituting for v and y in equation (3)
EF(0) =+ 3.38(8.0)" - 0.125(8.0)" - 0.83[6.0]" + 0.04[6.0]' - 1.67[4.0]"
- 0.83[2.0]" - 0.08[2.0] + A(8.0) o= 12204

Frm)==+:!1:([l:|i—u 125(0)" - OB322.07° + 003 2.01" - 167201 u\:ﬂmu]

The general equations for the slope and defection at any point along the length of the
beam are given by substituting for A and B in equations (2) and (3)

The equation for the slope at x:
ET0=+ 10137 - 0.5 = 25[x = 2P + 01 7[x = 2) = 5.0[x = 4] = 2.5[x - &)
—0.33x-6]" - 122.04 Equation (4)

The equation for the deflection at x:
Eld=+338¢ - 0,125¢" - 0.83[x - 2]' + 0.04[x - 2]' - 1.67[x — 4]’ - 0.83[x - 6]’
~0.08[x - 6]' - 122.04x Equation (5)

The position of the maximum deflection at the point of zero slope can be determined
from equation (4) as follows:
Assume that zero slope occurs when 4.0 = x = 6.0 and neglect [ ] when negative
EI0=0=+1013¢ - 0.5¢ = 2.5[x - 2F + 0.17[x - 2]" - 5.0[x — 4] - z?sp-{ 6

- 03~ 6] - 122.04 imare

ey

Solve the resulting cubic equation by trial and error.
Guess x=4.0m EMd=+433>0 S reduge x
iy x=4.,05 Elf=+186>0 iy x=402  El@=+0(038
Accept x=4.02 m

The maximum deflection is given by:

S = 1+ 3.3804.02) - 0.125(4.027 - 0.83(2.027" + 0.04(2.02) = 1.67(0.02)
—{122.04 = 402)}/ES

By, ™ = 309 BHET

Equivalent Uniformly Distributed Load Method:

Fon, = = (0109 e L VET

The maximum bending moment = 49.0 KNm {see Prablem 5.3)
B, == (0,104 3 9.0 = BOTVES = - 326.14/EY
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Solution
Topic: Statically Determinate Beams = Deflection
Problem Number: 4,13

B
20m |14 en jom
— &= >

4 l.c:\'
(See Problem 4.4 for e support reactions)
The distributed loads must continue 1o the end of the beam from the point where they
begin, An equivalent boad system is therefore required 1o ensure that the applied loads
are represented in the equations.
Equivalent Load System:

EA 5 12 kN
IkN'm - kM (Totald g = 6 KN'm)
COELTIREINAAR R AR AnRELTIaReIn lIII]iI[I|II||||]![|I|]I[||]1ir||]]r|r

2 kMim -~ él[llIII[IIIZ!EIIJ]I[IJ]][[II]IlIIJIIlIIJ]IlIIg[lII]IlllIIIIIII]I[III]I[IIJ]Il

2TH kN, 20m _-.I_‘I.ﬂr.n W 30m q

X

The equation for the bending moment at v is;

i "_r
e’

£l = M, =+ 2T.56x = (37W2 - 800 = 2]+ 3.0[x - 2152 - 6.0[c = 312

= 1200~ 6] Equation {1}

The cquation for the slope at x is:
LI% =EI =+ 13787 = 0.5 = 40x = 21 + 0.5[c = 27 = [ = 3] =600 =6)+ 4
iy
Equation {2}
The eguation for the deflection at v is:
Ely=Eid =+ 4,59 - 0,125:" - L33 [c - 2] + 0025 - 2]' - 0.25[+ - 3]°
~20[x=6] + Az + B Equation {3}

where A and 8 are constanis of integration relaied 1o ihe boundary conditions.
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Solution
Topic: Statically Determinabe Beams - Deflection
Problem Number: 4,13 Page No, 2

when x=10, p=0 and substituting for x and y in cquation (3)

EF(O) =+ 4.59(0) - 0.125(0)° ~ 1.331>.01" + 0.125{ 2.07° - 0.3 3.07"
- 200601 - A(0) + B lnore ignare igore
igmare =0
when x =90, p=0 and substituting for x and ¥ in equation (3)
EN{0y =+ 4.5909.00" - 0.125(9.00" = 1.33(7.0)* + 0.125[7.00° = 0.25[6.0)*= 2.003.01°
— A0 LAd=-22132

The general equations for the slope and deflection at any point along the length of the
beam are given by substituting for A and B in equations (2) and (3)

The cquation for the slope at x:
El6=+ 1378 = 0.5 = 4.00x = 27 + 0.5[x = 21 - [x = 31 - 6.0[x - 6] - 221.32
Equation {4}

The equation for the deflection at x:

EIS =+ 4500 — 0,125 = 133w =21 + 0,025 = 21" = 0.25[x = 31" = 2.0[x - 6]
22132 Equation (5)

The position of the maximum deflection at the point of zero slope can be determined
from equation (4) as follows:

Assume that zero slope cccurs when 3.0 2x =60 and neglect | | when negative
EIf =0=+ 1378 - 0.5 - 4.0[c — 2F + 0.5[x - 2 - [x- 31" - 221.32

Solve the resulting equation by trial and error,
Guess x=46m  Ef=-075>0 Sooreduce v
ry x=46lm EM@=+002>0 Accept x=461 m

The maximum deflection is given by;

G = {1+ AIWAE1Y = 01254610 - 1332610 + 01252610 - 0.25(2.61)°
={221.32 = 46 1)VEI

Baan, =— B50.5/ET

Equivalent Uniformly Distributed Load Method:

S = = (0 104M, e LV ET

The maximum bending moment = 78.0 kNm (see Problem 5.4)
Faan, = = {0104 = TEA = Q0°VES = = 65TAET
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.14 FPage No., 1

1440 km

(Sce Problem 4,10 for the support reactions)

The equation for the bending moment at x is:

.er‘:{—} = M, == 10.0x = 1] = 8.0[x = 22 = 15.0{x - 4]
-

The eguation for the slope at x is:

f;:f'=f:m=—s.t}[x—1]’—1.33[x—2|‘—?.5[x—d]’+.4 Squation (2

dx
The equation for the deflection atx is:
Ely=El8 == 167z = 1] = 0.33[x = 2] = 2.5[x = 4] + dxt B Equation {3)

where A and B are constants of integration related 1o the boundary conditions.

whenx =60, dyfdy=10 and substitming for x and y in equation (2)
EF(0)=- 5.0(5.00 - 1.33(4.0F - 7.5(2.0 + 4
Sod = 240002

whenx=6.0, p=0 and substituting for © and ¥ in cquation (3)
EF(0y= = L67(5.00 = 0.33(4.0)° = 250200 + (240,12 = 6.0)+ B
==1127.49

The general equations for the slope and deflection at any point along the length of the
cantilever are given by substituting for A and B in equations (2) and (3).

The equation for the slope at x:
Erg=-50x-11 - 1.33[x - 2|:l = T3[x—4]" + 240,12 Equation (4)

The cquation for the deflection at x:
ElS=—1.67x— 1] = 0.33[x = 2]' - 2.5[x — 4] + 240.12¢ — 1127.49
Equation (5)
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Solution
Topic: Statically Determinate Beams - Deflection
Problem Number: 4.14 FPage No, 2

The maximum deflection vccurs at the free end of the cantilever e, when x = 0
neglecting all | | which are negative,

B, == 1127497 Ef

The deflection at any other lecation can be found by substituting the appropriate value
of x, e.g.

AtB: x=1.0
Su= 1+ (240,12 % 1.0) - 112749 1ET & = - S8TAIES

ArC: x=20
&= - LET()Y + (240,12 % 2.0) - 1127.404E &= — G48.9/ET

A x=40
p= 1= L67(3.0)" - 0.33(2.0)" +(240.12 = 4.0)— 11 2749E] &y == T AIES

Note: The Equivalent Uniformly Distributed Load Method only applies fo
single-span beams.,
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Solution
Topic: Statically Determinabe Beams - Deflection
Problem Number: 4.15

T kN'm

B m
. 1.0 | Livm J
270 kN 2L0kN
{See Problem 4.6 for the suppor reactions)
The distributed loads must continue 1o the end of the beam from the point where they

begin, An equivalent load system is therefore required to ensune that the applied loads
are represented in the equations,

Equivalent Load System:

By K™ } [ Tolal e = 5 KNSm)

|||.||E!|.|||]]||_||“ ¥
a L .
Lom (1om [~ 5.0 kN

13

X

The equation for the bending moment at v is:

;-:r-‘ﬁ_f,l = M, =+ 370 - (107Y2 + 51.00x — 6] + 5.00x - 6]/2 - 8.0[x - 7]

x
LEguation (1}

The equation for the slope at x is:
.E‘..I'% = Eff=+ 13,50 = L6To + 25.5[¢ = 6] + 083[x = 6] = 4.0[x = 7] + A

1
Equation {2}
The equation for the deflection at x is:
Efy=Efd=+ 4.5x¢" - 042" + B.5]x - ﬁ]'t #0.20|v=6]" - 1.33[x - ""'J'It +Ae + B
Equation {3}

where A and & are constants of integration related 1o the boundary conditions,
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Solution
Topic: Statically Determinabe Beams - Deflection
Problem Number: 4.15 Page No, 2

whenx =0, y=0 andsubstituting fer x and v in equation (3)
EI(0) =+ 4.5(0 - 0.42(0)' + 83701 + n_zm_ur ~ 133]NZ01 + A(0) + &
Pty ipmore ipmare
L B=0
when x=6.0, p=0 and substituting for v and v in cquation (3)
EN(0) =+ 4,5(6.0)0" - 0.42(6.00" + A(56.0) oA ==71.28

The general equations for the slope and deflection at any point along the length of the
beam are given by substituting for A and B i equations (2) and (3)

The equation for the slope at x;
EI0=+ 13.5¢ = 1.67¢" + 25.5c - 6]° + 0.83[x - 6]' = 4.0[x = 7] = 71.28
Equation {4)

The equation for the deflection atx:
E1S=+455 - 042" + 85[x - 6] + 021 [x— 6] - 1.33[x - 7) - 7128«

Equation (3)

The position of the maximum deflection between A and B at the point of zero slope can
be determined from equation (4) as follows:

Assume that zere slope occurs when 3050560 and neghect | ] when negative
Elf=0=+ 1357 167" - 71.28

Selve the resulting equation by trial and ervor,
Guess x=29m Elff=+1.53>0 S reduee v
iy x=285m Effr==029<0 Acceptx = 2.85m

The maximum deflection is given by
asimae = FHA5(285) = 0.42(2.85) = (71.28 = 2ES)ES Euttwean, = = 126,69 ES

The maximum deflection of the cantilever oocurs when x = 8.0 m

Sp= I+ 45(8.00 - 04208.00 + 550200 + 0210200 = 1.3300.00" = (7128 = S.000E0
B, =+ BIATIET

Equivalent Uniformly Distributed Load Method:

Thiz can be used 1o give a conservative estimate of & ., assuming AB to be a simply

supported 6.0 m span without the cantilever

Fan = = (0N M L YET

The maximum bending moment in span AB = 36,5 klNm (sce Problem 3.6)

B, = = (0,104 = 36.5 = G.0°VE] = = 136.7/ET
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4.4 The Principle of Superposition
The Principle of Superposition can be stated as follows:

‘If the displacements at all points in a structure are proportional to the
forces causing them, the effect produced on that structure by a number of
forces applied simultaneously, is the same as the sum of the effects when
each of the forces is applied individually.’

This applies to any structure made from a material which has a linear load-
displacement relationship. Consider the simply-supported beam ABCD
shown in Figure 4.26 which carries two point loads at B and C as
indicated.

16 kN 20 kN

Fp=16.5 kN

Figure 4.26

195 kN 19.5KN

35EN 35 kN

A B C D Shear Foree Diagram

165 kM 165 kN

[ 1]

I

I
Bending Moment Diagram

300 kNm 49.5 kNm
~~~~~~~ o — - — |
Snidosgan Deflected Shape

Figure 4.27
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Note: the maximum deflection does not necessarily occur at the mid-span point.

When the loads are considered individually the corresponding functions
are as indicated in Figure 4.28.

120 kN
16 kN |
A B__C n A B C I
L0EN LOEN |
120kN 10KN 240 kNm
|. T
gy .:“ """" ficy -+ =
KN T5EN TSN
A BE C D :
T lIIIH J'U”
T5KN 12.5kN 15,0 kNm
- 12,5 kN 375 kNm
fh:ﬁh:;;': i
Figure 4.28
It is evident from Figure 4.28 that:
Va=(12.0+7.5)=19.5 kN; Vp=(4.0+12.5)=16.5 kN
8 = (& + Faz): Hnid-span = (Snid-spant + Fusid-spanz &= () + &)

Shear Force at B jop-nand sige = (+ 12.0+ 7.5)=+ 19.5 kN
Shear Force at B pn-nand side = (= 4.0 + 7.5) =+ 3.5 kN
Shear Force at C jep-tand sige = (— 4.0 + 7.5)=+ 3.5 kN
Shear Force at C pign-nand sige = (— 4.0 — 12.5) = - 16.5 kN
Bending Moment at B = (+24.0 + 15.0) = + 39.0 kNm
Bending Moment at C = (+ 12.0 + 37.5) =+ 49.5 KNm

This Principle can be used very effectively when calculating the deflection of beams,
(particularly non-uniform beams), as used in the Examples and Problems given in Section
4.5. Examples 5.6 to 5.10 illustrate the application of the Principle.
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4.4.1 Example 4.6: Superposition—Beam 1

450 kN Maximum bending moment
A5 kN T 350 kN oocurs 3l point of rero shear
— SkM/m ~|
A B C A £ ff C
A B C3 0ok —0o | "””H H‘mmmﬂ“’
A50KN J0.0 kM J0OEN ”
d20m.  d0m 0.0 KNm
|\ G0 m A
Figure 4.29

Using superposition this beam can be represented as the sum of the two load cases shown
in Figure 4.30.

300 kN
i C A i C
b It c AL RN TR
? 150 kN 150 kN U‘H“I““”Ll
30,0 kW 15.0 kN
600 KNm
+
[ 5kNim I30KN 540
rﬂmmmmw - S S =
A i} T B HTTITHHHE ey
s ¢ * 15.0kN 2000 KM
15.0 kN 15.0 kN
Figure 4.30

¥\ =(30.0 + 15.0) = 45.0 kN; Ve=(15.0 + 15.0) = 30.0 kN
Shear Force at B jeq-pang sige = (+ 30.0 + 5.0) = + 35.0 kN

Shear Force at B ppna-rand sige = (= 15.0 + 5.0) =+ 10.0 kN
Bending Moment at B = (+ 60.0 + 20.0) =+ 80.0 kNm
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4.4.2 Example 4.7: Superposition—Beam 2

120kN Maximum bending maement
ecturs 3 poinl of zero ghear
— GKNm
AR c_n A B Con A /r_ [§]
'ug % “L\l” 3 LI’;)’
12.0 k% 120 kN 240 kNm 1240 k00m
20m| 40m  |20m) 12.0kN =
H:-x A0m |20m) 36,0 kNm
2 A0m 1

Figure 4.31

Using superposition this beam can be represented as the sum of:

12,0 kM
e & N
A B e I A R L |k} A

I
«F T T q: S
12,0 kNm
M O2O0KN 120kN P00 120k

+

12,00 kN

T2 kN 120 kN

A ﬂl - Lﬁ. i1 D A B
T Bl
20kN 120kN

LS
[l

20kMm  24.0kNm

120 kN 1

Figure 4.32

Fy=(zero + 12.0)= 12.0 kN; Vp=(zero+ 12.0) = 12.0 kN;
Shear Force at B g-pand sige = (2ero + 12.0) =+ 12.0 kN

Shear Force at B jign-tana sige = (+ 12.0 + zero) =+ 12,0 kN

Shear Force at mid—span = zero

Shear Force at C yji-pand sige = (= 12.0 + zero) = = 12.0 kN

Shear Force at C jipm-tand sige = (2ero = 12.0) = = 12.0 kN

Bending Moment at B = (zero + 24.0) =+ 24.0 kNm

Bending Moment at mid-span = (+ 12.0 + 24.0) =+ 36.0 kNm
Bending Moment at C = (zero + 24.0) = + 24.0 kNm
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4.4.3 Example 4.8: Superposition—Beam 3

Mavimum  bending  moment
0 kN 10 kN JEIEN ogeurs o pisind of #ero shear 00 kN
12 kN/m \ 00k .

£ B COD E A [T A |
95N \
IBERN SN k|
| 40m 20m20mlom
e,
10.00m

Figure 4.33

Using superposition this beam can be represented as the sum of:

240 kN
= 12 kN
LLCITCTTRSTT i\ [£] C ] E

A nC D E
QFA BT C D% E A \ WHHUJU’
H0EN 3ygkN L 240kN 2-L.}]k?{|ll
oy T 120kN
| C N E A B C I E
A B CD¥F E A % \QI” (|
12,0 kN 120LN 12.0 kN 4.0 KNm
+
I " 48,0 kKNm
SO ¢ p g A B C D E
A B CDE E A i ] _ ""‘”llJﬂHl ”I LV
SOLN 150N BT 20,0 kNm
300 kNm
+ 10k 1000 kN 150 kim  20:0 kxNm
| - 100 kM| or ”||th
i _ A B Conf pnter It
A B CD: E 15k 21s5kn E A B C D E
2.5KkN 12.5kN
Figure 4.34

Va=(24.0+12.0+5.0-2.5)=38.5 kN;
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Vo=(zero+ 120+ 15.0 + 12.5)=39.5 kN;

Shear Force at B .ppand sige = (= 24.0+ 12.0+ 5.0 - 2.5)=-9.5kN
Shear Force at B jigu-pana sige = (2610 — 12.0 - 15.0 - 2.5) = - 29.5 kN
Shear Force at C j._pund sige = (2ero — 12,0 = 15.0 - 2.5)=-29.5 kN
Shear Force at C igy-nand side = (zer0 = 12.0 = 15.0 = 2.5) == 29.5 kN
Shear Force at D jo-nand sge = (Zero = 12.0 = 150 = 2.5) == 295 kN
Shear Foree at D ;pn-pand sige = + 10.0 KN

Shear Force at E=+ 10.0 kN

Bending Moment at B = (zero + 48.0 + 20.0 — 10.0) =+ 58.0 kNm
Bending Moment at C = (zero + 24.0 + 30.0 — 15.0) =+ 39.0 kNm
Bending Moment at D= - 20.0 kNm

4.4.4 Example 4.9: Superposition-Beam 4

:I:_'i:.l,‘:l kX

: T 30N
154 kM 1 0 kM e

LL I B kN'm ':-*P K

! A B C
E20kM 3 0m 10m
e Ty a,
" A0 m 1
Figure 4.35

Using superposition this beam can be represented as the sum of:

! G40 KN m
BIRNT g g S2ORN l = e
(REEELIVSRRE LR R EE LR REEETTRARRER T BOkN |[ ”H“ “[I'l'lrlr|,1..:_'. ENm
A B C A BC A e
FLOEN
LG ENm
90 kNm 0N MO RN INOKN |[ ”H“‘ ﬁ
3 i [ M,
g"ﬁ. B O A B C n m rz
00 RN

Figure 4.36
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Vy=1(32.0+30.0)=62.0 kN
M, =(-64.0-90.0)=154.0kN
Shear Force at B jen-nand sige = (—8.0 = 30.0) == 38.0 kN
Shear Force at B igh-nand sige = — 8.0 kKN
Bending Moment at B = — 4.0 KNm

4.4.5 Example 4.10: Superposition -Beam 5

20kM

15 1N 6k SOKN B0 KkNm
4 KNim l A 6.0 KkNm
C D i “‘ Ir,
I C D E N“ | | E ﬂﬂ" NP Al
16.0 kN P30 kN I A B ‘l]“ |ILL* DF
. BOKN TN
| 20m| 20m  20m 1.0 il
T0m | 8.0 kNm
Figure 4.37
Using superposition this beam can be represented as the sum of:
B0 KNm 2
. 1/| m .0 kN
0N 204N l ”‘rlmh
A @ C n% E A\H C D E A L& D E
100 kN 20kN REOkN
+ 7.5 kN
15 KN
1 C oo E A I C 0K
X gk C n$ E n M J | | I ||Jl
TEKN T5kN L iy
TH5EN | y
-+ ;
15.0kNm ¥
. 6.0 kNm
BN 3.0 kNm ”ln\
lr A m ¢ wll cortll] |ﬂ I ”ﬂ Ihy
E O D!T E LSKN 13 b A 1] D E
13kN T5EN

Figure 4.38
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Ve=(+10.0+7.5-1.5)=16.0kN;
Vp=(-2.0+75+7.5)=13.0kN;

ShE.‘rll‘ Force at B left-hand side = — 8.0 kN

Shear Force at B ripy-nand sige = (+ 2.0+ 7.5 - 1.5) =+ 8.0 kN
Shear Force at C jop_pundsige = (+ 2.0+ 7.5 - 1.5)=+ 8.0 kN
Shear Force at C igh_pand siee = (+ 2.0 = 7.5 - 1.5) == 7.0 kN
Shear Force at D lefi-hand side = (+ 20-75- IS} =-T7.0kN
Shear Force at D sig-hand sige =+ 6.0 kKN

Shear Force at E =+ 6.0 kN

Bending Moment at B = — 8.0 kNm

Bending Moment at C = (- 4.0+ 15.0-3.0) =+ 8.0 kNm
Bending Moment at D = - 6.0 kNm

4.5 Unit Load Method for Deflection of Beams

In Chapter 3, Section 3.5 the deflection of pin-jointed frames was calculated using the
concept of strain energy and Castigliano’s 1% Theorem. This approach can also be applied
to structures such as beams and rigid-jointed frames in which the members are primarily
subject to bending effects.

In the case of pin-jointed frames the applied loads induce axial load effects
and subsequent changes in the lengths of the members. In the case of
beams and rigid-jointed frames, the corresponding applied loads induce
bending moments and subsequent changes in the slope of the member.

Pin-jointed frames comprise discrete members with individual axial loads
which are constant along the length of the member. In beams the bending
moment generally varies along the length and consequently the summation
of the bending effect for the entire beam is the integral of a function
involving the bending moment.

4.5.1 Strain Energy (Bending Load Effects)

A simply-supported beam subjected to a single point load is shown in Figure 4.39. An
incremental length of beam dx, over which the bending moment can be considered to be
constant, is indicated a distance ‘x’ from the left-hand support.
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‘|
l‘_.". B s R »
./
g LoE } (459 e e M
~ <Ja—
Figure 4.39
M _E o M 1
From ‘simple bending theory’ I R y El R

where R is the radius of curvature and 1/R is the curvature of the beam,
i.e. the rate of

change of slope. R dx  EI

Assuming the moment is applied to the beam gradually, the relationship
between the moment and the change in slope is as shown in Figure 4.40.

Moment
e The extemnal work-done on the member
Af by the bending moment “M” is equal to
' the strain energy stored and is given by
the expression:
dlf= [-]-'-J'rf ® .:!l!?]
change in glope 2
Figure 4.40

Differentiating the expression for strain energy with respect to x gives:
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U (1,40
dx 2 dx

substituting ﬂ)rﬂ . ‘f_U _ (1 MXM) _ M-

dc ax \2° TEI) 2E
, o , M?
Transposing dx in this equation dU= ——dx
2ET
L 2
The total strain energy in the beam U= de
22

Using Castigliano’s 1% Theorem relating to strain energy and structural deformation:

-
oW

where:
U is the total strain energy of the structure due to the applied load system,

W is the force or moment acting at the point where the displacement or
rotation is required,

A is the linear displacement or rotation in the direction of the line of
action of W.

Consider the simply-supported beam ABCD shown in Figure 4.41 in which it is required
to determine the mid-span deflection at C due to an applied load P at position B.

H LX)
mid-span position

Figure 4.41
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Step 1:
The applied load bending moment diagram is determined as shown in Figure 4.42

AqﬂUMHMH H HHHIHM ===

M applied load diagram
Figure 4.42

Step 2:
The applied load system is removed from the structure and an imaginary Unit load is
applied at the position and in the direction of the required deflection, i.e. a vertical load
equal to 1.0 at point C. The resulting bending moment diagram due to the unit load is
indicated in Figure 4.43

Figure 4.43

If both the Step 1 and the Step 2 load systems are considered to act
simultaneously, then by superposition the bending moment in the beam is
given by:

Q= (M+ [m)
where;

M is the bending moment due to the applied load system

m is the bending moment due to the applied imaginary Unit load applied
atC

B is a multiplying factor to reflect the value of the load applied at C,
(since the unit load is an imaginary force the value of p=zero and is
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used here as a mathematical convenience.)
The strain energy in the structure is equal to the total energy stored along the full length
of the beam:
L 2

U= G— ¢
J2EI

Using Castigliano’s 1% Theorem the deflection of point C is given by:

=18—Ur
oW
_oU _aU o
P e a0 ap
. L
and (A g(fx =m
B EI BV
L L
P {
L'-—~a—U-—£ ‘@ = j'_rf-l".l m= J-(ﬂv +ﬁm]ftxm
e  op ap uEI o E

i.e. the deflection at any point in a beam can be determined from:
5= j—dx

where:

& is the displacement of the point of application of any load, along the
line of action of that load,
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M is the bending in the member due to the externally applied load system,

m is the bending moment in member due to a unit load acting at the
position of, and in the direction of the desired displacement,

| is the second-moment of area of the member,

E is the modulus of elasticity of the material for the member.

4.5.2 Example 4.11: Deflection and Slope of a Uniform Cantilever

A uniform cantilever beam is shown in Figure 4.44 in which a 20 kN is applied at B as
indicated. Determine the magnitude and direction of the deflection and slope at B.

M 20 kN

E and [ are constant from A to B.

Fal 4.0m

Figure 4.44

The bending moment diagrams for the applied load, a unit point load at B and a unit
moment at B are shown in Figure 4.45.

200 ks centroid of the ; I.|'I|‘.||1\.I.1 Boa]
e l"l..lll]lrl].., momcnl diagram

5 ||| [ .......

'*'rl'wl;\ﬂwdlm.\ il'_ . —a
A0 KN

4.0 m

1.0 X
40m l I—-____;.__ )
A ﬁ y £ i =
1.0 I L et vovtiend boad B - T T
- x ]

10 ¥a 1.0
1.p - "

A H) B i
1.0 m  x—
ror0 e et manegd 3 -« w ]

Figure 4.45
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Solution:
Mm
f_d

The bending moment at position ‘X’ due to the applied vertical load M=-20.0x

The bending moment at position ‘x” due to the applied unit vertical load
m=—x

A=

4 2
Mn=+20¢ &= [2 gy = {20; } _, 42667 |
o Ef SET El

X

The bending moment at position ‘x’ due to the applied unit moment at B m=—1.0

=4 574
20x 20x° 160
M =+ 20y i = = e rad
:[ El |: 2ET :| \
L
Jﬁdnrdx
The product integral 0 can be also be calculated as:

(Area of the applied load bending moment diagramxthe ordinate on the
unit load bending moment diagram corresponding to the position of the
centroid of the applied load bending moment diagram), e.g.

To determine the vertical deflection:

Areazof the applied load bending moment diagram A=(0.5x4.0x80.0)=160
kNm

Ordinate at the position of the centroid y;=2.67 m
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L
[Mm dx = (160 % 2.67) = 426.67 Iﬁdx S “‘-’”m

To determine the slope:

Areazof the applied load bending moment diagram A=(0.5x4.0x80.0)=160
kNm

Ordinate at the position of the centroid y,=1.0

L
[atm dx = (160 x 1.0)= 160 5 &= IM’” + 1.\

0 ﬂE."

4.5.3 Example 4.12: Deflection and Slope of a Non-Uniform
Cantilever

Consider the same problem as in Example 4.11 in which the cross-section of the
cantilever has a variable El value as indicated in Figure 4.46.

Figure 4.46

The bending moment diagrams for the applied load, a unit point load at C and a unit
moment at C are shown in Figure 4.47.
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80 KN
" lm-'—-u

hnﬂm“ ”I I |||||||.UI 'i‘hT‘unn o

20kN

B0 EMNm

C
M fox appticdtonts & ".
4 U_T .}:| '|‘1
—_ - M
f i D
W o i vervcal boad s —x—
10 3y 3y » 1.0
] i
| : |
A - )C . .
. 7]
e I5ET E 1.0 L T o—— e x —a

Figure 4.47

Solution:

In this case since (Mm/EI) is not a continuous function the product integral must be
evaluated between each of the discontinuities, i.e. C to B and B to A.

(Mm ij N j Mm
pt 1.SET

Consider the section fromCtoB: 0 £x < 2.0 m

M=-20x m=-x - Mm =+ 20x"

i 2 3
A -
IMm dr = J-L.ﬂ_t d 2{}1 _ . 53.33
Ef Fi

EI | 3EI

m
o
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Consider the section fromBto A: 2.0 < x < 4.0m

M==20x ==X . Mm =+ 2057
(rﬂm j-zﬂr o= | 20 " [20x4® 20x2° _, 248.89
s BT J1SEI 4.5EI |, | 4.5ET  4.5EI EI
53.33 _ 248.89 _ 302.22
m |

m

L=+ + =
= Ef Ef Ef

Similarly to determine the slope:

Ly M M
J T _c!.f:!.:jd' I—!I.EEH{Y

Consider the sectionfromCtoB: 0 < x < 2.0 m

M=-=20x m==1.0 S Mm o= 20x
i 2P
g = 0= [0 ] 400
; El 2E! El

Consider the section fromBto A: 2.0 < x < 4.0 m

M=-20x m==1.0 W= 20
Lo 208 | 2
J'“m e = I '0": dy = 'ml = Eﬂx:f = 20%2° =+ 3"!'” rad.
£t : |.5Ef 3.0E7 i 3087 30Ef £f

400 800 _ 1200, \
El  El EI

L=t

Alternatively, the applied bending moment diagram can be considered as a the sum of
the areas created by the discontinuity. (In most cases this will result in a number of
recognised shapes e.g. triangular, rectangular or parabolic, in which the areas and the
position of the centroid can be easily calculated).
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The deflection can then be determined by summing the products
(areaxordinate) for each of the shapes.

Ay =(0.5 = 2.0 x 40.0) kNm?, 7 =1333m, o Agy = 5332 kNm'
Az = (2.0 = 40.0) KNn'®, y=30m, o Az = 240.0 kKiNm?
Ay = (0.5 = 2.0 x 40.0) kNm®, 7 =3333m, o oAy = 13332 KNm®

L
dp = j% e = (33 ITEN+ 24000L5ED + (1333 3E)y = + (30222 E) m L
o E

The slope can then be determined by summing the products (areaxordinate) for each of

the shapes.
Ay =(0.5 x 2.0 x 40.0) kNm®, =10, o Ay =40.0 KNm’
Az = (2.0 = 40.0) kNm’, y=1.0, o Azys = 80.0 KNm’
A3 =(0.5 x 2.0 x 40.0) kNm®, yi=1.0, & Ay =40.0 KNm®

L
&= j;f;" dx = (40.0/E0) + (80.0/1.5EI) + (40/1.5EN =+ (120.0/EN rad. N\
0

4.5.4 Example 4.13: Deflection and Slope of a Linearly Varying
Cantilever

Consider the same problem as in Example 4.11 in which the cross-section of the
cantilever has an | which varies linearly from 1 at the free end to 21 at the fixed support at
A as indicated in Figure 4.48. Determine the vertical displacement and the slope at point

B for the loading indicated.

My
s e Y

20 kNl

Figure 4.48
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The value of | at position ‘x” along the beam is given by: I+1(x/L)=I(L+x)/L.

In this case since the I term is dependent on X it cannot be considered
outside the integral as a constant. The displacement must be determined
using integration and cannot be calculated using the sum of the
(areaxordinate) as in Examples 5.11 and 5.12.

SO0 kNm

| B -HHHIH“HLN“h"‘i“Hlllllnr.-n-,.,_,_w_h

LT ———— - X
Lo e
40w B
A B —
El
Lo | 208 P o warit wevtical boad a1 e ]
Lo Lo
1.0 1.0 :
A )Et |
; B LN ] .
e | 2061 AN —
Figure 4.49
Solution:

The bending moment at position “x” due to the applied vertical load
M=-20.0x

The bending moment at position “x” due to the applied unit vertical load
m=—X
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xad x=d 4
3 20x° L 20.{.
Mm=+20r - &=
" ) e jFI[L+r} I[I+r]
Letv=(L+x) Sx={vr=L) dv=de and P=(v-LF

when x=10 v=L=40 and when x=4 r=|[£.+-1.ﬂ}=3_l}

201. J- sau J.{;—fm) @f?{v‘*-a.nwmu}w
[f-+-"f] . El v
val
= 300 [v am'”]d = 3001V o 160y
= w=d v Eri2 ped

3““{[ -[Exﬁ}+16,ﬂin3:| [—-(Sﬂ)*'l”’ ]} 24;10 "

The bending moment at position ‘x’ due to the applied unit moment at B m=-1.0

x=4
20aL _20L*

Mm=+20x = &=

i =+ & ]‘E}{L-{-t} _I[L+r}

an _ 800" T(v-40) 300 40

Tatge- g (-
su,n - snu 9&19
= S0 v-s0m] 5 = S22 5.0~ 4.0ms]-[o-40ma] =+ 2 2 rad N

4.5.5 Example 4.14: Deflection of a Non-Uniform, Simply-Supported
Beam

A non-uniform, single-span beam ABCD is simply-supported at A and D and carries
loading as indicated in Figure 4.50. Determine the vertical displacement at point B.

Figure 4.50
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The bending moment diagrams for the applied load, a unit point load at B are shown in
Figure 4.51.

The beam loading can be considered as the superposition of a number of
load cases each of which produces a bending moment diagram with a
standard shape. Since there are discontinuities in the bending moment

diagrams the product integrals should be carried out for the three regions
AtoB,DtoCandCtoB.

G kMim
ey o A B [ 1]

A B

\ ™
aero 12,0 kN 120N e e P —
12.0 kN 12.0 kN M g apptict oads
A B 1 C V) A [ C (1]
P W
12.0 kN 120KN W |
240 kNm 24.0kNm
— X e Mo _ X .
—_— - = UM g aptid loaks % -
A B 1 C o A B C 1]
= El it El F
T u
1125 kN 375N
225 KkNm
e K [PREESE—. —Y
10 M Eor applind boahs
A B 1 [ D A B C D
. JE El |l l | —
I i Kk X
0.75 0.25 l-“ﬂ;L\ —Tom "
1.5m
Figure 4.51
Solution:

It is convenient in this problem to change the position of the origin from
which “x’ is measured for the different regions A—B, D—C and C-B as
shown in Figure 4.51.

-—-d\ + dv + -—~.,r.|r

Mm Mm Mm Mm
& = dx j' J'
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Consider the section fromAtoB: 0 £x < 2.0 m

M=(12x +11.25x)=23.25x
n
M

m=+075x

L Mm=+ 17445

—dx -
| El 3 El 3EL |

*17.4457 [I?.datx" ]E [17.44:-:1-‘] 46.51
= ax = = =4 m

IEL Ef

Consider the sectionfromDto C: 0 =x £2.0 m

M=(12x+3.75x)= 15.75x

m=+025x

o Mm =+ 39407

?Mm %304, [3.94.#"3 _
oy = j de =
4 Ef s EI 3EN |

m

3.94x2% | _ 1051
3EI EI

Consider the section fromCtoB: 2.00 £ x < 6.0 m

M=[12(x = 2) = 6(x - 2)72] + [12v = 12(x - 2)] + 3.75x = (21.75x - 37 - 12)

m=+025x

5 M= (6.94x° - 0.75x° - 3x)
6.94x°  0.75x" 3y

=

B M, ]_[ﬁmf —0.75x" - 3x}d_ ) [

& Er 3 2ET GET BES 4ET |,
_ 6.94x6" 075x6" 3u6’ 6.94x2% 0.75x2' 3w2?
GET BES 4 £ oLl BES 4£]
_ 9659
" [45.5| 1051 116.59] 153.61
La !-':,‘; = - + - 5 - = m l
Ef Ef Ef
Alternatively: considering X (areasxordinates)
A B C A B < d
<UH|I[18 L I|I ‘ AL | ”'J,_l }
Ay g T Ay Il
2ok A U] Ve a
I-H' Fiot Bpplicd hoad 240 kNm 24,0 KMNm
J‘f;nmqmm
A B C 1] A B C D
T s l [ o =
As II %{IIIIIH\IJ THKNm g P, B e TR
. T

22.5 kNm As

l{"I Fiar bppliad losds

Figure 5.52

T e ot vortical losd a1 B
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Ar=(0.667 = 4.0 1200 kNm’,  w=10m, A =320 kNm?
Ar=(0.5 2 2,0 = 24,00 kNm'", ra=10m, S A =240 kNm?
Az = (4.0 5 24.0) kNm', ys=1.0m, S =960 KNm?
Ag= (0.5 % 2.0 % 24.0) kNm®, Pa=0333m, oAy = B0 KNm?

alg = (0.5 5 2.0 22.5) kKNm'™, ra= 10 m, o Ay = 225 kKNm’
As = (0.5 = 4.0 = 15.0) KNm®, ¥a= 1167 m, Sodges = 350 knm’
Az = (4.0 3 7.5) kNni’, = 10m, 22 Ay = 30.0 KNm”
Ag = (0.5 2 2.0 % 7.5) kNm®, ¥ =0333m, o Asyy = 2.5 kNm?

i

Gy = ["':%Jx = (32.002ED) + (4.0/EN + (96 002E) + (B.0VEN + (22.5/EN + (35 012E0)
I

+ (30.002EDN + (2.51EN 5 dy= (15350E) m 1

4.5.6 Example 4.15: Deflection of a Frame and Beam Structure

A uniform beam BCD is tied at B, supported on a roller at C and carries a vertical load at
D as indicated in Figure 4.53. Using the data given determine the vertical displacement at

point D.
[.5m 20m
*, e "
B C D|
— 8 F ;
el
5.0kN
Member Properties:
: E besmn = 10.5 KN/mm”
= { team = 430 x ]ﬂ‘b I"I'flli'l"l.II

+— Tie member

E =80 kN/mm®
A e = 300 mm°

Figure 4.53

Solution:

Consider the rotational equilibrium of the beam:
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+vn)1;'d.~. =0 ={Fexl3)+(50x35)=0 s Ve=11LETKN 1‘

Consider the vertical equilibrium of the structure:

+ve 'I' 25 =0 Vot Ve=50=10 S Fa=—6.67kN J

Since the structure comprises both an axially loaded member and a flexural member the
deflection at D is given by:

I
. PL Mm
o = E I I ey
> Member AR > ,
0 Member BCD
Member BUD Properties:
B C n E b = 15 KMNmm®
5 T Do = 43005 10" mm'
1167 kKN SO0kN Member AB Properties:
r E e = 80 KN/mm®
+ 6,67 kN = 10,0 kNm A = 3 mm”
#‘ |.— & — - = A —iy
667 kN I
B c D Applied Load Effects: Pand W
o T l
LI3KN 1.0
+1.33 |_333q._,:- ——_ 133m
i T
'y - | i —
A B C 1]
‘?‘ -— 0 — !4— x —ql.
| |
1.33 Unit Load Effects: i anc o

Figure 4.54
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3
[Eu) = [Mﬁl.ﬂ] =+0.55 mm
AE Member AB 30080
L
M
IMIH d _ J'ﬂrfm J' ﬂ dx
El

0 Member BCD B

Consider the section fromBtoC: 0 =x<1.5m

M=-6.6Tx m=-133x . Mn=+887x

C' 1.5 1 N 3
J.A{m dy = IE'STI dy = 5.3?:«_ w = sl A B +2.11 mm
2 Ef Ef IxEl 3x105x430

Consider the section fromDtoC: 0 € x < 2.0 m

M=-50x m=-10x soMm=+5007
2
3 : L]
I:L"m Sllla. e = 5.0..1. = | _A00x10" | _ L aesm
SH Jul5=450

= (055 +2.11 +2.82) = + 5.48 mm l

. A
iy = [J—I_u] + J-ﬂd'
AE Member Al 0 £f Member BED

In the previous examples the product integrals were also determined using:

(the area of the applied bending moment diagramxordinate on the unit
load bending moment diagram).

In Table 4.1 coefficients are given to enable the rapid evaluation of
product integrals for standard cases along lengths of beam where the El
value is constant.
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L
b
FProduct Integral % dy = |Cocflicient x a x b =x L|JES
0
N L L I L
Iy bl I b L.// \\l b \\/a/
L
1.0 0.5 0.5 0.5
= R
L
o M= 0.5 0.333 0.167 0.25
L
"“tln]] I L3 0.167 0.333 0.25
L
05 0.25 0.25 0.333
L
a 0.667 0.333 0.333 0417
: 0.333 0.25 0.083 0.146
A
" 0.333 0.083 0.25 0.146
L

Table 4.1

Consider the contribution from the beam BCD to the vertical deflection at D in Example

L
1
Product lmtegral JI% dy = E [Coellicient = a = b x L)'ET

[
From (BtoCy+ (Do C)=[(0.333 = 1000= 200 1.5) + (0L333 = 10,0 = 2.0 = 200VES

4.15.

=+ 23.3VEN e same as [(2.11 + 2.82] caleulated above,
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4.5.7 Example 4.16: Deflection of a Uniform Cantilever using
Coefficients
A uniform cantilever beam is shown in Figure 4.55 in which a uniformly distributed load

and a vertical load is applied as indicated. Using the coefficients in Table 4.1 determine
the magnitude and direction of the deflection at D.

M, 40KkN/m 12 kN
A HiNmm '11|' B D E and [ are constant,
A |
) 6.0 m |

Figure 4.55
The bending moment diagrams for the applied loads and a unit point load at B are shown
in Figure 4.56.
48 kNm
48 kNm 12kN HF[
h| 'l' ________ Em””l 'ITrrn-.,,
A § / B C o
L/ [P—— >
12kN

1, LIS
8.0 kNm .
2.0 kNm 4.0kNm -

T M\ h -
A B C 1
M ey, —x—

B0 KN
6.0 m 1.0 pom —_ 4.0 m
3 | [
A§f B C D .
T gor unin versiead laad at I - *—t
Lo
Figure 4.56

Solution:

Consider the unit load bending moment diagrams for both applied loads as
the sum of rectangular and a triangular area as shown.
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8.0 kNm Foint Load Bending Unifosmiy Distribuced Load
Monsent [Hagram Bending Moment Dingram
‘ 80 kNm
I'I'“]II"I"".I]I]I]::.....

60m Sk gom_ 0™

&, pominad = [(0.5 2 48,0 w0 2.0 2 4.0) + (0L333 2 48,0 = 4.0 = L0YES = 447 T4ES
dpoem, = (033 5 B0 w40 2 2,00+ (0025 2 B0 x 20w DOYVES = 293 1ET
Ao = (47T 4+ 203 1) IES = + 4TTOSES l,

L0m

4.5.8 Problems: Unit Load Method for Deflection of Beams/Frames

A series of statically-determinate beams/frames are indicated in Problems 4.16 to 4.23.
Using the applied loading given in each case determine the deflections indicated. The
relative values of Young’s Modulus of Elasticity (E), Second Moment of Area (I) and

Cross-sectional area (A) are given in each case.

- 24 kN/m
I
o 1
@\{1 B Er C ey} ]
e i B
Fa 30m 3.0m 1.5 m Ti’.,
‘|L 3 %
4 Taim |
Determine the value of the vertical deflection at B given that 7 = 50.0 = 10° kKNm’
Problem 4.16
20 kN — 8 kN/m
B e
1.0 m AEy: £l B 257 ) {E
[ AL Lrm
4.0m 40m “UD ]
| 8.0m Vo
Determine the value of the vertical deflection at B given:
Eicun =90 KN/mm* Joeum = 14.6. 10" mm* .
E Al and £ = 170 kNfmm™ Ap = 80 mm” Aep= 120 mm~

Problem 4.17



The Ef value of the beam ABCD varies linearly from £F at the suppoents A and Do 1L3Ef
at B and C respectively and is constant between B and C,

Determine the value of the vertical deflection at B given that £7= 15.0 = 10 kNm®

Problem 4.18

El E
1L.Om 1.0m 30m | 20m 3m 05m
1 § | il { >
I :
% 80m .

Determine the value of the vertical deflection at G given that £/ = 5.0 x 10° kNm®

Problem 4.19

8.0 m

Determine the value of the vertical deflection at A given:
Epcam = 205 kN/mm® Ty = 60.0 % 10° mm*
Fen =205 kN/fmm? Ao = 50 mm®

Problem 4.20
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-4 kN/m 15 kM
» TR NE AT TR TTINNNAT I;
Ha A El ‘B E C
Vs, 4
- Dretermine the value of the vertical deflection at C
::-:_ given:
i Epcan = 205 kNGmm®  fgam = 90,0 3 10° mim*
Ean = 205 kMN/mm* Apn = 1500 mm*
Hyy
= ,1. 2.0m 4
-1 4.0 A
Problem 4.21
- |_ & E:Nhn_ )
!I_.\ TIE L ¥ 1 T Y
. %« El
3 A s iC D
Fa :
12 kM
E
=
-
T pin-jointed frame
Hy
|
A
Fa 3.0 m 5 3.0 m % 3.0m o
A 9.0 m "
Determine the value of the vertical deflection at [ given:
Etcam = 205 kN/mm” . Focam = 500.0  10° mm®
Ep1 fraene encmbers = 205 KMmm® A A frame memten = 000 mm”
Problem 4.22

A M B
v 1228 Er
| 4.0m 4.0m 40m | 40m
x 8 . , 'h.

The Ef value of the cantilever ABC varies lincarly from 2E7 at the fixed support to £ at B
and is constant from B 1w C.

Determine the value of the vertical deflection at F and at C given:
El spever ame = 1080 = 107 kNnr®, EA i frame members = 300 3 10° kN

Problem 4.23
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4.5.9 Solutions: Unit Load Method for Deflection of Beams/Frames

Solution
Tapic: Statically Determinate Beams/Frames - Deflection Using Unit Load
Problen Number: 4.16 Page No. 1

. 24 kNm
T T TR
Q |
‘%1 B C ooy
s e
Va 30m 3.0m L3m TI‘]}
% 5 £ -

7.
Am {

Determine the value of e vertical deflection at B given that £ = 50.0 = 107 kNm®

Support Reactions
Consider the ratational eguilibrium of the beam:
+'-EJ"*F.-.—U (24,0 % 3,005 - (Fpx 7.5)=0 ’:.'+4.'L2kNT
Consider the vertical equilibrium of the beam;
'h'i..'T LF =0 A Fa = (240 = 3.0)+ Fpy= 0 S F =+ 288 KN T
. 24 kMm
A B qysprmmrrmorrmernem © Applicd load
E 3
A kN 432EN
e i X4
1.0
Unit lossd o 2 s N
. L Mur LEE LE |
&= I T il —x : ,-"'—’
i}

(Mm/Ef) is not a continuous function and the product integral must be evaluated
hclm:-.*l- cach oftl1¢ di:-wmirruitin.s e A 1.0 B.DwCandCioB,

‘lJ"r.lr i Iﬁ‘f !"Ll'm dx j”—mrh

Consider the section from Ao B: 0=sx=30m

f + 288y me=+006x o M= 17287
3 gt gt 7 ]
Mm d = IIT..._E.'L di = 17.28x | . 133.52 -
” Fiy k1 El
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Solution
Tapic: Determinate Beams/Frames = Deflection Using Unit Load
Problem Number: 4.16 Fage No, 2

Consider the section from Do O 0= = 1.5 m
Me=+432 m o= LAy oo M= 17287

k] r

L4 1 k3 1
Mo e = IIT.Z'-E.'L dcm | 17.28x - ]‘?.-JH m
El JET El

Consider the section frem C o B: 1.52x=4.5m

M=+ 4320 = 2(r = 1572 =432r = 12(x" - 3x + 2.25)
= 126+ 1920 =270

mo=+ 04z

M = =4 8 + 301687 = 108

a8 431680 =10.8x [ 487 368" 10847
f nl- - e B | ——— - —_—
Ef 4E7 IET 2E7

1.5 =l%

. [+ 360.86 17.42 J L 5
El El Ef

I I, & m = 1037 mm l

Allernatively:

. L_[ 155,52 19,44 343.44]_5|s.4_ 5184
Sp=|+ + + = L

Ef 500x10"

B = E{AICR 400008 bonding momen digram % OPAINAIC s sasd Bending moment diagram)

24N
e © B C
5 (¥ T
] . SEID

1 gmmtan
16,0k IEOKN zero 270 kN

A B

-'Hr appliod lads
36,0k 36,0k "

C

UG

H6.4 KNm 6.8 KMm

-.-'r;
M poc spptict boats

o st wermicd losd o B
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Solution
Topie: Determinale BeamsFrames — Deflection Using Unit Load
Problem Number: 4,16 Fage No, 3

Ay = (0667 % 3.0 2700 kNm’, 3= 1.2m, oAy = 64,83 kNm®

Ap = (0.5 % 3.0 = 86.4) KNm®, = lL2m, oAy = 155,52 KNm®
Av=(3.0 = 64.8) kNm®, w=12m, & Ay =233.28 kNm®
Ay=1(05 % 3.0 % 21.6) kNm", yi=14m, 2 Ay =45.36 kNm'
Ac=(05x 1.5x 648 kNm’,  je=04m, 2 Agrs = 19.44 KNm'’

G = (64,83 + 155,52 + 233,28 + 45,36 = 194417500 » 10" = 0.0104 m = 10.37 mm l

Using the cocflicients given in Table 4.1:
30m

Area Az U =srememand i m
mw E

27 kNm

3
I%d.‘f = [(0.667 x 27 % 0.6 % 3.0) + (0.333 x 27 x 1.2 = 3.0))ES = 64.78/E1
0 30m

Aren Ay ] |||| T LE&m

H6.4 kNm

L
!"":%d_f = (0.333 % 86.4 x 1.8 x 3.0)E = 155.36/E1
IE

I.0m
| || ;.........._.._.._; 06 m

res At | || ] .2;'.1".

i 648 kMNm
]"'%d.r o [0 3 64.8 5 0.6 % 3.0) + (0.5 x 64.8 » 1.2 x 3.0))/EN = 23328/
JE

3rm

Area Ay: | “||||-l" ———— LY

26 KNm 1&m

[

!‘.'”_ e = 1005 % 216 % 0.6 x 3.0) (0333 x 21,6 x 1.2 x 3.0)VEN = 45 3HEI
I
I.5m
Area As: |||||I e C—
O

648 km

L
[” M e = (0,333 % 64.8 % 0.6 x L3VE! = 1942ES

JE

= Z : (Cocfficient <asxbx L)/ El
&= (64,78 + 155,36 + 233,28 + 45.33 + 19.42)/50.0 = 10° = 0,0102 m = 10.2 mm l
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Solution
Taopic: Determinate Beams/Frames = Deflection Using Unit Load
FProblem Number: 4.17 Fage No. 1

kN [ BkNm
JDCCANN R RER AR AR DT REEA0 AR RA R RN, JANRAREREAARRR NSRRI E R RPN RR AR R NN e
AE El B T

Al

L
50m

Determine the valuee of the vertical deflection at B gn en:

Epeam =20 KNfmm’ o ban= MG 10° mm* .

Eapsacn®= 170 KNmme Aa = B0 mm’ Aen = 120 mm”

Ef = (9.0 = 146 = 10°W10% = 1304 = 10F kNm®

AEp = (800 170.0) = 136 10° kN ;  AEep=(120.0 % 170.0) = 20.4 = 10° kN

. 'lfr.lr PL
il el
ar o & " E[*’E r"]m-'r.'u
" WkN  —&kNm

ST e Lo WS
A praallabes bl il

Consider the beam ABC: ? v, B e
Support Reactions P
Consider the ratational equilibrivm of the beam:

hu:‘} EMy =0 4 (5.0 = S.00H4.00 + (200 = 4.0)={Fex B0 =0

- Ve=+d20kn |
Consider the vertical equilibrium of the beam:
+1-¢T IF=0 + Py =200 - (8.0 = 8.0)+ Fpe=0 S Fa=+ 420 kN T
20.0kN — SN/
ETRTTTIRET TR NI IAR FTT IR ITInE

Applied loads

) 1.0
A B C
Uimin s

{1 . ) s
i X : : k)

(MnET) is not a continuous function the product infegral must be evaluated between
cach uflll.-L diuunlinuiliu, e .|'"|. to B and C 1o B.

[Hm c !-Hm ” EF
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Solution
Tapic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.17 Fage No. 2

Consider the section from Ao B 0=x=4.0m
M=+ 42.0x - 8072 = 42.0x - 4.04° m o= 0,5y
M = (42 0x = 407 N050) = 21,007 = 2,00

8 Loy gt — 2040 Ao 2ot | 3
&:ﬁ: - I.I.ﬂJ. 2.0y | 2h0x7  20x7 | + 3-ﬂ_ﬂm
El El 3E Al El

o

Consider the section from C 1o 0sxS4.0m
M=+ 42.0c - 8072 = 42,08 - 4.05° m=+15
Mun = (42,0 = 4.0°K0.56) = 201007 = 2.0

8 M S2L08 200" 200t 204 | 160.0
—_{f}’:j‘"" — iy =| — -= =4+ ——m
- £l 2E! GE! 8E! I Er

L
@#F[Jra:u.u mw] 4800 _ 4800 oo

JE E R . laxio

Consider the columns AE and CIx:
KN e B KNI

FAAARREIAAR R A0 BELLO0E EA4 00 8 EEA A BRI AR R 1400 i i

Member AlLL:
Applicd axial load Py = 420kN

Unit avisd losd  srog = 0.3 Wbember CIX

Applicd axial boad Pog = 420 kN
Umit axial boad e = 0.5

42,0 1000 % asJ [dl.ﬂxil}ﬂﬂxﬂ._'r]

—“
AL JaECD [ ALy Alep,

21.0:10° 42.0:10°
=+1,54+206=36
[13 610" ] [z:‘uxm‘] e

f ] =365 +3.6=725mm }
AELD
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Solution
Tapic: Determinate Beams/Frames = Deflection Using Unit Load
Problem Number: 4.17 Fage No. 3

Alternatively for the beam ABC:
B = LA aptio bonsing momers diggram % OPINANE uris ot berdding momons diagram)

A — BKNm [1]
bkl AARLAEA AR kbl A AR EEIAE L A B

160 kN Pola0kNm M s spptiotiboats

— R kNim
T T TIANETTRN LT TaET] [ 1] [

M g sppticd toats 16,0 kNm 12

260N KUJ"'”'“LL!JH n MHMMHIHLF

14,0 kNm

M ot sgpptiod toats
B

i J J_ 11—
Y aam T

I or wmit woortical Boad ot 18

= (0667 « 4.0 160 KNmY, ¥ =10m - dpy=42.60 kNm®

Az = (D667 = 4.0 % 160 kNm®, 1= 1.0m, 2 A = 42,69 KNm®
Ay= (05 x40 1040 KN, w=133m, = dye=276.6 kNm®
A= (05 = 4.0= 104.0) kMme, w=133m, 2 A =276.6 kNm®

j"';:’ dx = [(42.69 + 2T66MET + (42.69 + 2T6.6)2E1] = 4T8.HES
0

ll'sing the cocflicients given in Table 4.1:

j 'I-fm {Cmﬂ": fent = a =l L) EN + Z :_! (Coeflicient waxbx L)/ 2ES

=(0L333 5 1600 2.0 0 400+ (0,333 5 1040 % 2.0 = 4.0)ES
+ (0333 = 16,0 = 2.0 L0)2ES + (0333 = 104.0 = 2.0 = J.0W2ES
= JTOSIET
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Solution
Taopic: Determinate Beams/Frames = Deflection Using Unit Load
FProblem Number: 4.18 Fage No., 1

kM 20 kN
A B l{.! ¥

—_ —————
%I i 1.5ET 1.5ET Er |=

Fa. 20 m .| 30 m 2.0m
LR LS

.".
a T m )

The £f value of the beam ABCD varics linearly from £1 at the supports A and [ to
L3ENan B and C respectively and is constant between B and C.
Determine the value of the vertical deflection at B given that £f = 15.0 = 10" kNm®

Consider beam ABCD:

Support Heactions

Consider the rotational equilibrivm of the beam:

+w:_]' EMu =0+ (2000 = 200 # (2000 2 5.00 = (Fp= 7.0y =0, Fp=+ 200 kN T
Consider the vertical equilibrium of the beam:

+'|.¢T EFe=0 + Fy-2000-200+ V=0 S =+ 100 kN T

. . l:mm 0 kN le .

Ll LS E (E I
200 kN 200 kN

— X 4

C LD
A nl [ I
A

UnicToad Aokl 13E ELCE-

071 0.9
[ﬂdr

Applicd load

X : X !

f.'I-.I’mIH} 15 nod & continuous function and the product integral must be evaluated
belm.'u.u cach al':he dis::anlinui:in,s e A m B, Do C and C o B.

I"IIM !‘Hm ’ _[ U'm j Um

Consider the section from Ao B: 0 £ x < 2.0m

M=+200cr m=+07lx SoMm = 42

Also

The Ef value varies lmearly between A and B and at distance “x" from A 15 given by:
EI(L+0.25x)
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Solution
Topic: Determinale Beams/Frames - Deflection Using Unit Load
Problem Number: 4.18 Page No. 2

.-H'm ; 14.2x
Ff 1410, "‘51}

J.L'l ve={l+ D.ESJ} Lx=dlr=1) di=40dv and &= 1600 -
when =0 v= L0 and when x=2 v={1+05)=135
'I-r'mn".r—l-l 27 = [14.2 = 1600w = 1] = 4.0 = S03.8(v - 1F o

142+ 9088 J»{H} qum'r{n —2.{:1-.+|_|:r}d.I
{|+um s El A

yel,d
| 9
+ :}J{f = %[?—2 [\ 10 +fm.~‘

=10

‘ '—"—{2 0515} + el 5} [%—{E.I}x!,ﬂjﬂul.ﬂ]}

Consider the section from Do C; D5x< 20 m
Me=+200c  nr=+0.29 s Mo 58
Also

The Ef value varies linearly between I and C, and at distance x from A is given by:
.{.‘J' (1 +0.25x)

2

5.8x
f—:F -F—.F:.f {'l +ﬂf",5,|!] :El.

Letv={1+0.25%) o a=40v=1) de=4d0d and 5= 1600 = 1)
when  x=0 = 1.0 and when x=2  v=(1+035)=15

Mm dx = 587 = [5.8 % 16.00v = 177] = 4.0chv = 371.20v = 1Y dv
U 3?|. j[ (G 3?1,3"3*{=-*—2.n1-+1,u}m
-~ JE( HJ"‘SJJ Ef v

veli
v=05%

_ w2 0y, 37L o
Ef '

v
vl 0 el i
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Solution
Topic: Determinale Beams/Frames - Deflection Using Unit Load
Problem Number: 4.18 Page No. 3

]

Consider the section from C o3 205x=<50m
M= & 2000 = 2000x = 2.0) = 400 mr=+ 029 o Mmo= LG

B e
Mm iy = ]I-lfn. de = 11.6x s Em
- 1.5Ef 1.5ES 308, Er

Consider the cantilever beam DE:

M0 kN Bl kMm

M= = H0.0x m = = 249y

"‘H £

-
fﬂ-im rS 8x® dc = |:5_3_.--1 | . 61,87 m

6El |

5 = [+37.59+n.3| L8112 6!.3?] LA X X - l
g Ef  El  El E £l 15.0=10° -

Alternatively:

Sections A 10 B and D to © must be carried out using the product integrals as above
The terms relating to the ceniral section C to B and the cantilever beam I to E can
alse be evaluated using the product (area = ordinate) or the Coefficients given in
Table 4.1 since the £/ valuc is constant along these lengths.

The reader should carry out these calculations 1o confirm the results.
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Solution
Tapic: Determinate Beams/Frames = Deflection Using Unit Load
Problem Number: 4.19 Fage No. 1

10 kM m 20 !I.;Nl

(1]

Jom 2om

Blm
Determine the value of the vertical defleetion at G given that £ = 5.0 % 10" kNm?

Support Reactions
Consider the rotational equilibrium of the beam:
+\.-¢:) IMg=0 +(200x40)+ (B0 = 63) - (Fex60)=0 .. Fp=+220kN t

Consider the vertical cquilibrium of the beam:
el EF =0 + 1y (100%2.0)-200-80+F=0 - ¥y=+260kN |

ik k™'m kN

TOFTTITTTIRATTT Applicd load

Unit bond

!'.* F G

1167

Jﬁ dx

L.Um.l'f..f} 15 ned a continuous function and the product integral must be evaluated
hetween each of the discontinuities, fe. A o B, B C, € to [, Do E, G to F and
F o l'.

M, M, M M _”,u
_[ii : ] ; {;:;f e {{ L j e [t
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Solution
Taopic: Determinate Beams/Frames = Deflection Using Unit Load
FProblem Number: 4.19 Fage No, 2

Consider the section from Ao B 022 = 1.0 m
M= = 1004772 RS R o Mm = rere

Consider the section frem BoC: 10=sx=<20m
M= = 10,062 4+ 26.00x - 1.0) = (- 5.0 + 26.0x - 26.0)
== 01670 - 1.0}
M = [(— 5007 + 26,00 - 26.00] = [ - 0.167(x~ 1.0)]
= (084" - 5.1 8" + B.68x — 4.34)

1‘3 Bt - 50807 1:1.351"414:

1.0
Jfoset sase sese asa[C_ [ 1w ( 1. 5*) 02
4E7 IET 2ET El i I-.f }f Ef
Consider the section frem C ol 20<x<50m

M= = (100 % 2.00(x - 1O} +26.0{ x— 1.0) =+ 6.00x - 1L.OY  m=—0.167(x - 1.0}
Mo = 6.00x — 1.0Y— 0.16Tx + 0.167) = (= & + 2.0x — 1.0)

El 3Er 26 E
_[ 2167_067) _ 2234

_I—r‘+"ﬂr—lﬂ _[ £ 208 .1.':|hl

£ £l

Consider the section from Do E: 50 £ x £ 7.0m

M= = (100 = 2.00(x = 100+ 260 x = 1.0 = 20.00x = 5.0 = {~ 14.0x + 9401
m==016%x = 1.0)

Mo = (= 14,00 + 94,00 = 0,167 + 0.167) = (234" = 18.04x + 15.7)

BRI . i 1 470
Mo J-h.iux Ix:m.x +15.7 -.:hfx’ 1804 |5_.1r
Ef JEL 2Ef Ef

0

| 6454 _[ w.j} L 15
Ef El Kl

L]
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Solution
Tapic: Determinate Beams/Frames = Deflection Using Unit Load
Problem Number: 4.19 Fage No, 3

Consider the section from G o F: 0=x=0.5m
.'|F HEeR M ==y S M = pero

Consider the section from FioE: 05 = x = 1.0m
I——Hl}{x 0.5) me-yx . Mm = {th = 4.0 x)

= 4.0 Y]
Iﬂ‘i J‘El}r_alﬂurrh s.u..: _"“f - 'E_[_EJ_
A E ETTIE Y- N T T
2234 15.04 r:rs-t] _ 3679 _ 3679

El E E Er 5.0x10"

m == 736 mm‘r

Alternatively:
d.r = E{,ﬁ, TER poticd bonding moment digpram % Ordinate it load Beding mcmeont ..Mpqm]

— 10 kNm
TIETITINN

1083 kN
S0 kNm

-’!1 -’I 2 M Tor applicd koads
10 KMm

SOKN S0 kN

SED
A LIFKNm M o apption toads

5.0 kN

L1TkNm M Grapplicficats
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.19 Fage No. 4

| W kN

A ] C I3 ] E F G

667 kN 13330

T

26,67 kNm

M o gt boads

lﬂl..h-'

Ef E ?& F G

16T kN

TN

E * F
0167 kN LIGT kN

L m

NP N
_ n Ms =]
7 2 il i

B foor wmn vemeal Basd s 18

Ay = not required since  py =zero

Ay =— (0.5 3 6.0 % 5.0)= - 15.0kNm’, yp=-033m o A=+ 5.0 kNm'
Ay = (D667 2 1.0 % 1,25) = 0.83 ENm’ v - 0.08m oAy = - 0.07 kKNm?
Ay = {05 % 10 4.17) = 2.35 kNnr', yu==0.11m oo Agr = = 0.26 kNm?
Ag= (05 % 50407y = 1043 KNm', ye= =045 m o dayy = = 4,69 KNm
A= (05 %40 x26,67) =533 kNm',  p=-045m 2 Agys == 24.0 kMm’
Ar=(0.5 % 2.0 % 26,67) = 26.6TkNm’, 3 =-0.78m o A= - 2008 kNm'
Ag=— (052 6.0 40)=- 12.0kNm’,  w=-06Tm o Agre = + 80 kNm'
Ay = = (0.5 2 0.5 x 4.0)= = 1.0 kNm". ve==083m o Aave = 4 083 ENm’
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Solution
Topic: Determinate Beams/Frames = Deflection Using Unit Load
Problem Number; 4,19 Page No. 5

L A
&= [3F E:_” dy = Z(AVWET
=({+50-007-026-469-240-208+80+083VES
& = = 35.99E = - (359950 % 10") m = - 7.20 mm ‘|‘

Using the cocfficients given in Table d.1: &, = Z:[ij!‘ﬁdrm axbx L)/ El

jﬂﬁu

Arcada |—dv =+ {0167 = 5.0 10 = 60VES =+ 50!

me

Arcads  |—— e == (0,333 = |25 = 0,167 = LOVES = - 00T ES

ij

Argady  |—dy == (0335 = 41T = 0167 = LOVES = = 0.23Ef

Arca da ﬂ:rx = o [(05 % 407 % 0167 x 5.0) + (0167 = 4.17 = 0.83 = S.0))/ET

.E-.J'
= = 4.63/ES

j@ dy == (0.333 x 26.67 x 0.67 x 4.0)/El = - 23.80/E]

Fﬁdr e 0.5 26067 2 06T 20) + (0167 = 26,67 = 0.33 = 20)ES

== 20.8I/E]

=+ (0333 = 400 10 = 6.0VES =+ BIVES

w4 [(0.5 5 4.0 % 0.5 x 0.5) + (0.333 x 4.0 » 0.5 = 0.5)E/
=+ (LR3IES

& = (5.0 = 0,07 - 0.23 - 4.63 - 23.80 - 2081 + £.0 + 0.83)/E = = 35.71/ES
== (357050 10Y m == 7.14 mm
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Solution
Topic: Determinate Beams/Frames - Deflection Using Unit Load
Problem Number: 4.20 Fage No., 1

AErn
SEN f 15 kKMim
AR R AR AR R AR A AR A Rl AR R B R AR R AR R A AR ARl R R N Rk

L3ES [&

G0m

0w

Determine the value of the vertical deflection at A given:
Eiun = 205 KN/mm’, T = 60,0 3 10" mm*
Epp = 205 KN/mm, App = 50 mm~

El'= (205 = 60 = 10"10" = 12.3 = 10" kNm'
AEen=(50.0 x 205.0) = 10.25 % 10" kN

Pl ) Fe
+ 1]
Z[ AE e SEN — 13 Exim 1

T E T T T L T T T T T T T TR

Consider the beam ABC: - “*E i =
Support Reactions ¥

Consider the rotational equilibrium of the beam:

+1|'|:_> =0 - (50=2200+(150=80=20)- (V= 060)=0

o Vem+ 3838 |
Consider the vertical equilibrium of the bean:

tvef TR =0 +Fy=50-(150x8.0)+ Fe=0 s Va=+8667kN |

SKN

Applied boads
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Solution
Topic: Determinate Beams/Frames = Deflection Using Unit Load
Problem Number: 4,20 Page No, 2

(e ES §s not a continuous function and the product integral must be evaluated
l'u.l“nu: Lﬂ.l:l'l of the discunlinuil:il.::i, e Ato Band C o B

1
j-'l-.rm‘h_ jim . jl*';:‘fd‘.

Consider the section frem Ao B: 05x=2.0m
M= = 5.0r = 150072 = = 5,00 = 7.5 me=yx
'hl'm = (= 5.0 - 7500 = 5.007 + 7,54

3 1 T q
I“_m‘ﬁ } I:-cu +15¢ =[iﬂ.‘r | Isx l=+ 4333

Ef IEF 4R Ef

Caonsider the section {mm CioB: 0sx<60m
M=+ 38330 = 150072 = + 38.33x - T.5¢7 m=-0333x
Mum = = (38.33x = T.5000.3330) = = 12777 + 2.5

Mo ?—lz.ﬁ.ﬁ +25¢ [_ 12772 2.5¢* ]"= 72.96

El I.5Ef 45EF  GES Ef

m=— 241 mm

e
o

Mar _[ 43.33 ?".%]=_1';'.63_ 29.63

Er B H B 123x100

Consider member CD:
Applicd axial load  Pop o= = 5833 kN {tension)

Unit axial load riep = - 0,333 {compression)
z Pi __ | 3833=1500=0333 | 19, 146:=10" = 147 mm
;l.‘" i Al 10.25=10" !

i b
_['”‘".n+2 PLY e2a1-187--428mm ]
VAR fep
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Solution
Topic: Determinate Beams/Frames — Defection Using Unit Load
Problem Number: 4.20 Page No. 3

Alternatively:
= E(Area spplied Bordang moment diapears ¥ Ordinate i pos bemsing momen: dugram )
S kN L67KN 100 kNm

flllﬂﬂ"l”|§--||”“§|:“|I"-'II|‘.‘.-;|=~.,.

- c
667KN )
..4-.’ T mppil e ok &
30N :
15 300N —_—
SFTFITATITTINER ..,1 | ”“ Tn'li':ll.---..
A KB r
50k M o .
1501 T e spptcatons
l H
M o appined foads.
1.0m 0335 m yy 20
YT
il
|
A B
1333 m B g umit veriical boad st B
A= =05 = 2.0 = 10.0) kNm', FiE=133m, oA =+ 1333 kNm?
.-u = = (0.5 = 6.0 = 10,0y kNm®, vr=-133m, 2 Ages =+ 400 kNm®
= — (0.333 % 2.0 % 30.0) kNny', mn==015m, o Ay =+ 300 kNm*
..'I.1 = = (0.5 = 6.0 x 30.0) KNm7, == 133m, S = + 12000 KNm?
.'lq = & (0667 = 6.0 x 67.5) kNm", yi==10m, o dgn == 270,0 kNm?

_[—gn = (13.33 # 30.00E] + (0.0 + 120.0 - 270,091 5E] = 30.00ET
Usmg the cocfficients given in Table 4.1:
_Fl”m = Z 2{Cwﬂ?:'fmrxu whx L)/ Ef+ Z:‘ (Coufficient = axbx L)/ 2E

= (0,333 = 10,0 = 2.0 = LOVES+ (0,25 = 30.0 = 2.0 = 2OVES
#(0L333 x 100 = 2.0 5 60 LSER + (0,333 = 3000 = 2.0 x 6,00 /1.5E7
= (L3335 = 67.55 x 20 » 0.0) (155 = 30.0TESF
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Solution
Tapic: Determinate Beams/Frames = Deflection Using Unit Load
Problem Number: 4.21 Fage No. 1

4 kN/m 15 u;l

(TR TR TR
e %
I I‘ 1 d 5 C

o

Fa

Cosft = (2.0/242) = 0.707
Lop=(20%V2)=2828m

2.0m

|
|
|
T
J
-

Determinge the value of the vertical deflection at C given:
Ene =205 I»LN.":I‘H'If. T = 90,0 = Iﬂ:’ mm’
Epp = 205 KN/mm-, A= 1300 mm” )
Elae = (205 = 90 = 10°W10% = 1845 = 10° kNm®
Akpn = (1500 % 205.0) = 307.5 % 10" kN
— 4 kM/m Iﬂi?\'l

L
. M P
= Ti’i‘f + [_‘”]
f!-'::! Z AE Ly
F_'III"fIII“'I|I'“'|||-r:|-

Consider the beam ABC: i'-"- /53 c
Support Reactions Fa Fan #-.7;
Coensider the rotational equilibrium of the beam:
Fve JEM, = 0 + (4.0 % 2.0% 1.0) + (150 % 4.0) - (FinCostlx 2.0) = 0
o Fpn=+ 4809 kN ¥

Consider the vertical equilibrium of the beam:
tve EF =0 4 - (40%2.0)- 150+ FpCos =0 = Fy== ILOKN J,
4 kNim 15 kN

TTRTTTTIET

Applicd loads

Llnit Toad
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.21 Page No, 2

(MR Ef) §s not a continuous function and e product inegral must be evaluated
h'l.l.“ wen L'ql.l..ll of the diﬂ.nminuilics. e Ao Band © w B,

J‘En’. [ Sin —dx + j—nh

Consider the section from Ao B: 0<x=<20m
M= 110x - 4072 = - 11.0x - 2.04°
M= = (= 1 1.0 - 2.06"%x) = 1 10" + 200"

J‘]lﬂ'ﬂ. + 205" i = [Lox'  20x ] _ ., AT33
ay = + - m
3B AEL Ef

Lamidr:r the section from CtoB: D=2x=20m
= 15.0x m=-y o Mm=+ 1500

_d =
o

m

B M f15 ot _ [lj.m‘]:: , 400

0L | El

m =+ 4. 19 mm

ﬂ dr_[su; .mn] L1371
v.*.‘f' 5w )T TE 18.45x10°

Consider member BIM
Applicd axial load Py o= = 48.00 kN {compression)

Unit axial koad tpp = — 2.836 {compression)

mo= % 1.25 mm

.‘J L[ 48.09x2828x283) _ | 384.88%10" )
] (110] -’fE"r, 31}?5}:"}1 J

A
-« =+4.194125=+ 544 mm |
E Jan
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Solution
Tapic: Determinate Beams/Frames - Deflection Using Unit Load
Problem Number: 4.21 Fage No, 3

Alternatively:

& = T{APCR appiiod bonding momera disgram % OPIINAE it toad berding moment diagrara)

— A kNim
TIEE T R T I R R T TI R FIT IR A B

]I

-'ll 2.0 kNm

M g sepmicanoas:

0w
1 e
A s It A €

M g sptioniosts

150 kN

" ¥
— | 1

AT £or umit vertical boadd 2 B

Ay =+ (0667 = 2.0 2.0) KNm?, == 10m, & oAy = = 267 KNm?
Ay == (0.5 x 2.0 x 30.0) kNm®, y=—133m, oA =+ 40,0 KNm®
A== 05 % 2.0 % 30.0) kNm’, ¥==133m, o Ay =+ 40,0 kNm®

L
_[% dx = (= 2,67 + 40.0 + 40.0VEl = TT3NET

'l.fsinp; the cocflicients given in Table 4.1:

j‘”m A = Z;{('«:ﬂh':’wrrx:.’xh x L)/ El

jﬁm = (0333 = 20 2.0 = 2,00+ {0,333 = 30.0 = 2.0 = L.0)ES = TTINES
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Solution
Tapic: Determinate Beams/Frames - Deflection Using Unit Load
FProblem Number: 4.22 Fage No., 1

- ?%f"

Fa

pan—joimted frame

30m I0m 3.0 m
) G0m I

Determine the value of the vertical deflection at D given:
Epam = 205 KNfmm’, . fyam = 500.0 % 10° mm*
E sl frame sembers = 205 KMdmme A 2 frame memibers = 000 mm~
Eluc = (205 x 500 = 10°)/10° = 102.5 = 10" kNm®
AE = (4000 » 205,00 = 820 = 10° kN

L

i/

&= [Mac+ [ Su)

o £l LAE Al framse members I '_ 'f*

N

1

i ¥y 12kN

Consider the beam BCD: i'“ C i gD i

Support Reactions
Consider the ratational equilibrivm of the beam:
+'|.'¢:} EMag=0 A {60= 6.0 3,00+ (120 = 600 = (Fp = 3.0)=0

Ve =+600kn T
Consider the vertical cquilibrium of the beam:
+W:T LFy=0 + V= (6.0 860)- 120+ Fg =0 S Vg == 120 kN L

Applied loads




Examplesin structural analysis 282

Solution
Tapic: Determinate Beams/Frames - Deflection Using Unit Load
Problem Number: 4.22 Fage No, 2

(Mm/ES) 15 not a continuous function and the product integral must be evaluated
between -.m:h vl'lhc dismnlinuitirs e B o Coand Do C.
I
ﬁ;&- ’H‘m e !"H’nr
5 Ef

Consider the section from Blo C: 02x=3.0m
M==120x - 6,002 = = 12.00 - 3.00° =y
'.Im il o I"' O - 3,00 Hx) = 12,06 + 3.000

)
M przodesed (1208 30| 16875
= =+
-[ !- T [ SE | AEl l T

Consider the section from Do C: 0sx 230 m
M= 120 - 600772 = — 12.0x - 3.0 m=—x

M20x +3.00° 1208 3080 | 168.75
—1.'“!- - ——fy = — i —— - m

£t 3£ 451 Ef

’J".wm‘, _[ms.?s |+53;:r::] _ 3315 3315
iy = + X = i
F El El El Ef 1025 = 1y

Consider the pin-jointed frame:

The applied load axial effests (P-forces)and the unit load axial effects (n-forees) can
be determined using joint resolution and'or the method of sections as indicated in
Chapter 3.

120kN G0N

3'-“"-% + BLOKN + 25.0KN
:t*___ - =
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Solution

Topic: Determinate BeamsFrames — Deflection Using Unit Load
Problem Number: 4.22 Fage No, 3

Member

Length (mm} | AE(KN) | Pforce (kN) | PEIAE (nim) (PLIAE ) % u

3000 H2000 = 10 + R0 + 0.0 1 + ILG6R

AR
BC

0D B2000 = 10 + 450 L L] + 024

SO0 B20.0 = 10 =600 - 037 + 046

AR E2000 = 10 + LD + 029 + 038

S000 S2000 « 10 =750 = .46 ] + .18

3000 E20.0 % 10 — 350 — 016 f + 024

Im+335

X%

L
AMm L
—y * .
&= ﬁFﬁT aly E [AJ:'"

&
]AII Frame members

= 3,35 mm

] = 43294335+ 6,64 mm
Al Teame aomibers

Alternatively:
fi:l = Et_nm:l applicd Beriling momioal diaprass kS ﬂl'dil'li.l.'lu unil hinsd bemeing mtrrrl."\up:'n]‘

B kN

(A REEia0 A kil 8 ki d 08 it A RE bl | B C

M
A 6T5KNm forsppticdleads

270 kNm

— i kM'm
i T T

El L b B A C Ay [t
2T RN

M for applicd loads
36,0 KNm

,.-.-mHEIJ.i]IFH'T|-||-””-H”[-”HrI|'J'llnh,,. "

Ay

T foag wmi ot ool
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Solution
Topie: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4,22 Fage No. 4

Ay = (066T % 300 6.75) kNm®, == l5m, 2o Ay == 2026 kh‘m"
Ar=—{05=3.0=27.0) kNm®, rp==-20m, S A=+ 810 ENm'
Ax= = (0,333 3 3.0 27,07 kNm', n==2X¥m, 2 dys =+ 60,60 KNm®
Ap=={0.5 = 3.0 % 36.0) KNm”, v ==20m, 2o dgn =+ 1080 kKNm'
Av= = (0.5 = 3.0 % 36.0) KNm®, Ju==20m, o Ay =+ 1080 kNm?

|
Iﬂ de = (- 20026 = £1.0 + 60,69 +108.0 +108.00ES = 33T 4ANES

l.lslng the cocfficients given in Table 4.1:

‘! ll;:r de = z; {ﬂ.'mfﬁ.;'ifmxu Wil .J'.}.-" Ef

J’ﬂ:r [-(0.333 % 6.75 % 3.0 % 3.0) + (0.333 x 27.0 % 3.0 % 3.0)

F(0.25 = 270 = 3.0 3.0+ (333 = 36,0 = 3.0 = 6,0) JEf = 33T2NE]
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Solution
Tapic: Determinate Beams/Frames = Deflection Using Unit Load
FProblem Number: 4.23 Fage No., 1

The £1 value of the cantilever ABC varics lincarly from 2£7 at the fixed support to
ETat B and is constant from B to C.

Dretermine the value of the vertical deflection at F and a1 C given:

Elcutever ae = 10803 10O KN, Ed g e mamers = 300 % 10° kN

i
& = -ﬂ'ﬂsir + Z[ﬂ:u
i

&r AE ].ﬂ-ll T membgrs
Consider the pin-jointed frame:

Support Reactions
Consider the rotational equilibrivm of the lrame:
+\--;~;'l' EMe=0 + {12000 2 4.0) = (400 = 3.0} = (Fp = 80p=0 . Vg =+ 450 kN 1

Consider the vertical equilibeivm of the frine:
tve JEF S0 4 Fe= 12004+ Fp= 0 o Fe =+ 750 kN T

Consider the horizontal equilibrivm of the frame: —_—
tye=—=EF =0 =400+ Hy=0 oo ffy =+ 4000 kN

The applied load axial effects {(P-forces) and the unit load axial effects (n-forces)
can be determined vsing joint resolution andfor the method of sections as indicated
in Chapter 3.
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Solution
Topic: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4.23 Fage No, 2

A0 kN

i

1230KN |, 0 0kN

=TA0KN

cwooky b 100w
F

130 KN

P - forces

Length (men) | AE(kN) | P-foree (kN) | PLIAE (mm) (PLIAE ) = n
S0 3000 = 10" |~ 1340 i ! +1.73
S00H oo x 10' |+ 1000 ] + 089
3 $000x 10" |+ 1200 I I + 1.0
5000 300,05 10" = 7500 2 + 1M
4000 3000 = 10" |+ 1000 + 0.8

T=+5T5

=575 mm

)."l.ll Tramme members

Consider the beam ABC:

A G000 KNm
™

R

b .
TEOKN 2t
' 40 m

BF for wmit venvcal toad at F
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Solution
Topie: Determinate Beams/Frames — Deflection Using Unit Load
Problem Number: 4,23 Fage No, 3

{(Mu/ES) is not a continucus function and the product integral must be evaluated
between each of the discontinuities, i.e. Cto B and Bio A,

The value of EF at position “x" along the beam between Boand A is given by:
El+ £l [(x- I-[I).l’iI-] =025E1x
A A
Iﬁl’f - \fﬂr A M e = ]"l..l"m b+ ﬂ A
nﬂ.EﬁEﬁ'

£l .E'.FH'I.

Consider the section from CtoB: 0 £ x < 4.0m

'u =— 75,08 = 0.5 s M=+ 37,50

}-ﬁf - ;3'."51: I = 37 }1."1
“ Ei 3|

Consider the section from Bto A: 40 5 x 2 $0m
M=-T750¢ m == 0.5x 5 Mm=+37.5¢

a0tMm . 40%37.5¢ 15007 150,04
l'f:"u' - — _‘Il:'nl - ? jl"ll “’-‘ -l—_—

El 2 2E

4.0

- 500, 3600 400, 4400 et 407 mm
El B 1080x10

: ] = o 4,07 + 5,75 =+ 9,82 mm 1
Al Tramse members

Vertical deflection at C:
In this ease when 2 unit load is applicd at point C all of the r-forces for the pin-jointed
frame are equal o zero.

j-ﬁr-d. Z( Pl I-H—m-d'c

A T memibsrs
'u == ?S.Lt'r m==y S My =+ 75, Ll.f'

b M 75.08° 40"t 75.04" 1600 7200 %800
2 g = j !

dr + — v = —— = —

Ef El S x

= ﬂm=+ms (T l,
108010

4.6 Statically Indeterminate Beams

In many instances multi-span beams are used in design, and consequently it is necessary
to consider the effects of the continuity on the support reactions and member forces. Such
structures are indeterminate (see Chapter 1) and there are more unknown variables than
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can be solved using only the three equations of equilibrium. A few examples of such
beams are shown in Figure 4.57(a) to (d).

20KN  40KN  ZOKN I0EMN

10 kM

4 Unknown reactions:
1 horizontal
3 vertical

25 kN 4 Unknown reactions:
I horizontal
2 vertical
I moment

Figure 4.57(b)

12kN 20kN  30KN kN

12 kNim 5 Unknown reactions:

Hy - | horizantal
_ b= 3 vertieal
M = -=F ¢ $ 1 moment
F Fi Ve
Figure 4.57(c)

20kN  A0KN KN J0EN

4 Unknown reactions:
1 horizontal
3 vertical

Fa Ve Ve
Figure 4.57(d)

A number of analysis methods are available for determining the support reactions, and
member forces in indeterminate beams. In the case of singly-redundant beams the ‘unit-
load method’ can be conveniently used to analyse the structure. In multi-redundant
structures the method of ‘“moment distribution’ is a particularly useful hand-method of
analysis. These methods are considered in Sections 4.6.1 and 4.6.2 respectively.
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4.6.1 Unit Load Method for Singly-Redundant Beams

Using the method of analysis illustrated in Section 4.5 and considering the compatibility
of displacements, member forces in singly-redundant beams can be determined as shown
in Examples 4.17 and 4.18 and in Problems 4.24 to 4.27.

4.6.2 Example 4.17: Singly-Redundant Beam 1

A propped cantilever ABC is fixed at A, supported on a roller at C and carries a mid-span
point load of 15 kN as shown in Figure 4.58,

(i) determine the value of the support reactions and

(i1) sketch the shear force and bending moment diagram.

My 15.0 kN

F and [ are constant,
Figure 4.58
The degree-of-indeterminacy 1p=[(3m+r)]-3n=[(3%1)+4]—(3x2)=1

Assume that the reaction at C is the redundant reaction and consider the
original beam to be the superposition of two beams as indicated in Figures
4.59(a) and (b). The beam in Figure 4.59(b) can be represented as shown
in Figure 4.60. (Note: Ha=zero)

15 kN

A4, A
ﬁ 3 l - % k) .
A A B C A A B f.[
¥ I

o, c
(a) (k)

Figure 4.59



Examplesin structural analysis 290

A My
3 = < 2 Y e
AR A B c:]l AH A E C
¥ e _ P 1.0

Figure 4.60

To maintain compatibility at the roller support, i.e. no resultant vertical displacement, the
deformation of point C in Figure 4.59(a) must be equal and opposite to that in Figure
4.59(b) as shown in Figure 4.61.

13 kN (
My M .
AR 111 [ A A o oo-omeT Fe Ly
A e s AL B C |
o e, 1.0
Figure 4.61

(8’ due to the applied load)+(8” due to the unit load)xV =0

J-im"'r { J‘_ilhr.m } -0 - 'Iaﬁrr /J‘m

The product integrals can be evaluated as before in Section 4.5, e.g. using the coefficients
in Table 4.1.

Solution:

The bending moment diagrams for the applied loads and a unit point load
at B are shown in Figure 4.62.

45 kNm
M= — 45,0 kim 115 kN F[—[lh‘r-
A ‘. [} C ||||::| [“nnrr
q/ M Fiosr pucamd load
Pl = 15.0kN
M= 60 m
) : )
e B c | 30m |~--"|-'¢ -:-_-::“-'E" —_—
P10 1.0 60m = S4m

IRE far vomat wrtsgal boad a8 0

Figure 4.62
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Using the coefficients given in Table 4.1:

'I».‘m
J'

L, posst loat = [{l} 5 5.0 = 3.0 x 3.0) + (0.333 = 45.0 = 5.0 = 3.0)/Ef = - 337.5/Ef

Fe, point toad = j

VT, umit hosd = j— e

0L, matont = {0.333 % 0.0 = 6.0 = 6.0VES =+ T1.93/Ef

. M
Vo=- Irr .‘.x/j'” dy == (= 33T.5/EN(T1.93EN = 4.69 kN

150 kM

Ay,
R s ) :
ey 30m 3.0m 5
L r 469 L‘.\js
B0m
I &
My = M+ (MY, = Py = =450+ (6.0 = 4.69) S My == 1686 KNm j
My =M+ (M "y x Fe) = xero + (3.0 x 4.69) LMy =+ 1407 KNm Q ‘}
Fa=F o+ (M ax Fe)=+ 150 - (1.0 = 4.69) e Py =+ 10031 kN T
1031 kN 10301 kN
C
A B | | Shear Force Diagram
4,69 kN 469 kM
16,56 kN m

i |
| “”“““_I.I.lll_l'lll'- Bending Moment Diagram

- [y B
- "“"‘I'ILJHH

1-8.07 kim

Figure 4.63

4.6.3 Example 4.18: Singly-Redundant Beam 2

A non-uniform, two-span beam ABCD is simply supported at A, B and D as shown in
Figure 4.64. The beam carries a uniformly distributed load on span AB and a point at the
mid-span point of BCD. Using the data given:
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(i) determine the value of the support reactions,

(ii) sketch the shear force and bending moment diagrams.

— 8 kN/m 20 kNl
JUE RO C "
3 &l 5B 1 .5E] $ D

Fa Fu . Vo

2l 3.0m \ 2.5m A 2.5m L

\L 8.0m ,l

Figure 4.64
Solution:

Assume that the reaction at B is the redundant reaction. The bending
moment diagrams for the applied loads and a unit point load at B are
shown in Figure 4.65.

BkNm —
OITINERERELEIIIIE C A B C L]
A - . = D T
,#,, I DT % I M oot tonts
120N 1Z0kN aer ' g0kNm
| 30m | 28%m | 235m
* * .o
|3m\;1 -j'froripﬂrrhllm:t
C A B c D
e ™D =R P
At T I
T4 kN 43 EN A 35 5 km
kN M applnd o
R .l ¢ 5 A B C B
] = TR ” """ T
. T 111241 Wll/’
625 kN 13.75 kN 18,75 km 112 ||{1 4

As 3438 k30m

B = -_,__J_"S Yas
C Ei T
A D = 1 8 I
{(?Q i‘ ] $ A B C o
h2s 1.0 0.37% P o et vertical losd s B

Figure 4.65
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L] &
Ad B A
[ e g = P g g
El Y Er ALSEr

Ay =+ (LE6T = 3.0 x 9.0) =+ 180 kNm”. ¥ =—0.91m, oA = — 16.92 kMm?
Az =4+ (05 = 3.0 = 22.5) =+ 3575 kNm", yr=— 125 m, soodra = — 41.29 kMm®
Ay =+ (0.5 3.0 % 18.75) =+ 2813 kNm’, w=-125m, . dys=-— 3516 kNm?
Ag =+ (0.5 x 5.0 x 22.5) = + 52.25 kNm yi==1L25m,  oodgs == 6531 kNm?
As =+ (2.5 = 18.75) = + 46.88 kMNm", ys== L4l m,  oodeas == 66,10 Kim®
Ag=+ {05 x2.5x 1563) =+ 19254 kNm", 1=— 1L.25m. o Agye = — 24.43 kMm?
Az =4+ (05 =25 x 34.38) = + 42 98 kNm", yr=—0.63 m, s dzgpe==27.08 Kdm®
]'.‘l'a‘nr _ {—"..J [E]
o n-I Ef
= (1692 + 4129 +35 16)ES + (6531 + 66,10 + 23.43 + 27.08)1.5E/]
= 21603/
A = D
.\% '[B [ ?
0,625 10 0.375
» 1.88 m -
, — M
u"r I—: ' j o : /T,’ll ‘-E%—_——___h'ﬁ—-.
F! Ef 1.5E7 A B [ L]
Ay == (05 = 3.0 = 1.88)= =282 m’, ¥y = 125 m, soAdyy=+353mt
Ax=— (0.5 =50 % 1.88) = —4.70 kNm’,  jp»=—1.25m, s Aga=+ 588 mt
[
IW

2 {Arn) . .
F’“ E.T = [+ (3EIEN + (5.880 1580 ] = + TASES

0

] s
M " 5
Fa=- J—E;-dt/l;[-ﬁ_f-(lt == (= 2103/ EDNT ASER = + 2801 kN T

— BEN'm 1} I;h.‘l
SR AR EECLO AR RELIITR < “,L_
=y —
“ £r o= B L3ES TRE o
l-'_J.L 29,00 kN o
o 30m o 2.5m o 25m \Il
RO0m |
% . ]
=+ 12,0+ 7.5 + 6,25 - (0.6235 = 29.01) s By =+ 762 KNm
I»::. = zero + 4.5 + 13,75 — (0.375 = 29.01) o P =+ 737 KNm T
My =+ 225+ 18.75 — (1.88 % 29.01) Me=—1320kN ()
M=+ 1125 + 34,38 — (0.94 = 20.001) SMem—1836 kN )
1263 KN
TH2 KM
\\_ < 4]
A [ |
TITEN T3TEN Shear Force Diagram
16,38 kM
1329 kMm

Bending Moment Diagram

Figure 4.66
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4.6.4 Problems: Unit Load Method for Singly-Redundant Beams

A series of singly-redundant beams are indicated in Problems 4.24 to 4.27. Using the
applied loading given in each case:

i) determine the support reactions,
ii) sketch the shear force diagram and

iii) sketch the bending moment diagram.

6 kN/m [ 9 kN/m

A — C
: F ¥
\ A 5.0m “* _ 5.0m C\
Problem 4.24
4 kN
8 kN/m
1-'r[m1[KﬂrrmnnmmmnﬂnB C l
A — B D
- 20E] $ 1.5ET S El '
.\LV" 40m 1 40m Vﬂ‘\;\ 20m |
Problem 4.25
4 kM

— 15 kN/m

Problem 4.26



Beams 295

10 kM SkN B kN
l —— 12 KN/m l 1
NRLERRLEIANRRRRRLED, JRRRRN RN R AN RR
]

= B El gC D El E P%
Fa 3.0m | 40m e 30m 5.00m | 30m Fy

oG . : E B S e

i 7.0m o, 1.0 m {

Support C scttles by 4.0 mm and Ef = 100.0 = 10" kNm®

Problem 4.27

4.6.5 Solutions: Unit Load Method for Singly-Redundant Beams

Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.24 Page No. 1

- kMm — 9kMm

gmummudﬂiﬁﬂﬂﬁﬂ[ﬂlmm&”h
) F

L5E e 208
i Fa S0m "l$ 5.0m ‘1$

K N S
Determine the value of the support reactions and sketch the shear force and bending

momeni diagrams,
Assume that the reaction at B is the redundant reaction.

6 k™Nm
SREIAARLEIARAL L RRREIAREN . A B <
A E C T |||I||“|
. l” T % ] I M g apptiod ot
150 LM 15.0 kN pera 188 kN
GkMim
TR AT TR ETTIe e A B Ly
A =T = C S
l ? L ep——— AT
Ero 22,5 kM 225k 5% 1% Kb
r it
131.5 kN M fea spoptit ot
A C
A m O T T T
S . : ; | P
1875 kN 18,75 kN [
\-’h
V375 kivm
25m
A C _— e
A : g
0.5 05 FE gor it verncad boasd ant B
)
J”m;.lr f M . j‘ M iy
il 1sEr 22O0ES
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Solution
Tapic: Unit Load - Singly-Redundant Beams
FProblem Number: 4.24 Fage No, 2

Using the cocflicients given in Table 4.1:
‘ij

IJEJ'

i
%m = [ (0.333 % 18.75 2.5 % 5.0) - (0.333 % 93.75 x 2.5 x 5.0)J1.5E

a

dx = Z;{Ca:ﬂhfﬂrr weaxhx L)/ Ef

F-(0333 #2813 e 25 2 5.0) = (0,333 = 93,75 = 2.5 » 5.0) J2.0&S
= - 565.85ET

L3
_[%m = (0333 % 2.5 % 2.5 % S.0)/LSEN = (0.333 % 2.5 x 2.5 x 5.002.0E]
JE

=+ 12.14/ES

i iL 3
V= ]‘"‘I{:”;u fe =~ {~ 565.85/EN1 2. 14/EN = + 46,61 kN T
a o [
—— S kNm

T TR

Fp=+ 150+ 18.75 — (0.5 x 46.61) s F =+ 1045 kN
Ve =+2205+ 1875 (0.5 » 46.61) o Fe=+ 1794 kN f
My = +93.75 = (2.5 x 46.61) o My==2278 kNm ()

27.06 kN[>~

10,45 kN -

=~ 19%0m
—t

T

B . Ic
kM

= Sh
| 19,55 kN 1704 | ear Forge DHagram

E1TRKNm

o1 k¥m

A‘lu.l-l-”|||-”||'_“|,|r'. T uﬂ““ LHU;IE’ Bending Moment Diagram

17,85 ki
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Solution
Tapic: Unit Load - Singly-Redundant Beams
Problem Number; 4.25 Fage No. |

— BkN/m 4N

B
JII LA ¢ h

A

%g 206 $ SE $ El
_‘1"4 40m ""_\ 240m '?\I\ 20m

Determing the value of the support reactions and sketel the shear force and bending

moment diagrams.
Assume that the reaction at C is the redundant reaction.

M

Y

160knm A1 M ettt

a0 kN 16,0k

U S

A 4
15 kN ’f‘\ﬂ’m N’Lj 3‘] 0 kMm
. ||||

il M et spptiea 1oats

B
-

4.0 m

AP for it vertsead boad s
Hm Mhr 'ru
dy = I + v+
TEr ;F 206 '* uff‘ e
Using the cocllicients given in Table 4.1:
L
j‘%ﬂl‘ iy = E:{Curﬂfcfwrr wax b L)/ ES

Fero singe mris equal 1o zero

i
.[TT*&% (0.333 % 1605 4.0 4.0) = (0.333 x 90.0 % 4.0 x 4.0 2.0FT
a
= (0.5 % 3005 4.0 3 4,00 — (0.333 2 60.0 x 4.0 = 4.0) PL5EY
= — 5T0.26/E1
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Solution

Tapic: Unit Load - Singly-Redundant Beams

Problem Number: 4.25

Fage No. 2

i3

a

=+ MATET
L
i El

8 kN/m
'-||'|'|'||i""|'|ll'|-'-'||i'u'|'||'|'u'l||'|'[||' B

I —oly =+ (0333 % 4.0 = .05 LOV20ES = (0.333 = 4.0 % 4.0 = 4001 5ES

L3
d / eyl == (- ST026/ENQ4SVED = + 22.93 kN t
[

A - -
@\ﬂ 20ES %
Fa i

A 4.0m )
Fo=+160-225+(1.0x2203)
Fp =+ 16.0+ 375 = (2.0 x 22.93)
My = =900 + (4.0 x 22.93)
Me==300

16,43 kW

>

L5EL b
2193 kN

4.0 m L 20m

%

s P =+ 1643 KN T

o Vo= + T.64 KN t
A My=+172k8m ()

2 Me==30.0 kNm ( j

1500 kN 150N

x - B
| TOI KN

2054 m 15.57 kN

1

A

[§

200 kN Shear Force Diagram

l‘ H||| | Bending Moment Diagram

] [ g

16.% KMm

1T
C I
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Solution
Tapic: Unit Load - Singly-Redundant Beams
Problem Number: 4.26

The Ef value af the beam BC varies linearly from £ at suppon Bio 205 s C.

Determine the valee of the support reactions and sketch the shear force and bending
mament diagrams,

Assurne that the reaction at B is (e redundant reaction.

5120 kM

) KM |
150 kMm ) ¢

2ET
som o2 R e 3y
The value of £f at a distance of x m
M o spptcdtants fram A is given by: ET (0.4 +0.2v)

A {_\“\f_‘
I oy wortical Baadd
‘I—hm o it vt bl

A ——

(Mm/Ef) is not a comtinuous function the product integral must be evaluated between
cach af the discominuitics, ie. Ato Band Bro C,

The value of £ at position *x™ along the beam between B and C is given by:
ET{0A4 4+ 0.2x)
I # C
ﬂ.ﬂ- - J"”m“ - I Mm
3 El Ef EF(0.4+0.2x)

& L.
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Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.26 Fage No, 2

Consider the section from Ao B 052230 m
m e S M = e

U
I oy = FEQO

Consider the section rom B o A: J0<x<80m
Me==4.0x = 150072 = = 0 = 7.55°

m=4+ 10(x-3)

Mrr =[x - 39— 4.0¢ - 7.53) = 12.00 + 18.5¢° - 7.5¢"
' = = 3)

‘.'[ M . “flz_mus.sx’ —-7.5¢
N =

JE(0av02y) 1 EI{04+02y)

L ey = {Li 4+ 0.2x) SLx=(5r=2) and  alv = Sdv

o = (25 - 200+ A.0)

= (1257~ 1507 + 600 — 8.0)

when x=30 w»=1.0 and when x=8.0 v=20

Mm = 120c + 18.527 - 7.5
= 12050 =23+ 18,5025 - 200 + 407 - 7.5(125¢" - 1500 + 60w - 8.0)
= (= 760w+ 110+ 1387.5¢" - 937.5)

‘j- Mm . T 12.0x+18.5x° = 7.5

JEr0avo2)” 1T EI(0av02y)

B ’J:“ ~T60v + 110+ 15875 9375
Elv

5. Ol

(1]
J’[ ?rmﬂuss? Sv—037.50* ] g
0

1587.5%  937.5v" |
0 30

-1
2450.0 -

:I
[ =760+ 1 10w+

[(-768.8)~(-278.8) ] = +

f
.0
El
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Solution
Tapic: Unit Load - Singly-Redundant Beams
FProblem Number: 4.26 Fage No, 2

(=3P = - G400 =257 = 50w+ 250
_[ £l —6.0x+9. n r ~50.0v + 25.0
-'Ff{ﬂ.41021r} VEr{04+02: Elv

E j 2500 = Sl}ﬂ-}-ﬁ]d. - £| 25007
k EI| 20

Er
24, ]5

5.ulv

Lo
2.0

= 50,00 + 25,04 \':|

Lo 1.0

[{ -32.67)-(-37.5)] =+

'I.
f"" j"‘—:zr = — (= 2S0EN24.15/EN =+ 10145 kN ]
JEI

4kN — LS ENm
URLEEEL R ERTREE I BRI A DRI AAR I RON I RRRIATD I AARRIA BN
EF Bagmgr

. ﬁﬂ‘l:ﬁ kM -0 280 Fe

8 s
RDm

Mg

.
-

Fe=+ 1240 (1.0 % 101.45) fVa=+2285kN T
M=~ 512.0 + (5.0 x 101.45) oo Mg == 4.75 KNm
M = = (4.0 % 3.0) = (15.0 x 3.0)(1.5) AMy==195kNm ()

_53.45 kM
i LM m

—|C
225N
Shear Foree Diagram

4,75 kNm c

A Bending Moment Diagram
2.2 km
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Solution
Tapic: Unit Load - Singly-Redundant Beams
Problem Number: 4.27

10 kN BN

&
s0m

i El = C
4.0m :;$ 30m

-

— 12 kNfm l

IR b AR A RRIA RN R AR ]
[}
M

. T.0m Al 118 m
Support € settles by 4.0 mm and £F = 100.0 x 10" kNm®
Determine the valee of the support reactions and sketch the shear foree and bending
moment diagrams,
Assume that the reaction at C is the redundam reaction.-
- 12 ENm Maote: M. diagrams not o scale
A “II“"'I“"'I‘"'I B ' (1] E

B Con : ? AW P
ﬁm J.!.I kN 1 || “

U 7350 kNm M g septica tass

IdI.D kN

X T

AL

56T KN

B 170,60 KNm
10 kN
I. Bdsc o E

- . I = F
+ i ’“‘\JJ'UUL om

250 kWm Ay

g .

uulj |3|||| 'hL|“”||u|L[u'u.. F

Aw 356 KNm

C_ D A'*r

T HHI"}'R’

i,
T kNm Au

J‘I|:l

B Va5 Mep o

I o vt vertical load at b
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Solution
Topic: Unit Load - Singly-Redundant Beams
Problem Number: 4.27 FPage No, 2

f i ! L
""". J_[ﬂm :ax: =00 e [onm j‘“‘" ]/ " dx

e

th‘nlc; The n:a:l-:r should check this using the cocflicients given in Table 4.1),
Ay = {067 = 7.0 T35) = + 344,72 KNm®
W3S miromA)= -2 14dm Ay = = 737.70 kNm'
Ay =+{05 % 7.0 % 179.69) =+ 62892 kNm®
¥ (67 mfrom A)=-283m s == 179242 KNm®
Ay=+{0.5% 110 = 179.60) = + 958,30 kNm’
133 mfrom F)= - 285 m oo dg = = 281666 KNm®
Av=+{05= 3.0 = 250) =+ 3750 kNm®
w(2.0m from A)=-122Zm 5o A= 4575 kNm?
As=+{40x% 1833)=+73.32 ENm?
yu (5.0 m from A)= =305 m oo dge = = 223,63 kNm®
Ay =4 (0.5 % 40 % 6.67) =+ 1334 kNm®
Yo (4.33 m from A) = - 2.64 m S A= - 3522 kNm®
Az =+ (0,53 11,0 % 1833} =+ 100,82 kNm®
(133 mfrom F)==285m oAy = = 28734 kNm®
Ag =+ (0.5 % 7.0 = 24.92) = + $7.22 kNm®
Ve (467 mfrom A)=-285m 2 Agrg = = 24858 kNm’
As=+(30 = 2492) = + 74,76 kNm’
Fo (.50 m from F) = - 3.7l m o dayy = = 2TT.36 kNm'
A =4 {05 = 3.0 10.68) = + 16,02 kNm®
Vs {20m from Fi= =351 m 2 dyre = = 56,23 KNm?
Ay =+ (0.5 % 5.0 % 35.6) = + 1424 kN
(5,33 m from F)=—2.08 m SoAwyn =- 296,19 kNm?
A=+ (005 = 700 T.0) = + 24,50 kNm®
yiz (467 m from A)= - 285 m o gy = = 6983 KNm'®
A=+ (800 7.00 = + 56,0 kNm*
s {70 m from F)=-2.73m S Ay =- 15288 kNm?
Ayg =+ (0.5 5 8.0 B.0) = + 32,0 KN’
Fia (567 m from F)= =221 m o Ay ™ = T0.72 kNm®
A=+ (05 = 3.0 % 1507 = + 225 kNm®
J. {20 m from F)=-0.78m o Ay =— 1755 kNm'

I.f.ul _ r'-lt{-"nj'.} _ 5 g

P = _Z,,—.':'f == TI28.06/El m
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Solution
Tapic: Unit Load - Singly-Redundant Beams
Problem Number: 4.27

Foa
—d'n - M;,dh'
JEI JEI

A= 4 (05 % 7.0 x 4.28) = = 1498 kNm”
¥y (467 mfrom A)=-285m
Ay=+(0.5% 11,0 % 4.28) = - 23.57 kNm'
¥ t? 3imfromA)=-285m

oA =+ 42,69 kNm®

o1 Agpe =+ 67.00 KNi®
z{’I' o) [+ (42.690EN) + (67.090ED] = + 109.T8IET

Ve [uuun —:F ]/]—;.rx = = (0004 - TIZE.06/EN 109. 7851

=+ 60103 kN

kN BEN

l 12 kNm
[TERHATERATTRETR, ATRPRARRET BT

] 3:C D 3
40m $ 30m 50m

. 6103 kN

¥
T.0m

o LK ]

=+ 420+ 2567+ 833+ 3,56+ 1.0-(0.61 x61.03) .. Vy=+4333I KN

V= + 1633 + 167 + 4.44 + 5.0 - (0.39 x 61.03) 5 Vp w4 364kN

Me=+179.60+ 1833 + 2492+ 7.0 - (428 x 61.03) - Me=+3127TkNm
L A33IRN

7.31 kN JOIERN e

1&?EL ."?\M N v

+—J.D o \

| S0.67KN Shear Foree Diagram
31,946 kMm

x ! e IImp ossise :

Al JJ M W/LL T esom
S| ] TS KN m

A

Bending Moment Dingram
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4.7 Moment Distribution Method for Multi-Redundant Beams

This section deals with continuous beams and propped cantilevers. An American
engineer, Professor Hardy Cross, developed a very simple, elegant and practical method
of analysis for such structures called Moment Distribution. This technique is one of
developing successive approximations and is based on several basic concepts of
structural behaviour which are illustrated in Sections 4.6.1 to 4.6.10.

4.7.1 Bending (Rotational) Stiffness

A fundamental relationship which exists in the elastic behaviour of structures and
structural elements is that between an applied force system and the displacements which
are induced by that system, i.e.

Force = Stiffness x Displacement

P=ké
where:
P is the applied force,
k is the stiffness,
d is the displacement.

A definition of stiffness can be derived from this equation by rearranging it such that:
k=P/5

when 6=1.0 (i.e. unit displacement) the stiffness is: ‘the force necessary to
maintain a UNIT displacement, all other displacements being equal to
zero.’

The displacement can be a shear displacement, an axial displacement, a
bending (rotational) displacement or a torsional displacement, each in turn
producing the shear, axial, bending or torsional stiffness.

When considering beam elements in continuous structures using the
moment distribution method of analysis, the bending stiffness is the
principal characteristic which influences behaviour.
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Consider the beam element AB shown in Figure 4.67 which is subject to a
UNIT rotation at end A and is fixed at end B as indicated.

Unit rotation My
S \:
AN ____"z‘%‘ B
7l ELL - TR
My T mmmmma=——" Fixed-End

(zero rotation)

Figure 4.67

The force (M) necessary to maintain this displacement can be shown to be equal to
(4ED)/L (see Chapter 7, Section 7.2.2). From the definition of stiffness given previously,
the bending stiffness of the beam is equal to (Force/1.0), therefore k=(4EI)/L. This is
known as the absolute bending stiffness of the element. Since most elements in
continuous structures are made from the same material, the value of Young’s Modulus
(E) is constant throughout and 4E in the stiffness term is also a constant. This constant is
normally ignored, to give k=I/L which is known as the relative bending stiffness of the
element. It is this value of stiffness which is normally used in the method of Moment
Distribution. It is evident from Figure 4.67 that when the beam element deforms due to
the applied rotation at end A, an additional moment (Mg) is also transferred by the
element to the remote end if it has zero slope (i.e. is fixed) The moment Mg is known as
the carry-over moment.

4.7.2 Carry-Over Moment

Using the same analysis as that to determine Ma, it can be shown that Mg=(2EI)/L, i.e.
(¥2xM,). It can therefore be stated that ‘if a moment is applied to one end of a beam then
a moment of the same sense and equal to half of its value will be transferred to the
remote end provided that it is fixed.’

If the remote end is ‘pinned’, then the beam is less stiff and there is no
carry-over moment.

4.7.3 Pinned End

Consider the beam shown in Figure 4.68 in which a unit rotation is imposed at end A as
before but the remote end B is pinned.

Unit rotation 2610

Pinned End

Figure 4.68
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The force (M,) necessary to maintain this displacement can be shown (e.g. using
McCaulay’s Method) to be equal to (3EI)/L, which represents the reduced absolute
stiffness of a pin-ended beam. It can therefore be stated that ‘the stiffness of a pin-ended
beam is equal to ¥sxthe stiffness of a fixed-end beam.” In addition it can be shown that
there is no carry-over moment to the remote end. These two cases are summarised in

Figure 4.69.

Remote End Fixed:

Ulnit redation -'UIL M, =4EHNL

i — B k=)

JH.-'L e - |J|-.r|g = :Eﬂr-l".lr.—

Remote End Pinned;

Unit rotation My M, = 3EIL

A B k=3 (L)
------ E My = zero

Figure 4.69

4.7.4 Free and Fixed Bending Moments

When a beam is free to rotate at both ends as shown in Figures 4.70(a) and (b) such that
no bending moment can develop at the supports, then the bending moment diagram
resulting from the applied loads on the beam is known as the Free Bending Moment

Diagram.

w KM/m length

Finnad Roller
Support ™ ¥ Suppon

AT
|||

Pah (b) ﬂ
L 8

Figure 4.70—Free Bending Moment Diagrams

When a beam is fixed at the ends (encastre) such that it cannot rotate, i.e. zero slope at
the supports, as shown in Figure 4.71, then bending moments are induced at the supports
and are called Fixed-End Moments. The bending moment diagram associated only with
the fixed-end moments is called the Fixed Bending Moment Diagram.
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w1

Supporl

||[ I| .'h‘n

Figure 4.71—Fixed Bending Moment Diagram

Using the principle of superposition, this beam can be considered in two parts in order to
evaluate the support reactions and the Final bending moment diagram:

(i) The fixed-reactions (moments and forces) at the supports

V.l‘l. lxed VH fixed

Deformation inducing
tension on the topside

Figure 4.72
(i) The free reactions at the supports and the bending

moments throughout the length due to the applied load,
assuming the supports to be pinned

Deformation inducing
tension on the underside

Figure 4.73
Combining (i)+(ii) gives the final bending moment diagram as shown in Figure 4.74:
V.-"k = {Ifﬂn fined + VA riw}; VJS = (VI': fixed + I}J’J:‘- ﬁl.:l:}

Ma= (M, +0); My = (Mg +0)
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MNote: M=- [.H-'I“ + {'”‘A - .'1-'f||_]IrJ‘.'I.L]

"""" [T _
B
Fixed bending moment diagram e Me 4
_ Pab
= Fi

T

”1'5'1' T Pab_
J'Ju-f: ”l”“ ”J [ L ”]

I-r-:-: Bending Moment Diagrany

Final Bending Moment Diagram

Figure 4.74

The values of M, and Mg for the most commonly applied load cases are given in
Appendix 2. These are standard Fixed-End Moments relating to single-span encastre
beams and are used extensively in structural analysis.

4.7.5 Example 4.19: Single-span Encastre Beam

Determine the support reactions and draw the bending moment diagram for the encastre
beam loaded as shown in Figure 4.75.

Figure 4.75

Solution:
Consider the beam in two parts.

(i) Fixed Support Reactions

The values of the fixed-end moments are given in Appendix 2.
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2 n 2
My=- L o Z02XY 778 kNm
I 3
2 - 2
My=+24h 202 X8 _ g g9 kNm
L 6
17.78 KMm B KNm

i [These
Lension i
beam).

Gim

Consider the rotational equilibrium of the beam:

+ve ) EM, =0
~(17.78) + (8.89) — (6.0 X Vs rnea) = 0

R ™ fived = — 1.48 kN *

Consider the vertical equilibrium of the beam:

+ve t TF, =0
Flamaat Vamaa=0 . Vam=—-(-1438kN)=+14

lzuku

modeents  inducs
vothe dop ol the

Equation

1)

Equation

gknt )

A
B
S 20m | 4.0m

I".'\ free %

L

6.0m
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Consider the rotational equilibrium of the beam:

+vc‘) EM, =0

(20 % 2.0) = (6.0 % Vg ) = 0 o Vare=+667kN 1 (Elq)ua“on
Consider the vertical equilibrium of the beam:
tve | EF. =10 .
© T ' Equation
Vet Vi e =20=0 L Vame=+ 1333k T )

Bending Moment under the point load =(+13.33x2.0)=+26.67 kNm
(This induces tension in the bottom of the beam)

The final vertical support reactions are given by (i)+(ii):

Va=VFafixed T Va iree =(+ 1.48 + 13.33)=+ 14.81 kN T
Va= Vi tived + Vi free =(— 148 + 6.67) =+5.19kN T

Check the vertical equilibrium: Total vertical force =+14.81+5.19=+20 kN T

1778 kNm
I T
(LI,

A= {889 + [(17.78 — 8.89) = (4/6)]} = 14.82 kNm
4+ Fixed Bending Moment [Xagram

" AF

THAmrrTgy,
—ve

T
|
M

24T kNm

. -
A Jliiuu"m L

Free Bending Moment Diagram

e _B.ERKNm ¥

- |
et 1] “l © 2667 kMNm
[JLELE J

(26T — 14821 = 1187 kNm Final Bending Moment Diagram

Figure 4.76
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Note the similarity between the shape of the bending moment diagram and the final
deflected shape as shown in Figure 4.77.

Lension 1Ensinn o
L. ' ! Deflected  shape  indicating
pe ' tension  zomes  and  the

similarity to the shape of the

i
im0 iension point off . T
contratlexune conraflexurg bl:“dlﬂk moment {]Ii'li___ﬁ'tm
Figure 4.77

4.7.6 Propped Cantilevers

The fixed-end moment for propped cantilevers (i.e. one end fixed and the other end
simply supported) can be derived from the standard values given for encastre beams as
follows. Consider the propped cantilever shown in Figure 4.78, which supports a
uniformly distributed load as indicated.

Ma w kN/m -
A B
V‘.\ V-H
Figure 4.78

The structure can be considered to be the superposition of an encastre beam with the
addition of an equal and opposite moment to Mg applied at B to ensure that the final
moment at this support is equal to zero, as indicated in Figure 4.79.

My, M
A g% — ? F\m
(M - 0.5My  w kMim
& = A W B
=My 2 Vs i x Vi

carry-over = — (L5 = Mg)

Figure 4.79
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4.7.7 Example 4.20: Propped Cantilever

Determine the support reactions and draw the bending moment diagram for the propped
cantilever shown in Figure 4.80.

AL 10 KIN/m

Figure 4.80

Solution
Fixed-End Moment for Propped Cantilever:
Consider the beam fixed at both supports.

The values of the fixed-end moments for encastre beams are given in
Appendix 2.

wl? _ 10x8?
12 12
wl? _ 10x8’

Moo=+ X
’ 12 12

The moment Mg must be cancelled out by applying an equal and opposite moment at B
which in turn produces a carry-over moment equal to-(0.5xMg) at support A.

= —53.33 KNm

My = -

=+ 53.33 KNm

3333 kNm $3.33 kNm
AW B
20 k%m . 10 kMm
- - A i B
26,67 KNm Fa ’ £0m T ¥

T e
CArTY-0ver e o
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(i) Fixed Support Reactions

143{]' kMm

MWy
A = —
/ N 4 T
V 4 fixea 8.0m VB fived

Consider the rotational equilibrium of the beam:

+ve) YMy=0

Equation
1)
—(80) — (8.0 % Vg finea) = 0
Vi == 10.0KN |
Consider the vertical equilibrium of the beam:
wve b 2F =0 _
Equation
+ Fa fixed + Vi fied =0 S Vafined == (= 10.0 kN) =+ 10.0 kN T (2)
|— 10 kN/m
A B
Va, free 30m TVB free
Consider the rotational equilibrium of the beam:
+ve ) EMy =0 _
Equation

F(10%80%4.0)~(80% V) =0 = Vpgee=+40.0kN T 0
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Consider the vertical equilibrium of the beam:

e} 27 =0 Equation
+ Vet Vo= (10x8.0) =0 L aee=+400kN 1)

The final vertical support reactions are given by (i)+(ii):

Fa= Vi fived T Vi free = (+ 10,0 + 40,0) =+ 50,0 kN T
yH:V[;j]xm+V[-}jj-°¢:(_ lﬂﬂ+4ﬂﬂ}=+3{}ﬂkl\l T

Check the vertical equilibrium: Total vertical force =+50.0+30.0 =+80 kN T

Jmm:IMWH I s Fised Bending Moment Disgram
+

*‘“Luulll[m]” Il(u“ UMIHUU”“” '

Mesis-spun “;_z /‘y ”ml Free Bending Moment Diagram

g marcimum bending moment

Final Bending Moment Diagram

Figure 4.81
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Note the similarity between the shape of the bending moment diagram and the final
deflected shape as shown in Figure 4.82.

Lersion Deflected  shape  indicating
A S — [§ tension zones and  the
" s similarity 1o the shape of the

poinit of conteaflexune L yension bending moment diagram

Figure 4.82

The position of the maximum bending moment can be determined by finding the point of
zero shear force as shown in Figure 4.83.

20 kNm e 10 EMm

A " B The position of zens shear:
SUkN E R0 m i 30k =22 230m
1H]
R0k
A ’\ B Maximum bending moment:

o ‘“\_\J M=[+(30=3.0)- (10 = 3.0 = 1.5)]
Shear Force Iilamm x 0k — 4 -IS!] RNII'I

or
M = shaded arca over length *x*

= (0.5 2 3.0 = 3.00 = 45.0 kNm

Figure 4.83

4.7.8 Distribution Factors

Consider a uniform two-span continuous beam, as shown in Figure 4.84.

Figure 4.84

If an external moment M is applied to this structure at support B it will produce a
rotation of the beam at the support; part of this moment is absorbed by each of the two
spans BA and BC, as indicated in Figure 4.85.
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B
A%%FEC — A
Mot

Applied moment Rotation of beam at support (Mygna = M) M:)

Figure 4.85
The proportion of each moment induced in each span is directly proportional to the
relative stiffnesses, e.g.

Stiffness of span BA = ks = (L)
Stiffness of span BC = kpe = (H/L2)
Total stiffness of the beam at the support = ke = (s, + ke )= [( AL+ (14020)

The moment absorbed by beam BA - M = M, H[ u ]

'{:HN.II

| -
The moment absorbed by beam BC My = ’1'":;1.|.¢d ¥ [ ' Lt ]
1ol

: ]
k'“‘ﬂ' is known as the Distribution Factor for the member at the joint where
the moment is applied.

The ratio [

As indicated in Section 4.7.2, when a moment (M) is applied to one end of
a beam in which the other end is fixed, a carry-over moment equal to 50%
of M is induced at the remote fixed-end and consequently moments equal
to % My and ”* M, will develop at supports A and C respectively, as shown
in Figure 4.86.

Figure 4.86
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4.7.9 Application of the Method

All of the concepts outlined in Sections 4.7.1 to 4.7.8 are used when analysing
indeterminate structures using the method of moment distribution. Consider the two
separate beam spans indicated in Figure 4.87.

no continuity between
the beams at B

L LY

w kMN/m

{E. f. L ]'_,“;

Figure 4.87

Since the beams are not connected at the support B they behave independently as simply
supported beams with separate reactions and bending moment diagrams, as shown in
Figure 4.88.

Ihelormed shape:
“Tt ot the different shopes
al point 1§

I

g

- AlE X a | h
.5 L = w
I“"-!""-L-!J”“|1!“.|_.-'1I‘”.ulil‘- w%hg}gilHI-““!LL""‘” Bending Moment DNagrams
wifig .

P Lyp

Figure 4.88

When the beams are continuous over support B as shown in Figure 4.89(a), a
continuity moment develops for the continuous structure as shown in Figures 4.89(b) and
(c). Note the similarity of the bending moment diagram for member AB to the propped
cantilever in Figure 4.81. Both members AB and BD are similar to propped cantilevers in
this structure.
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wkMim - ] F

Deeformed shape

Bending Moment Didgram

Figure 4.89
Moment distribution enables the evaluation of the continuity moments. The method is
ideally suited to tabular representation and is illustrated in Example 4.21.

4.7.10 Example 4.21: Three-span Continuous Beam

A non-uniform, three span beam ABCDEF is fixed at support A and pinned at support F,
as illustrated in Figure 4.90. Determine the support reactions and sketch the bending
moment diagram for the applied loading indicated.

10 kN/m 15 kN/m

llﬂ kM

Figure 4.90

Solution:

Step 1
The first step is to assume that all supports are fixed against rotation and evaluate the
“fixed-end moments’.

[ {1 TR 5 kM 15 kMim

The values of the fixed-end moments for encastre beams are given in Appendix 2.
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Span AC
Pab* 10x2%4?
Muc = — == == 8.89 kNm
A 12 6.0°
2 2
Mep=+ DL o 106274 ) 44 kNm
I 6.0
S'pmr D
72 2
Mep=— WL _ _10X87 s 33 Nm
12 12
2 2
M =+ “1; _ 10X L 5333 kNm
Span DI*
Mpp=— M PE 1557 23X5 _ 46 80 kNm
12 8 12 8
» : 2
M=+ WL PL_ 15257 25%5 _ 4 46 89 kNm
12 8 12

* Since support F is pinned, the fixed-end moments are (Mpr—0.5Mgp) at D and zero at F
(see Figure 4.79):
(Mpg = 0.3Mpp) = [- 46.89 - (0.5 x 46.89) | = - 70.34 kNm
Step 2
The second step is to evaluate the member and total stiffness at each internal joint/support

and determine the distribution factors at each support. Note that the applied force system
is not required to do this.

Support C
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Stiffness of CA = kea = (1/6.0)=0.167F |, _ _
Stiffiess of CD = kep = (21 / 8.0y = 0,257 | Fiow = (0167 +025)/= 04174

— . ke 7 .
Distribution factor (DF) for CA = 2= LALT L 0.4

ko 04174 |+ Erem 1.0

8= 1.
o " k, 0.2

Distribution factor (DF) for CD = — = 9r 0.6 |

K 04171 g

Support D

StifTiess of DO = kpe = kpe = 0,257 1 Note: the remote end F is

Stiffess of DF = kpe =% x (1.5//5.0)=0.2257 [ pinned and k=% (/L)
b = (0,25 + 0.225) = 0.475/

T . B 0.251 .
Distribution factor (DF) for DC = '—“ = YTIT = ()53
;”' 0.1-1” LEDF's=1.0
Distribution factor (DF) for DF = =25 = = = (.47
Kyeat 0.475f !
The structure and the distribution factors can be represented in tabular form, as shown in
Figure 4.91.
- E a _;: o, |
Joints/Support % o ks |ﬁu
A C D F
Member AC CA | CD DC | DF | FIy
Disiribution 1] 0.4 | 0.6 0.53 | 0.47 | 1.0
Factors
Figure 4.91

The distribution factor for fixed supports is equal to zero since any moment is resisted by

an equal and opposite moment within the support and no balancing is required. In the

case of pinned supports the distribution factor is equal to 1.0 since 100% of any applied

moment, e.g. by a cantilever overhang, must be balanced and a carry-over of %xthe

balancing moment transferred to the remote end at the internal support.

Step 3

The fixed-end moments are now entered into the table at the appropriate locations, taking
care to ensure that the signs are correct.
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Joints/Support \%“i i o] s ﬁ*
A C D K
Member AC CA Ch DC nDF FI»
Distribution 1] 0.4 G 053 | 047 1.0
Factors
Fined-End — + = + =
Moments 889 444 | 5333 53.33 | 7034 FETO

Step 4
When the structure is restrained against rotation there is normally a resultant moment at a
typical internal support. For example, consider the moments C:

Me=+444 kNm € and Mo =-5333kNm D

The “out-of-balance” moment is equal 1o the algebraic difference between the two:
The out-of-balance moment = (+ 4.44 = 53.33) = = 4889 kNm 3

If the imposed fixity at one support (all others remaining fixed), e.g. support C, is
released, the beam will rotate sufficiently to induce a balancing moment such that
equilibrium is achieved and the moments Mca and Mcp are equal and opposite. The
application of the balancing moment is distributed between CA and CD in proportion to
the distribution factors calculated previously.

Moment applicd to CA = + (48,89 = 0.4) = #1956 kNm

Moment applicd to CI =+ (4889 = 0.6) =+ 2933 kNm

L Pl i
Joints/Support H @l - g' " t:$a
A C )] F
Member AC CA | CD DC DF FI¥
Distribution 1] 0.4 0.6 0.53 | 0.47 1.0
Factors
Fixed-End - + - + -
Moments 8.80 444 | 5333 33,33 | 7034 2ETO
Balamce + +
Moment 1056 | 2933

As indicated in Section 4.7.2, when a moment is applied to one end of a beam whilst
the remote end is fixed, a carry-over moment equal to (Y2xapplied moment) and of the
same sign is induced at the remote end. This is entered into the table as shown.



E a | | E
Joints/Support § 1 oo g @v
A C [}] F
Member AC CA ch nDC DF FIx
Distribution 1] 0.4 .G 0.53 | 047 1.0
Factors
Fixed-End = + = | + = |
Moments §.89 444 | 5333 53.33 | 7034 FETDH
Balance + +
Moment L1956 | 2933 |
Carry-over to + [+ R
Hemote Ends 9.78 14.67

Step 5
The procedure outline above is then carried out for each restrained support in turn. The
reader should confirm the values given in the table for support D.

| |
Joints/Support §§ g = %—
A C I) F
Member AC CA CId D DF FI
Distribution 0 0.4 0.6 0.53 | 0,47 1.0
Factars
Fixed-End - + - + -
Momenis 589 444 | 53,33 53.33 | 7034 zero
Balance + +
MMoment | 1956 | 2933 [
Carry-over 1o + - T +
Remote Ends | 9.78 14.67 |
Halance + + | Mote:
Moment | 127 | 1.12 |Mo camy-over |
Carnl,qu,_\r o + - to the piﬂmd
Remote Ends 0.64 end

If the total moments at each internal support are now calculated they are:

Mea =+ 444 + 19.50) = + 200 kNm ":_ The difference = 0,64 kNm i
M ={-53.33+ 2933 + 0.64)=- 2336 kNm _ the value of the carry-over moment

Mpe = {+ 5333 + 1467 + 1.27) = + 6927 kNm

Mg = (= 7034 + 1.12) = = 6927 kNm .- The difference =0

It is evident that after one iteration of each support moment the true values are nearer
to 23.8 kNm and 69.0 kNm for C and D respectively. The existing out-of-balance
moments which still exist, 0.64 kNm, can be distributed in the same manner as during the
first iteration. This process is carried out until the desired level of accuracy has been
achieved, normally after three or four iterations.
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A slight modification to carrying out the distribution process which still
results in the same answers is to carry out the balancing operation for all
supports simultaneously and the carry-over operation likewise. This is
quicker and requires less work. The reader should complete a further
three/four iterations to the solution given above and compare the results
with those shown in Figure 4.92.

Joints/Support | ¥ o e ]
A C D F
Member AC Ca | CD 1] DF Fhy
Distribution 1] 0.4 0.6 0.53 | D47 1.0
Factors
Fixed-End - % - + -
Moments 5.80 444 | 5333 5333 | 7034 2010
Balance + + + +
Momeni | 1956 | 2033 | | 9.01 [ 799
Carry-over o N + | =] +
_ Remote l{nd_.-i_ 0Ts 4,500 14,67
Balanee = - - -
Momenm | LLBO [ 270 . | 778 | 689
Carry-overte | -0.91 - = =
Remote Ends 389 1.35
Balance + carmy- + + + +
Moment 075 |8 156 | 233 0.72 | 063
+ - - + -
Tatal .76 2376 | 23,76 G68.60 | 68.61 ZeTo

*The final carmv-pver, 1o the fixed suppon only. mearns that this valse i one Deratbon meore accurate than the
imtornal joints.

Figure 4.92

The continuity moments are shown in Figure 4.93.

23 kN
15 kN/m

23,76 kNm 10 kN/'m 63,61 kNm
C i 1)

Figure 4.93

The support reactions and the bending moment diagrams for each span can be calculated
using superposition as before by considering each span separately.
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(i) Fixed Support Reactions

A
5y f\{c *y B F
b I L™ -
Gl m . ; B0m ) 25m J 2imo

Fa finsa Vom finss Frm finea Vocfines  Fiw aea Fro fned
63561 kKNm
23,76 KMm
] nrllllI llllllll ”H ”HHHMHIHH H_
*.H\um}.‘.m I
Consider span AC:
+ve J)EM,=0
‘) A Equation
+0.76 + 23.76 — (6.0 x Ve fived) =0 @
. Veame=+409kN 1
Consider the vertical equilibrium of the beam:
ve T 2F,=0 Equation

+ Vac fived ¥ Vea ied =0 22 Vac fived = — 409 kN l 2)

Consider span CD:

Wc“) 2Mc=0 Equation
~23.76 + 68.61 — (8.0 x VDC fxed) = 0 (1)
+ Voc mea=+5.61kN 4
Consider the vertical equilibrium of the beam:
ve T 2Fy =0 Equation

+ Ve fived ¥ Voe fiea =0 2 Viep fivea = — 5.61 kN l
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)
Consider span DF:
+ve ) EML=10
D . Equation
= 68.61 = (5.0 % Fep fixea) = 0 (1)
. VFD‘ fixed — — ]3.?2 kN
Consider the vertical equilibrium of the beam:
tve [ ZF, =0 .
¢ T ’ Equation
+ Vior fixed + Vi fivea = 0 o VoF fixed =+ 13.72 kN T 2

Fixed vertical reactions

The total vertical reaction at each support due to the continuity moments is
equal to the algebraic sum of the contributions from each beam at the
support.

Vi fixed = Vac fivea = — 4.09 kN

Ve fived = Vea fived + Vep fivea = (+4.09 = 5.61) = - 1.52 kN
Votixed = Ve fixed T VrF fied = (+ 5.61 +13.72) =+ 1933 kN
Ve fixed = Vip fixed = — 13.72 kN

kN . 10 kN/m IS5 kMm | 25 kN

LWWn

20w E

JMfrw Vi e iu:-rw e e F:arm Vi tiee
C C [ 1]

‘gt © 1|\||||I| i Wﬂw/

Pah
8 3 4

i



Beams 327

Free bending moments

Span AC Ffb=]“KSX4=133kNm

g2 2
Span CD “;‘ =1n:3 = 80.0 KNm

wl?  PL
A— + —
8§ 4

Span DF [

_[lﬁxf 25%5

Consider span AC:
+ve ) EM, =0

+ (10 % 2.0) = (6.0 % Fea rrec) = 0 Venie=+333kN 1

Consider the vertical equilibrium of the beam:

+ve } R, =0
+ Vea tiee * Vea fee = 10.0=10 5 VAc free =+ 6.67 kN T

Consider span CD:

+~.rc) EM-=0

+{_]ﬂ = 8.0 x 4{)}—[30 * H){;ﬁu]=u V]){: free = + 40.0 kM T

Consider the vertical equilibrium of the beam:

+velzr =0
+ Vb free ¥ Vi free = (10 2 8.0)= 0 Vcnfm=+4ﬂ-ﬂkNT

Consider span DF:

]= 78.13 KNm

Equation

1)

Equation

)

Equation

)

Equation

()
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+vc) IMp=10 _
+(25%2.5)+ (15 % 5.0 € 2.5) = (5.0 % Vip frce) = 0 Equation
5 Vip free =+ 30,0 KN T 1)

Consider the vertical equilibrium of the beam:

+ve t R, =0 Couati
uation
+ Vm. free T V].-Drm—ﬂs.ﬂ—(ISNS.{):l=ﬁ T V[;p ﬂ-,_.._.=+5ﬂ.l]km T (2(;

Va free = Vac free = + 6.67 kN

Ve tree = Vea free T Vep free = (£ 3.33 +40.0) =+ 4333 kN
Fifiee = Ve free T VOF free = (+40.0 + 50.0) =+ 90.0 kN
VF free = V[-'[) free = + 50.0 kN

The final vertical support reactions are given by (i) + (ii):
Va=Vafixed T Va fiee = (—4.09 + 6.67) =+ 2.58 kN
Ve=Ve fixed + Ve e =(— 1.58 + 43.33) =+ 41.81 kN
Fo=VFpofixeda T Vo free = (+ 1933 + 9ﬂﬂ}= + 109.33 kN
Vi = Vrfixed ¥ Vr free = (= 13.72 + 50.0) =+ 36.28 kN

Check the vertical equilibrium:  Total vertical foree =+ 258 + 41,81 + 109,33 + 36,28
=+ 190 kN (= total applied load)

The final bending moment diagram is shown in Figure 4.94.

EIHLE_hI kNm

4619 kN oeer T N

BAEKNm oA m ‘
l ||

P O
C

; | 3 - gl ¢
R P > (AT
Sk ; L) i |
makimum +ve value ! \ | 1l
at paint of zera shear TR 13 kMm | |

pals 154 kNm
s masimum +ve value
an point of rero shear
cquals 43,84 KNm

343 KNm
k-

Bending Moment DNagram

Figure 4.94
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4.7.11 Problems: Moment Distribution—Continuous Beams

A series of continuous beams are indicated in Problems 4.28 to 4.32 in which the relative
El values and the applied loading are given. In each case:

i) determine the support reactions,

i) sketch the shear force diagram and

iii) sketch the bending moment diagram.

— 40 kIN/m r 60 kN/m

Problem 4.29

40 kNim — r 20 kM/m  Pinned Euppnrt

20 kN Pinned Support




Examplesin structural analysis 330

Problem 4.31

8 kNfm

Problem 4.32

4.7.12 Solutions: Moment Distribution—Continuous Beams

Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4,28 Page No. 1
— 40 kMNm [ 60 kMNim

d_20m JI_‘ 40m e
Span AB
Mam- 2L 20x2 o 1333 KNm
2 1
R S || 3
Max=+ 2 =+ 25 =+ 13.33 kiNm
Span BC
L3 1
Mpe== whl | 80=4T e o kNm
12 2
Cowl? | abxda?
Men =+ Soo=+ S=50 =+ 80.0 kNm

Distribution Factors : Jeint B

g, = [é] = [),5] DiFyy, = f*' = "—:' = (L&T
Ben) = O0.TSF T 075
I & 0.25

bpe=| = | = 0254 D= 85 = == =33
we [4] T kw075

In this case, since there is only one internal joint, only one balancing operation and
one carry-over will be required during the distribution of the moments.
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.28 Page No. 2

Moment Distribution Table:

Jolnt A
AB BA
Distribution Factors | 0 0.67
Fized-end Moments | - 13.33 +13.33
Balance L. 3467
Carry-over + 3233
Tatal

Continuity Moments:

A EN'm

Vb et Voa fined Vier fise Fomfised

+oconntl] . O

Fixed Bending Monent Diagrams

91L.0kNm

C

(i) Fized vertical reactions:

Consider span AB: +ch EM, =0
+ 9.0+ 38.0 = (2.0 % F fisea) =0 S Poafea =+ 335 KN T

Consider the vertical equilibrium of the beam:  +ve iT.F, =1
+ Fap et + Vaa ined =0 L P e == 335 kN I'
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.28 Page No. 3

Consider span BC: -h-‘cj IMy=10
=580+ 9L0 - {40 = Vep fuca} =0 S Vew toea =+ 825 kN T

Consider the vertical equilibrium of the beam: -Iw.:fl:.'“, =0
+ Ve fised + Vem moed =0 2 Foe foes ™= = 825 kN

The wotal vertical reaction at cach support due to the continuity moments is equal to
the algebraic sum of the contributions from each beam at the support,

Fa s = Faninod = = 335 kN
Fittinot = Pian tned + Fiic foea = (#33.5 - 8.23) =+ 2525 kN
Fe e = Fop e = + 825 BN

Free bending momenis:

4 kNm 1 e 000 K20

A g LI ¢
T T T
A T0m ! J 4.0m L

Fap fiee Vandee Vs tree Fimines

U

Span AB E‘ = % = 20,0 kMm

g i
spnBC  E % = 120.0 KNm

(i} Free Vertical Reactions:
Consider span AB: +1.'¢;) IZMy =0
(4020 % 1.0) = (2.0 % Fy pee) =0 & P e = =400 kN f

Consider the vertical equilibrivm of the beam: +'-ct ZF=0
+ Fagi froe * Frin e = (40,0 x 2.0) = 0 g e ™ + 0.0 KN T
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.28 Page No. 4

Consider span BC: +ve D IMa=0
(60 % 4.0 % 2.0) = (4.0 x Fop ) =0 o Fon prge™ + 12000 KN T‘

Consider the vertical equilibrium of the beam: ﬂ'e‘r IF,=0
* Ve trce * Vo e = (000 = 4.0) =0 o P e =+ 12000 KN T

Fi e = Fapgee = + A0 KN
Vit ™ Vin eoe + Fac e = (+ 40,0 + 120.0) = + 160.0 kN
Fepee = Vow e = + 1200 KN

The final vertical support reactions are given by (i) + (ii):
Fo=VFfinea * Ve = (— 333 +40.0) =+ 0.3 kN

Fia™ Fa s P gee =+ 25,5 + 160.0) = + | 85,25 KN T
Fo = Fe g+ Fo poe = (+ 8.25 + 120,00 = + 12825 kN

Check the vertical equilibrinm:
Todal vertical force =+ 6,5 + 185,25 + 128,25
= 4 32000 kN (= total applied load)

e Lt ] Gl kMN/m

B
Fa= 18525 kN

LTS KN [
| T,

.~
B H"'\w

g

TiSkN h

i lzmasin
Shear Force D|I}:I'3TI'I

S 9L ENm
Al
Al
IS

12000 k¥m

A& m‘.‘:--

. B J,Ii: kg
OKNm Maximum bending 'J”L l!'HL
mement M= 46,0 kKNm

Bending Mament Diagram
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.29 Page No. 1

18x2x4%
T
.P:.r:h=+ 18227 x4
L 6.0°

== 160 kNm

=+ 8.0 kNm

__160x10 _
8

PL 16,0 10,0
J."fll.ln= o4 T =& ;

- 20.0 kNm

=+ 20.0 kNm

Distribution Factors = Joint C

Koy = [é] = 0,167

Fooen = 0.2677
!

= | =01

(lﬂ')
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.29 Page No. 2

Distribution Factors : Joint I)

kl:".' = [%) = ul'”'
Ky = 0.3

ar
kpp = |— | =021
" [mj

Maoment Distribution Table:

Joint A
AC
DF's 1]
FEM®s — 16.0
Balance
Carry-over | +13.3
Balance
Carry-over | +1.6 4
Balance
Carry-over | +04
Total -0.7

-

Continuity Momcnts:
i kMNim _,I

450 kNm [ 459 kNm

0.7 kN E—
AvI|1T"II'I'|I'i||”””i-”|” ll |”||||| =

Fixed Bending Moment Diagram

Ve foed

=

Fixed Bending Moment Diagram

Vet ot A Fisc tives
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.29 Page No. 3

-1-5.'9!‘|_-c‘$n|
N N

Fixed Bending Moment Diagram

(LR Ve fivet

(i) Fixed vertical reactions:

Censider span AC: +ve )} EM, =0
= 0.7+ 385 = (6.0 % Voa gea) = 0 “Voama=+63kN 4§

Consider the vertical equilibrium of the beam: +ve I' LF=0
+ Irm fined V,;-A g ™ 0 i I".u;' e ™ = 6.3 KM l

Consider span Clx +1-'-:,} EM-=0
=385+ 459 = (10,0 =% Fsg gyea) = 0 O P nea = + 0.4 KN T

Consider the vertical equilibrium of the beam: +ve § £F, =0
+ Fem fwat ¥ Vg aea =10 2 Vin puea = — 074 KN l'

Consider span DF: +ve _:} IMp=0
=439+ 7.0 = (100 = My fiea) =0 <o Fen pea == 3BF KN L

Consider the vertical cquilibrium of the beam: 4ve 1‘ EF, =0
+ Vo et + Frn e =0 S Vi g =+ 1RO KN T

The total vertical reaction at cach support due to the continuity moments is equal to
the algebraic sum of the contributions from each beam at the suppon.

Fi tovea = P = = 6.3 kN

Fe et ™= P e * Ve finea = (F 6.3 = 0.74) =+ 556 kN
Fiyenea ™ Fioc ges + For fings = (+ 0,74 + 3,897 = + 4,63 kN
Fi nea = Vo s = = 389 KN
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.29 Page No. 4

Free bending moments:

12 0m 40 mi
o i

Vag mee Fraiee Vonme Vo mee Vi fee Frvniee

A C C [V ] E F

T N ] |m H””"U'm“lw 1111

Fah
ML
—

Fl

L

8

Span AC  Myc=+ % =+% = 4 24.0 kNm

=4 T5.0 kNm

i 1
D s B 010

Span DF My = + % = '6:”' =+ 40,0 kKNm

(ii} Free Vertical Reactions:
Consider span AC: +w:‘) EMy=0
+ (18,02 2.0) — (6.0 % Ve ge) =0 O Fen e =+ 6.0KN T

Consider the vertical equilibrium of the beam: +ve T EF, =0
+ Fag troe + ¥ troe = 18.0=0 Vi g =+ 120 kN t

Consider span CD: +ve ) EM = 0
£(6.0 % 100 % 5.0) = (100 % Focsed =0~ Pocpee=+300kN T

Consider the vertical equilibrium of the beam: +ve '|' ZFy=0
+ ¥en e * Ve e = (6.0 2 10.0)= 0 & Fon e = # 300 KN

Consider span DF +ve JEM—E
+ (160 % 5.0) = (100 = Fip gee) = 0 o Vipme =+ 8.0KN T

Consider the vertical cquilibrium of the beam:  +ve T LFy=0
+ Vi toee F Fro pee — 16.0=10 o Porpee =+ B0 KN T
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.29

Fa e = Paciee =+ 120 kN

Fetiee = Foa mee T Fiom e = (6.0 + 30000 = + 36.0 kKN
I“np;,“ - I"'”c- B T I"'r.r free = {F 3000 + E.ﬂ} =4 380 kN
Frtiee = Fen e = + 8O KN

The final vertical support reactions are given by (1) + (ii):
Fa=Froed ™ Fh e = (- 6.3+ 12.0)=+ 57 kN
Fem Fe et + Ve e = (+ 550 + 360) = + 41,56 kN 1'
Fioo= Vo fmea + P e = (4,63 + 38.0) = + 42,63 kN
Fr = Fr tasa * Frine = (= 389+ 8.0) =+ 4,11 kN
Check the vertical equilibrium:
Total vertical force =+ 5.7 + 41,56 + 42,63 + 4.11

=+ 84,0 kN (= total applicd load)

6 kN'm

Fa=41.36 kN Fr=4263kN Fp=411 kN

2926 kN

.Il.
411 KN

48577 m

T 30740
Shear Force Diagram

JE5 KNm 42.2 k‘\m 459 k\m

/. I : |'I "IS 45 kN
135 kNm 1_ F -\\ e
0.7 kNm Ill- Al | I "'5'3"‘""' 1'ﬂ| | r'“ m 1(:;.\:.“
Ty '!-f'q_;ul\mc " 'Ip”ll“l
Alavimum bending _. l
moment M = 3285 K¥m

_— 11104

Bending Moment Disgram
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.30 Page No. 1

40 KN 2D RMm Finned Support

E LS =
I0m

Support € sertles by & mm; EF= 103 10" kNm®

Fixed-end Moments due to loads:

A0 kMM 20 kNm

(RO LA R AARRETN oI NR PO AR g B
= |

(BEITET Y

Total Fixed - End Moments:

Span AB

Mag=— M o _ 3053 _ 50 0kNm
12 12

T =+ 3L kNm

Moo SEIS __ 60x1.510'x0005 _
Fo q

BEIS 6.0=1.5=10" « 0,003

JA o

= 30.0 kNm

= = 50.0 kNm

Mep==
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.30 Page No. 2

~ GENF _ 20.0x6" " 6.0 2.0x10° % 0.005 -
P& 12 ki
gt 1 L]
Mocm + wl® | GEN _ | 20.0x6 + 6.0 2.0 107 = 0,005
12 L 12 36
* Since support D is pinned, the fixed-cnd moments ane (M, — 0.5Mp:) at C and
zeroat

(Mcp = 0.5Mpe) = [ 43.33 = (0.5 x 76.67)] = - 81.67 KNm.

= 4333 KNm

=+ 7667 kiNm

Distribution Factors : Joint B
kg = (g] =0.333

e = 0.8337
157 el

by = [T] = 0.5/

Distribution Factors : Joint C

o ()
Keerat = 0.751

=0.25/
‘)

Moment Distribution Table:

Joint A
AD
DF's 1]
FEM's = 30,0
Balance
Carrv-over | + 4.0
Balance
Carry-over | = 8.8
Balance
Carry-over
Balance
Carry-over
Balance

Tuotal
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.30

Continuity Moments:

A0 ENIm 30 kN/m Pinned S'Lrp_:mrr

9.3 kMNm I ENm | 352 kMNm

353 KNm 195 kN
TN e gy V5 ki
«

Fixed Bending Moment Diagram

Faa finad

152KNm
1605 KNm

o (I I |”|

Fixed Bending Moment Diagram

Fli fincd ) A Ven fied
.}j‘.:."_-k‘.‘w.'n:u
O 1 —

Fixed Bending Moment Diagram

Femined .

(i) Fixed vertical reactions:

Consider span AB: ﬂ'u;} EM, =
= 35.3 + 19.5 = {3.9 Ed Vu,&, ;r.m-j} =1 e ng flesd = = 527 k;‘: l

Consider the vertical equilibrium of the b{:am e TLF 0
+ Vian et + P s = 0 ‘. Voo iass=+527KN §

Consider span BC: +~.~c;’ EMy =10
=195+ 352 — (3.0 = Foy o) =0 5o Von a =+ 523 kN T

Consider the vertical equilibrium of the beam e “'F 1]
+ Foc fnca * Fongned =0 iu.:-r.d——S"_".kN L
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.30 Page No. 4

Consider span CLY +ve )EM.; =]
=352 = (6.0 =% Fog ) = 0 5 Ve s ™ = 587 kN l

Consider the vertical equilibrivm of the beam: +ve T‘EF, =0
+ Fen et * Ve fnea =0 o Wi s = + 58T KN

The wial vertical reaction at each suppoert due (o the continuily moments is equal to
the algebraie sum of the contributions from each beam at the suppor.

Fia et = Faniinga ™= + 52T kN

Fiinod = Fiua fived * Voo toed = (= 5.27=523)== 105 kN
Fe et = Fom oot T Fep fnea = (F 3,23 + 5.87) =+ I L1 kN
Firea = Fic e = = 5.87

Free bending momenis:

A0 KMIm —— 20 kXm

pr— M&n
L 3o0m 'f | 60m l

Frngee Vo fee Vongee  Vonoes Vo free
C C

I

=+ 450 kNm

Span AB My =+ % = —40"33“?
Span BC My =0

SpanCD  Mep=+ % -+ 2";“5' = +90.0 KNm
(ii) Free Vertical Reactions:

Consider span AB:  +ve ) EM, =0

040 30 % 1.5) = (3.0 % Fn ) =0 2 Vi g =+ 600 kN T

Consider the vertical equilibrium of the beam:  +ve i' LFym
*+ Vs oo+ Vi s = (40 % 3.0) = 0 2 Ve =+ 60.0kN 4

Consider span BC:
Ve tree =0 e e = 0
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.30 Page No. 5

Censider span CD: +ve JEM: =0
(200 % 6.0 % 3.0) = (8.0 % Foc o) =0 o Pocme=+600kN 1

Consider the vertical equilibrium of the beam: +w: '|' ZFy=0
+ Few te + Poc e = (60 % 6.0) = 0 o Pep e =+ 60.0kN 1

Fi g = Fanpee = % 600 KN
Frimes ™ P poe + Poc e = (+ 60,0 + 0) = + 60.0 kN
Fetiee ™ Fentree + Frongee = (0 + 60,00 =+ 60,0 kKN
Fhieee ™ Voo g = + 60.0 KN

Thc final vertical support reactions are given by (i) + (ii):
o= Vi imed = Fa e = (+ 5.27 + 60.0) = + 65 2T kN T

P = F tised + i tree = (= 10.5 + 60.0) =+ 49,5 kN T

Vo= Ve gt # Ve pe = 111 # 60.0) =+ 711 kN T

Fioo= Fofied P = (= 58T + 60.0) = + 5413 kN 1‘

Check the vertical equilibrium:
Total vertical force =+ 6325 + 495+ 711 + 54,13
=+ 240.0 kM (= 1otal applied load)
40 kN'm —
[

¥y = 6525 kN Py = 405 kN

65,25 KN BEESAN [

B C

al T~
A3 m [5.28 kN 525 kN
\ SLTS RN Shear Force Dlagram
B N T i 176 ki
N 1111 [II.x .
o T o ” Lu:'.:\::' H‘ HH i

Maximum bending

momect M= 17.9 kil Maximum I:rlm‘lm: II

Bending Moment Disgram moment W= 733 I:"'qm
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4,31 Page No., 1

10 kX¥'m KN Pinned Suppori
!

o E

== 2667 kNm

& 6
_, 20x27xd 20x47x2
FE F]
* Since support B is pinned, the fixed-end moments are (Mye = 05Men) at BE and
rerpat E
(M = 0,5M) = [-26.67 = (0.5 = 26.67)] = = 40.0 kNm.

=+ 26.67 kMNm

Distribution Factors : Joint B

Kisa, = (é] =0.51

Koaras = 0833
km-=[:1x£] =025/
T

In this case, since there is only one intcrnal joint, only one balancing operation and
oine carry-over will be required during the distribution of the moments.
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Solution
Topic: Moment Distribution — Continuous Beams
Problem Number: 4.31 Page No. 2

" Moment Distribution Table:

Joint A

AB BA

Distribution Factors | 0 0.67

Fixed-end Moments | - 3.33 +3.33

Balance L #2457

Carry-over + 12,20 =

Total + 8.96 +21.9

Continulty Momenis:
10 kMN/m

Van sined  VRE fivee
270 KMNm

A___ ||1]|""|”-|d B I T

s
8.6 kNm Fixed Bending Moment Diagrams

(i) Fixed vertical reactions:
Consider span hB:ﬂ'c_‘]l EMy=0
+8.96 + 27.9 = (2.0 % Fap puat) =0 & Vi med =+ 18,43 KN

Consider the vertical equilibrium of the beam: +ve T‘ LFy=0
+ Fan inet it gca = 0 o Vs e ™ = 1843 kN

Censider span BE: +ve _:} EMp=0
=279 = (45.0 * VFH 1’..“] =0 ' P|:|=| fised ™ = 4.65 kN

Consider the vertical equilibrium of the beam: +ve '|'E.f-‘, =0
+ Vo ot + Fenfnea = 0 & Vim ueg =+ 465 KN

t
|

|
t

VR fincd
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.31 Page No. 3

The total vertical reaction at each support due to the continuity moments is cqual to
the algebraic sum of the contributions from cach beam at the support.

¥ tied = Fanineg = = 1843 kM
Fieicet = Fa nea T VoE paea = (F18.43 + 4,65) =+ 23,08 kN
pl. fined = Pl_lj frved = = 465 kM

10 k®m
A L

$ 2.0m ? 20m 20rm 20m ’ i
¥ . e = :

a,
Famiee Vanpee  Vikoe P e

(Vg @ 200 (Fp = 2.0) |

11111

(i) Free Vertical Reactions:
Consider span AD: +1.-c-_:} IM, =0
+ [IEI' ®x20x l.ﬂ:l — [2.0 £ V||.\ m] =0 s J"‘]mI e = 10,0 kN T

Consider the vertical equilibrium of the beam: +ve 12.’-‘,, =0
+ Fag r— M Fres ™ “ﬂ.ﬂ '-h: Z.EI-J = & Fan e ™+ 10,0 kN T

Consider span BE: +\-¢J EMe=0
(200 200 # (20 % A0) = (6.0 = Fenpeed = 0 20 Vi e = + 2000 KN T

Consider the vertical equilibrium of the beam:  +ve 1 EFy=0
+ Vg gee + Ve tiee = {20+ 200 = 0 5o Vg e ™ + 2000 KM

Fi tiee = Fangee =+ 100 KN
Fliee = Vi pee + Pag pee = (+ 1000 + 20,0) = + 30,0 kN
Fitiee ™ Vi e = + 2000 KN
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.31 Page No. 4

Free bending moments:

i 5l
gpnAB M 19%2 < b kNm

Span BE (Vi e % 2.0) = (20 % 2.0) = 40.0 kNm

The final vertical support reactions are given by (i) + (ii):
Fa=Fa gt Faee = (= 1843+ 10,0) = - 843 kN

Fi = Vi fives * Fit e = {+ 23,08 + 30.0) = + 53.08 kN -T

Fi = Vi it * Fi oo = (= 465 4+ 20.0) = + 15,35 kN

Check the vertical equilibrium:
Total vertical force = = 843 + 53.08 + 1535
=+ 60.0 kN (= total applicd load)

1 ENm B

Fa =845 kN Fig = 5308 kX Fe= 1535kN

2465 kN

E
B

15,35 kN

Shear Force Diagram

A pe
B0 km

=447 kMm M0 KN

Mavimum bending moment
Eemding Moment Dingram AF =207 kNm
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number;: 4,32

Page No. 1

E, 157
20 m { 2.0m

Fixed-cnd Moments:

- 330xd 17.5 kNm

Pl 3504

Moy =% — =+ =+ 7.5 kN
A g 8 m

P 200x3x1F
4.0°
: - 200x3" =1

£ ]

=375 kNm

w25 kNm
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.32 Page No. 2

Distribution Factors : Joint C

kr_'_a.= (%) = 0375/
Eypen = 0.TORF

2
ko = [?] =0.333f

Distribution Factors : Joint D

Note: At joint D the stiffness of member DF s (34 = BL) since support F is a simple

support with a cantilever end, i.e. rotation can occur at this point.

boc = [H] =0.333/ DFpe = ¢ o M:"’ =,
¢ Kipew = 05217 Froa 0521
3 g

kpe = [ —=— | =0,188/

* [4 4]

Distribution Factars = Joint F

Note: At joint F the cantilever FG has zero stiffiess.

&n} = {%] =, 25] .DFH: L jln

Bycea = 0,251 &y
krﬁ =1 .U'.F'-:n_'. =

Maoment Distribution Table:

Jaint C

nc

DF's 064

FEM's + 240
Balance #30 J0 L 130

Carry-over g -5 [ +tlé

Balance A +31 b =127
Carry-over . - G.MH + L&

Balance , +0.30 = 1.0 | =6

Carrv-over | +10.2

Total | =139 + 246 | - 24.6 +11.9 [ -11.9 +12.0 | =120

Note: The out-of-balance moment a1 joint F is balanced during the first balancing
operation and (¥ » moment) carried-over to joint D, Since (% = stiffness) was used
for &pe, N0 carny-overs are made from [ o F.
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Solution
Topic: Moment Distribution = Continuous Beams

Problem Number;: 4.32

350

Page No. 3

Continuity Momenis:
35N

139 kNm 246 kKNm $
20m 2im

246 KNm

P fined

P fied Fro fived

Vit fined

Pt fied

139 kMm

N

Fixed Bending Moment Diagram

2446 kNm

119 kNm

(I

L2 kNm

Fixed Bending Moment Diagram

120 kNm

X

Fixed Bending Moment Diagraim

120 kNm

el

Fixed Bending Moment Diagram
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.32 Page No. 4

(i) Fixed vertical reactions:

Consider span AC +u--::)EM,, =0
=139+ 246 = (4.0 = Fep ) =0 < Von pea =+ LGB KN T

Consider the vertical equilibrium of the beam: +ve TEF, =10

+ Ve iwet * Foa sea =0 v Fac fnea =— 268 KN l,
Consider span CIx +\-¢_:} EMe=0

=246+ 119 = (6.0 % Fog quag) =0 S Voo i ® =202 KN 1.

Consider the vertical equilibrium of the beam: +ve 1' EF, =0
* Few st Vog sined = 0 5 o ees ™+ A2 KN T

Consider span DF: +ve ) My = 0
1194 12.0 = (4.0 % Fypp gt = 0 2 Vi mea =+ 0.03KN |

Consider the vertical equilibrium of the beam: 4ve 1' EFy=0
+ Vi et + Fip pnga = 0 & Vg g = = 0,03 kN T

Consider span FG: +1.'=_:} IMp=0 \
=120- [2.‘” L F’{iF n.m} =0 T V{;F fived = = 6.0 kN +.

Consider the vertical equilibrium of the beam: 4we 1' EF,=10
+ Vi s * Vo s = 0 o Vi s =+ 60 KN T

The total vertical resction at each support due to the continuity moments is equal to
the algebraic sum of the contributions from each beam at the support.

Fa toed = Farfied = = 273 kN

Fe ot ™ Foa sed * Vop ina = (268 + 2,12 = + 3.8 kN
Fotned = Foc et * Vor poca = (= 2,12 =0.03) == 215 kN
Fi et = Fro fived Vi gea = (F 0,03 +6.0) = + 6.03 kN
Fa finca = For s = — 6.0 KN
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352

Solution
Topic: Moment Distribution = Continuous Beams

Problem Number: 4,32

Page No. 5

Free bending moments:

T 20m | 0m

Vs free Fansiee Vist ree

C C

) 6 kN m

Ay
I0m J.l.lllf f‘.“.ﬂﬂl ¢||

Voo tree Ve tree Vi fed
F G

Span AC

Span €D Mep =+ ——

8
5 DF  Myp=+
pan o - :
L/

Span FG Mg =+

(ii} Free Vertical Reactions:
Consider span AC; +1.'¢;) EM, =0
F (3502 2.00 - (4.0 2 Fey, ) =0

Consider the vertical equilibrium of the beam: +ve TEI-‘,, =0

+ VF-".' frew =+ .I“.,;-A e = 35.‘:' R ﬂ
Consider span CIv +1.'4:;i EMe=0
(8.0 % 6.0 3,00 = (6.0 % Vi 1) = 0

Consider the vertical equilibrium of the beam: +ve TL‘F, =10

* Fep poe * Voc e = (B0 60=0
Consider span DF: +ve JEMy =0
(2000 = 3.0) = (4.0 = Fep eed =0

Consider the vertical equilibrium of the beam: +w'|‘£.f-‘, =0

+ Vg gee + Frpgiee = 2000 = 0
Consider span FG: +ve JEMy = 0
(603 20 100 = (2.0 % Fap poee) =0

Consider the vertical equilibrium of the beam: +w'|‘£.'",, =0

+ Fig gee + Fop pree = (6002 200 = 0

vl . 06
8
Pab . 2000=3x1

6.0x2"

E F F
=T I T
L:.'II/ it )V

Fah - ru

L

=+ 35.0 kNm

=+ 36.0 kNm

=+ 15.0kNm

=+ 3.0 kNm

S Fenpee =+ 175 KN
o Vac g =+ 1.5 KN
. Voo ge =+ 24.0kN
o Vemgee = + 240 kN
Ve =+ 15.0 kN

O Vg gee =+ 50 KN

s = = =k —k —k —F

2 Fp e = + 6.0 KN

—

s I“n; '™+ 6.0 kN
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Solution
Topic: Moment Distribution = Continuous Beams
Problem Number: 4.32

Frie = Facie =+ 1.5 kN

Fogee = Fonpee * Foope = (F 175+ 2400 =+ 415 kN
‘I'"ll’l'ﬁ - F:::r; wt Fi free = {# 2404+ S.D,'l =4 200 kN
Fraiee = Ven o™ Yigoee = (F 150+ 0.0) =+ 210 kN
Fa i = Vorime = + 6.0 kN

The final vertical support reactions are given by (i) + (if):
Fom Fyned * P e ™ (=273 # 17.5)m + 1477 kN

Fe=¥e EW"'FL'Eu:{""IS"'*” )=+463 kN

o= Fotinea * Foree = (= 205 + 29000 = + 26,85 kN T
Fp = Fy gt + Fy froc = {+ﬁﬂ3+"lﬂ} +27.03 kN

Fo= Vo toa + Vo e = (= 6.0+ 6.0) =+ 0

Check the vertical equilibrium:
Todal vertical force =+ 1477 + 46,3 + 26,85 + 27.03
=% 114,95 kN (= total applied load)

K3 & kN m

Fy=149T kN Fo= 46,3 kN V= 1685 kN Vo= 2703 kN
14.77kN EﬁD? L\
[ EOTkN
o E|

o 1493 kN
P 1. 1 . 21.7TEKN

Shear Force Dia,].:l'in'l
246 kNm
1925 kNm 18,25 kMm
139 kNm [ FALIE i 1.9 K%m o

120kW
.]'l'r.l'l kMm '|.i""-.i o N _/ l[ 6,0 L‘».m
F

e 'I
‘ l | ll D 150 kNm T”“'ﬂ

A

¥

) ),

okim 7
Masi bending <

m::::l:l::r - I;'.":;tc?\im Bending Mament [Hagram




B.
Rigid-Jointed Frames

5.1 Rigid-Jointed Frames
Rigid-jointed frames are framed structures in which the members transmit applied loads
by axial, shear, and bending effects. There are basically two types of frame to consider;

(i) statically determinate frames; see Figure 5.1(a) and

(i) statically indeterminate frames; see Figure 5.1(b).

TR TR TR T

pin
ail . ! ’ . ,
- rigil=jfoints - pan ! T rigid-joines
rigid-joing
roller pEnd pirned
AR Pl U Suppsart suppon 0

(a) Staticallv-Determinate Frames

[SEEPLIARERE IR RRRlINREbEidaNEiRiiRaRt

pinned
supper

-

- = rigid-joinis —
= rigid-joins RN oS
e rigid=joing -
vl pimngd sk fived pimned pinned
Fam suppoft suppod SUpP SUPPOTT SR suppor suppon
(b} Statically-Indeterminate Frames
Figure 5.1

Rigid-joints (moment connections) are designed to transfer axial and shear forces in
addition to bending moments between the connected members whilst pinned joints
(simple connections) are designed to transfer axial and shear forces only. Typical
moment and simple connections between steel members is illustrated in Figure 5.2.
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In the case of statically determinate frames, only the equations of
equilibrium are required to determine the member forces. They are often
used where there is a possibility of support settlement since statically
determinate frames can accommodate small changes of geometry without
inducing significant secondary stresses. Analysis of such frames is
illustrated in this Examples 5.1 and 5.2 and Problems 5.1 to 5.4.

(a)  Typical moment connections between members

{(b)  Typical simple connections between members

Figure 5.2

Statically indeterminate frames require consideration of compatibility when
determining the member forces. One of the most convenient and most versatile methods
of analysis for such frames is moment distribution. When using this method there are two
cases to consider; no-sway frames and sway frames. Analysis of the former is illustrated
in Example 5.2 and Problems 5.5 to 5.12 and in the latter in Example 5.4 and Problems
5.13t05.18.
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5.1.1 Example 5.1 Statically Determinate Rigid—Jointed Frame 1

A asymmetric portal frame is supported on a roller at A and pinned at support D as
shown in Figure 5.3. For the loading indicated:

i) determine the support reactions and

i) sketch the axial load, shear force and bending moment
diagrams.

1I2KN 16 kKN/m 12 kN

|

4.0m

Figure 5.3

Solution:

Apply the three equations of static equilibrium to the force system

Fa=120-(16.0x50)- 120+ Fp=0 )
Equation

+ve }EF, =0
1)

(6.0 x 4.0) + 16.0 + Hp=0

tve —= ZF,. =10
Equation
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(2)
ive JEM,=0 (6.0 % 4.0)(2.0) + (16.0 = 5.0)(2.5) + (12.0 = 5.0) + (16.0 = 4.0)
~(Fpx8.0)=0 Equation
3)
From equation (2); 400+ Hu=0 s Hp==400 kN =-—
From equation (3): 3720 -8.0M,=0 S Fn=+46.5 kN
From equation {1):  Fy= 140 +d65=0 S K=+ 515 kN I'

Assuming positive bending moments induce tension inside the frame:

Mg=—(6.0x4.0i(2.0)=—48.0 kNm

Mc=+(46.5x3.0)—(40.0x4.0)=—20.50 KNm

x]

480 kNm  16kNm 2030 kNm
1 F,

20,50 KNm

Fi
450 km

GkNm .
Member forces
S0 kN
A a
57.50 kN o] I
Figure 5.4

The values of the end-forces F; to Fg can be determined by considering the equilibrium of
each member and joint in turn.

Consider member AB:
Ay TE.I-‘, =1 +5750-F,=0 SRy = 5150 kN
tve —= IF, =0 +(60x4.0)-F:=0 LR =0KN -

Consider joint B:
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Hvi 'I‘ EF,={ There is an applied vertical load at joint B = 12 kN I'

R4 F==120 ~ Fy=4550k8 f
Ay —= EF, =)
=M+ F =0 A F =240k —

Consider member BC:

e PER=0  +455-(16.0x5.0)+ Fi=0 S Fi=345kN
e —= EF =0 +240-F=0 L Fy = 240kN

Consider member CD:

wvefZR=0  +465-F=0 L Fr=465KN |
tve—= EF =0 400+ F=0 S Fs=400kN —

Check joint C:

+ve T LF, There is an applied vertical load at joint C = 12 kN l
+Fs-Fr=+345-46.3=- 120
+yg —e EF, There is an applied horizontal at joint C= 16 kN —=

—Fe+ Fe==-24.04+40.0=+ 16.0
The axial force and shear force in member CD can be found from:
Axial load=+/—(Horizontal forcexCosa)+/—(Vertical forcexSina)
Shear force=+/—(Horizontal forcexSina)+/—(Vertical forcexCosa)
The signs are dependent on the directions of the respective forces.

Member CD:



ST kN

Rigid-jointed frames 359

o = tan”(4.003.0) = 53.13°
Cos e = 0.60;  Sino=0.80

Agsume axial compression to be positive.

At joim C

Axial force = + (400 = Coser ) + (46,50 = Sinee )=+ 61.2 kN
Shear foree =+ (40,0 = Siner ) — (46,50 = Cosa )=+ 4. 10 kN

Similarly at joint D
Axial force = + 61 .2 kN
Shear foree =+ 4,10 kN

2400 kN compression

|
G612 kN
compression
-
£
e Axial Load Diagram
A
45,50 KN—__
-~
T 400 KN
B | 24.0kN T—
— -
x |I (4550716000 = 284 m
Shear Force Diagram
| 400 kN
A (}]
48.0 kNm | : l ,.-mﬂ
I ¢ II[]
] Maximum bending moment:
A == R0+ (0.5 3 284445500 n
'-_.E = 16.61 kNm I
i::‘: Bemding Moment Diagram
i
i
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Figure 5.5
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5.1.2 Example 5.2 Statically Determinate Rigid-Jointed Frame 2

A pitched-roof portal frame is pinned at supports A and H and members CD and DEF are
pinned at the ridge as shown in Figure 5.6. For the loading indicated:

i) determine the support reactions and

i) sketch the axial load, shear force and bending moment

diagrams.
12 kN/im —
O 35kN .
15 kN = E
=
8 kN S kN -
’T e —
“ £
£ 12kN =
s | — SEN | g
e i =
E Lr-]
wy b=
i =
5 g e
=
—_—— e T
Al | | 3.0m { " v,
P 10.0 m J
Figure 5.6

Apply the three equations of static equilibrium to the force system in addition to the
moments at the pin=0:

+ve } 2R, =0

Vi—15.0 - (12.0 x 4.0) = 25.0 = 35.0 = 20.0 + J,, =0 cguation

)

+ve —= 2F,. =10
Hy+ 120+ 8.0+ 5.0+ 8.0+ Hy=10 Equation
+ve ) IM,=0
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)

(120 2.5+ (8.0 = 300+ (12.0 = 4000200 + (25.0 = 4.0) + (35.0 = 7.0)
(20,0 % 10.0) + (5.0 x 5.0) + (8.0 x 2.0) - (H; x L.O)— (Fyx 10.0)=0 Equation

Ve ;) EMyin =0 (right-hand side) (3)
+(350x 300+ (20,0 x6.0) = (3.0 x 20) = (B0 = 5.0 = (Hy=8.0)=(Fyx60)=10
Equation
4)
From Equation (3);  +752.0 - Ay - 10.0Vy=0
Equation
(3a)
From Equation (4): +175.0 - 8.0H,; - 6.0F;=0
Equation
(3b)

Solve equations 3(a) and 3(b) simuliancously: Fy=+ 7893 kN T Hy==-3T30 kN =
From Equation (2 H, + 33.0+ My =0 Hy=+430kN —+
From Equation (13 Fy - 143.0+ =0 Fy =+ 6407 kN i’

12 kMN/m 25 kN

0m |

S0m
6.0 m

4.30 kN

1.0m

b
64.07 kN 4.0m | 30m | 3.0m 3
10.0m

Figure 5.7
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Assuming positive bending moments induce tension inside the frame:

Mp=={430x25)== 1075 kNm

Me==(430x35.00-{12.0x 2.5) == 51.50 kNm

My = zero (pin)

M= = (200 =300+ (3.0 = 1LOY+ (8.0 = 4.0) = (37.3 =« 7.0) + (78,93 = 3.0)
=—47.31 kNm

M=+ (8.0 x3.00-(37.30 = 6.0) = - 199.80 kNm

Me==(3730=3.0)==111.90 kNm

]

12 kNim —
BURRRN I FTAARRNNFE AR RRRR R
Fy 150,50 kNm
SLEKNm
Fi Fio
Fu
Fl w F
< Fy:—N
.F: +—3 -
" 180 k™
S5 kNKm
SOLN
120LN
Member Forces
LI RN i
:-'k ITI0kN H
G407 kN - L\_"
LI 8 Iy
Figure 5.8

The values of the end-forces F; to Fy, can be determined by considering the equilibrium
of each member and joint in turn.

Consider member ABC:
e 'IE.F, =0 +64.07 - Fi=0 S Fr = 6407 kN
tve—= R, =0 +430+120-F=0 s Fa= 1630 KN -—

Consider joint C:



wetzr =0

—.F. +.F:| — I,iﬂ
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There is an applicd vertical load at joimt C = |5 kM l

L F=a907kN

v == ZF, =0 There is an applied horizental load at joint C = § kN —=

~Fi+ Fy=+80

+ve bEk, =0
g —= EF =0

wel ZF =0

dve —=LF =0

+ve {EF, =0
Fo+Fa =-200

Consider member CD:

+49.07 - (120 2 4.0) + Fa =0
+24.30-F=0

Consider member FGH:

+ T893 = Fy=10
-330+80+ Fz=0

Consider joint F:

S Fi=2430kN —

L F=- 107N
o Fy=2430kN -

G Fy = TEO3 KN
S Fiz=2030kN —=

There 15 an applied vertical load a0 joint F = 20 kN l

s Fa=5893 kN

tyve —*= EF =0 There 15 an applied borizontal load at joint F = 5 kN —
+ = Fa=+50 S F =30 KN -—

Consider member DF:

e bEF, =0

Fyp —— TR =)

+ 58093 - 350+ F=0
=230+ Fy=0

L F=2393kN |
o Fe=2430kN —-

The calculated values can be checked by considering the equilibrium at joint D.

12 kNim — D 2430 kN

NCEIIEENEINENERN I TIINTITITL s

MHMI0KN D

SLEKNm
B LO7 kN

2430 kN T 4o 07 ks

Figure 5.9

dye—e LF,  =2430+ 24.30=0

+ve TEF, = 1.07-2393 =-250kN (equal to the applicd vertical load at D).
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The axial force and shear force in member CD can be found from:

Axial load=+/—(Horizontal forcexCosa)+/—(Vertical forcexSina)

Shear force=+/—(Horizontal forcexSina)+/—(Vertical forcexCosa)

The signs are dependent on the directions of the respective forces.

Similarly with 6 for member DEF.

Member CD:

2430 kM

F 230k

7

iy | SES3 LN

a = tan (2.004.0) = 26.565°
Cos o= 0.804: Sino = 0447

Assume axial compression to be positive.

At joint C

Axial force = + (24.30 = Cosar ) + (49.07= Sing ) = + 43.66 kN
Shear force = - (24,30 = Sine ) + (49.07= Cosa ) =+ 33.01 kN

At joimt D
Axial foree =+ (24.30 = Cosg ) + (1.07= Sing ) = + 2220 kN
Shear force = = (24,30 = Sing )+ (49.07= Cosar ) = = 9.91 kN

&= tan” [ 2.006.00 = 18.435°
Cos (1= 0047 Sin 0= 0316

Assume axial compression 1o be positive,

Al joimt D

Axial foree = 4+ (24,30 x Cos0 )+ (23.93= Sinf) =+ 30.5T kN
Shear force = + (24530 = Sind) - (23.93 = Cosfl )= + 1498 kN

Al joint F
Axial foree =+ (24.30 = Cos ) + (58.93= Sinth =+ 41.63 kN
Shear foree = — (24,30 = Sind) + (58,95 Cosf) = + 45,13 kN
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2LI0 kN

_ 30.57 kN
COmpressien ﬂ:mprcssiun _“_ 6} kN
! 4
43,66 KN Dﬂh"’“‘n. - .meﬂ.‘ﬂ-il.i'l'l
com pression / H‘““-,q__\l\
E
- \‘\\\%
2
z ¥ Axial Load Di
= ¢ B R H1 HI mgrﬂm
g G s
is z g
=
A it
9,91 kN
14.98 kN =
F
4813 kN | 2930 kN
4813 KN
B |~ 16.30 kN
G 3130 kN
Shear Force DMagram
Al430kN
H|  |33okn
Fid gl
47.31 KNm )
D B - ] | | I'r
E | | 199.80 kNm
5150 km | 1L
ER =
= p———
10.75 r-c.\'j B Bending Moment Diagram =
: = 11190 kNm
wero | A
n ZEro

Figure 5.10
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5.1.3 Problems: Statically Determinate Rigid-Jointed Frames

A series of statically determinate, rigid-jointed frames are indicated in Problems 5.1 to
5.4. In each case, for the loading given:

i) determine the support reactions and

ii) sketch the axial load, shear force and bending moment
diagrams.

24 ]-:Nl -6 kMN/m

25m } 25m
50m

;t

3.0m
9.0 m “L‘
Problem 5.1
16 kN
l lﬁlkN e
=
I» = :‘3:
E =\ & kN o
5 <) &
— =T =
=
L]
g
=
- __'n\ ‘-.\:
1.00m ,Vll
LLLM l. d
1_{3-3“1\ 30m _ 3.0m \ 3.0m {\3_0 m\_
‘j. 13.0m "

Problem 5.2
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40 kN
& kN/m

l]J]!I]]]]]]]]]]]]]!]]III]IIIlIIIIIIIIiEIE[E[ (LN AT AR R RRRRARERREEIRRERRALBANLS

b s TaY
E| 20 kN = N 20 kN
= e
“ kN
A
=
=
[—
5
= -
W
2kN/m
H,
e
) 2 ol Fe
\! 16.0 m ~
Problem 5.3
10 kN
=
10 kM
! o
2
E
=
W
A I
: 4.5 m
Fa " L - Vr
| 12.0m 1
o

Problem 5.4
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5.1.4 Solutions: Statically Determinate Rigid-Jointed Frames

Solution
Taopic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.1 Page No. 1

i m

Apply the three equations of static equilibrium to the force system in addition to the
E moments at the pin = 0:

wvelzF =0
Vo= 240 - (6.0 = 600+ Fp=10 Equation {1}

g = EF =10

Ha+ 120+ 150+ He =10 Equation {2)

tve JEM, =0
(12,0 = 500+ (2400 3,00 # (6.0 = 6.0)6.0) + (15.0x 2.5) = (Frx 9.0y =0
Equation {3}
+ve J EMu =0 (right-hand side)
=(153.0x 2.3) - (He x 5.00=10 Equation {4}

From Equation (4): =375 =50/ =0 Hp==T5kN =

From Equation (2):  H,+27.0-75=0 Hy==195kN ==

From Egquation (3): 3855 - 9003 =0 Fr=+ 4283 kN T

From Equation (1): Vs - 60.0 + 42,83 = 0 Ve=+ 1TITKN |
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Solution
Taopic: Statically Determinate Rigid-Jointed Frames
Problem Number: 5.1 Page No. 2

— G EMm

19.5 kN

i
! _jl-_ll m
{

Sdhm

Assuming positive bending moments induce tension inside the frame:

My =+{19.5 x 5.0) =+ 97.50 kNm

Me=+{1707 = 300 + (19,5 = 500 = + 1490 kiNm
My = zero (pin)

My ==(7.5%25)= = 18.75 kNm

kN ll — f k¥Nm
1

TEEN - 3

-
T 475 LNm c .

ITAT kN HLEIRN
117 kN

283 ki
—tB D
ICEFRN F

97.5 kxm

Member Forces

1717 ks
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Solution
Topic: Statically Determinate Rigid-Jointed Frames

Problem Number: 5.1 Page No. 3

T80 kN tension

Axial Force Diagram

Compression
Compression

1717 ki
1€

BEIRN T ——

Shear Forge Diagram

T50 kN

9750 km ¢

e [T

—

145.0 kNm

{linmiTrio——e

SIETTT

Bemding Moment Dingram

TINELT

e :...']J.'J!J_'.! l!.l._l..
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Solution
Topic: Statically Determinate Rigid-lointed Frames
Problem Number: 5.2 Page No. 1

in
J,I"

10m 20m 2

1om |
—+

jom | 3om | i0om |20m
| 5 A
1] n i
134 m |

Apply the three equations of static equilibrium to the force system in addition 1o the
E nivomments at the pin = 0:

+ve L EF, =0
Fo=160-160-8.0+ =0 Equation {1}

e —= EF =0
My +50+50+My=0 Equation {2}

#ve ) My =0
(5.0 % 357+ (5.0 7.00+ (16,0 = 5,00+ (16.0 x 500+ (8.0 x 12.0) - (F = 13.0)
F(Hy= L0G=0 Equation {3}

+ye ;} M =0
F (16,02 3,00+ (16,0 = 6,00 + (8.0 = 10.00 — (Fy = 1107 - (Hy = 6.0) =0 Equation {3}

From Equation (3):  + 3565 = 13,00, = =0 Equatien (3a)
From Equation (4):  +224.0 = 1100, = 6.04; =0 Equation {3b)

—
Solve equations 3(a) and 3(b) simultancously: Py =+ 26.55 kKN T Hy== 1134 kN

From Equation (2):  Ha+ 100+ Hy = 0 Hy =+ 1.3 kN

From Equation (1): Py + 640+ ¥y =10 Fy=+ 1345 II.NT
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Solution
Topic: Statically Determinate Rigid-lointed Frames
Problem Mumber: 5.2 Page No. 2

I 20m ll
|

£

20m | 2.0m

3

1.0 e

idm | 30m Jm | 20m

k = L2

130
Assuming positive in:miing moments induce tension inside the frane:
My=={134 =350+ (1345 = 1.0y =+ §.76 kNm
Mg = zero (pin)

My = (1345 = 50) = {134 = 6.33) = (5.0 x 2833+ (5.0 = 0.67) = + 4797 kNm
My =+ (26,55 » 5.0) - (11.34 = 4.67) — (8.0 = 4.0) = + 47.79 kNm

M= — (8.0 % 1.0} (1134 % 4.0) + (26.55 = 2.0) = — 0.26 kNm

Me== (1034 = 2.00 + (26,55 x 1.0) = + 3.7 kNm

LI RN 16k

' 026 Km
BASKN 4 L34 kM

1545kN
1255 kN

B LN

Note: For member ABC. 1,34 kN
Asial lead = +/= {Horizontal fosge = Cose )

== | Vertical Tonce ® Sinre §
Shear forge = +f= { erizontal forge = Sina )

== {Wertical lorce = Cosnr)

The sipns are dependent on dhe direclions of ihe

respective foroes,
L3 KN Similarly with @fand /5 for menvber COEF and FGIHL

Member Forces
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Solution
Topic: Statically Determinate Rigid-leinted Frames
Problem Mumiber: 5.2 Page No 3

RISKN
_compression  DLGE KN
e _._compression 15,10 KN
. “'“'“u,___i__t;omprminn

2165 kN
camprétisn

/ . IR81 KN
1329 kN Axial Foree [Magram compression
com pressinn Ilu B

1557 kN
(S T ¥ 77,5

Shear Force Diagram

/ﬂ.?ﬁ kMm

Bending Momient INagram
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Solution
Topic: Statically Determinate Rigid-lointed Frames
Problem MNamber: 5.3 Page Neo. 1

B kNm

|

iedm

Apply the three cquations of static equilibrium to the force system in addition to the
£ moments at the pin = 0:

e T}.f.f", =0
Fy—20.0 - (8.0« 160) - 40.0 - 200+ ;. = Equation (1}

e —=EF, =0
iy + (402 6.0)+60+(20=601=0 Eguation {2}

bve ) IMy =0
My (4.0 % G000+ (6.0 % 6,00+ (5.0 x 1600800 + (40,0 x £.0) + (20,0 = 16.0)
(0= GO0 = (Ve 160) =0 Equation {3}

#ve ) EMp =0
+ (5.0 x B0)40)p + (2000« B.0) = (2.0 = 6.0W60) = (V) = 8.0y~ 0 Equation {4}

From Equation (2): Ay +42.0=10 fHy=—420 kN =—
From Equation (4):  + 3440 - 80 =0 Fi =+ 43.0 kN f

From Equation (3): M, + 1808.0 = (43.0 x 16.0) = 0 My, = = 11200 KN¢

From Equation (13 Fy - 2080+ 43.0=0 Fy =+ 1650 kN T'
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Solution
Topic: Statically Determinate Rigid-lointed Frames
Problem Number: 5.3 Page No. 2

A0kN — BkNim

Syl
.

160 m

Assuming positive bending moments induce tension inside the frame:
My, == 11200 kNm

M == 11200 - (4.0 6.0)(3,0) + (42,0 = 6.0 = — H0.0 kNm

Mg = zero (pin)

Mp =4 (2.0 = 6.0)(3.0) = + 36,0 kNm

# kNim IZOKN 120N & kN'm
FFLARRE (ARRF LIRFEARY AR FT AR TR T IR T AT TTINET T

SO0 KMm

150 kN 23.0kN

1650 kN Nate: For members BC and O, 430kN
IR0 kN Axial load = 4/~ {1 Bosisomal force x Cosd? ) D
+i= (Verical fosee = Sind )
QDL K Nm Shear force = +/= (| lorizomal force = Sind ) 3600 KMm

e (Wertical foogy = Cosil)

=

The signs afe dependent on the directions of ihe 2 kiim
respochive forces,

1130 KN

A20kN Member Forces

I65.0kN
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Solution
Topic: Statically Determinate Rigid-leinted Frames
Problem Mumber: 5.3 Page No, 3

IT.2RN 1562 kN

39,66 kN
com prr“in[l__.a-' = -

Axfal Load Diagram

compression
oM preasion

139,93 ls"!'r\

"l,_
15.0 kX I"

Shear Foree [Magram

G000 KNm

Bending Moment Dingram

1200 kNm
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Solution
Topic: Statically Determinate Rigid-lointed Frames
Problem Number: 5.4 Page No. 1

A4i3m

12.0hm

5

Apply the three equations of static equilibrium to e force system in addition to the

X moments at the pin = 0:

+ve § TF, =0
Fy= 100 - (120 x 3.0) - 25.0 - 30.0 15,0 + I3 =0 Equation (1)

tyg == EF, =0

Hy 4+ B0+ 100+ M= Equation {2}
+ve ) EMy=0

(8.0 500+ (1200 « 30)0.5) + (250 « 3.0) + (30,0 = 757+ (150 = 12.0)

FI00 = T.0)=(Fy= 12.00=0 Equation (3)

bve D EMu =0
# (V% 3.0) = (% 5.0)= (10.0 % 3.0) = (12.0 % 3.0)(1.5) = 0 Equation (4)

From Equation (3): 27100 - 120/ =0 Fp =+ 53,67 kN 1'
From Equation {1}z Fy = 1160+ 53367 =0 Fy =+ 6233 kN T
From Equation (4):  +{62.33 = 3.0) = 504, - 840 =0 Hy o=+ 20060 kN —=

From Equation (2): +20.60 + 1 8.0+ My =0 He=—3860 kN ™
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Solution
Tapic: Statically Determinate Rigid-lointed Frames

Prablem Number: 5.4 Page No. 2

25kN
5 s
y 2 kM'm

120km

Assuming positive bending moments induece tension inside the frame:
My = = (20,60 = 5.0) = = 105.0 kNm
Mg = #ero (pin)

Mp == (150 % 4.5} = (10.0 = 1.0y - (38.60 = 6.0) +(53.67 = 4.5) = - 67.59 kNm
Mg = = (38,60 = 7.0) = = 270.2 KNm

10340 kNm 12 kEN'm
ZEADEN  2E60 KN
28060 kN [
SX33kN 1633 kN 67T LN
6233 kN
Note: For member CDE, L
20,60 !::'_. o Avinl load = 4= 1HIL-.ri:am|_-,| force x Cosdl) 3703 KM
103,60 kxm bk Lr a /= | Vertical force w Kinfl)
AR Shear foece = +/— (Horizonial Foree « Sind)
#l= | Menical Toree = Cosily

The sigms ane dependenl on the dircctions of the
respective forges,

J0a0 kN
— Member Forees IRE0 LN 4—)
6233 kN

A

2367 kN
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Solution
Topic: Statically Determinate Rigid-lointed Frames
Problem Number: 5.4

Page No. 3

1952 kN
26,08 kN compression_-——""1

compression s "

1R.60 KM e
com pression . X

Avxinl Load Dingram

6233 kN
compresiion

L3I0 kN

Shear Foree Diagram

M0 kN

70,2 kism

Eeniding Moment Dispram

_..._._.l..l.'._.._L'!_l.!L-_l!.l.l-._l!.l_-._“_l.;..|.l. |

5.2 Moment Distribution for No-Sway Rigid-Jointed Frames

The principles of moment distribution are explained in Chapter 4 in relation to the
analysis of multi-span beams. In the case of rigid-jointed frames there are many instances
where there more than two members meeting at a joint. This results in the out-of-balance
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moment induced by the fixed-end moments being distributed among several members.
Consider the frame shown in Figure 5.11:

e
i
- o
— 3
- N C 15Ef DW=
S
e . G
4.0 m ] 8.0m = 6.0m J
Figure 5.11
Fixed-End Moments:
Moc = - “I—‘: -- 'z'ﬂl’;‘g'ﬂ' <~ GHLOKNm; M=+ ‘;i -4 —':"“I*f'”' = 64.0 KNm

64,0 kNm

12 KMN/m

Figure 5.12

Distribution Factors:
At joint B there are four members contributing to the overall stiffness of the joint
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(I I A 0,257
ml =] — = 2; 3, - BA L o | Dot ) 32
Kan kr_,l [4:1] L O . [L.Ié!) v
) 55
m=fi]=[i]=azsr D.F e = B =[D"”]=uzz
\ L 8.0 by  L1I67
) 1 # R = 1164 . fo33s
b = [—] . [—] =033/ Dy = —2 = i] =028
L 3.0 Krww L LIGT
() (L) c0s 2= - (2280)
ke (‘_) (3.1:1] 0331 | D.Fp frerlllie o 0.28

¥ Distribution factors = 1.0

The sum of the distribution factors is equal 1.0 since 100% of the out-of-balance moment
must be distributed between the members.

At joint C there are three members contributing to the overall stiffness of
the joint.

r 24 b . k. 0.25/ "
ken = —]=[—]=u.251 D.F.c = —2 =[ J=n.3
- [:. 8.0 B Tl \O83]
3 A 2

ken = ix[ij = [EJ 0251 ¥ Ky =083 DF.cp= 2 = [“-~5f] 03

4 LL 6.0 By b 0837

A ] i 33

kog = ix[i - [‘L =033 | D.Fcg™ ~S = [ﬁ] = 0.4

4 L) 30y 4 Kro L83
The balancing moment at joint B =+ 64,0 kNm %
The balancing moment at joint C = — 64.0 kNm # ¥
At joint B:
Moment on BA = 4 (022 x 64.00 =+ 14.08 kNm )|
Moment on BC = + (0,22 x 6400 = + |4.08 kKNm
Moment on BE = + (0.28 » 64.0) = + 17.92 kNm These balanci
Moment on BF = + (0,28 x 64.0) =+ 17.92 kNm ese balancing moments
At joint C: pare indicated on the frame in
Moment on CB = = (0.3 = 6:4.0) = - 19,20 kNm; Figurs 5.13
Moment on CD = < (0.3 = 64,00 = - 19.20 kNm
Moment on CG = = (04 = 64.0) = = 25.60 KNm

T
+17.92
& =19.20 0~ C
“{?ﬂ.l.us % —19.20 s
S A B +14.08 D @
+17.92 —25.60

el ¢
BN

Figure 5.13
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The carry-over moments equal to 50% of the balancing moments are applied to joints A,
B, E, Fand C.

e

E | ‘+S.‘?6
]
' Mo carmy—over to [

09
+17.92 stifThess = ¥ 1L

=190 —]
b=

1742

) i Mo carry-over 1o (i
Fl +8.96 stiffisess = Yo 1L~
s

Figure 5.14

As before with beams, the above process is carried out until the required accuracy is
obtained. This is illustrated in Example 5.3 and the solutions to Problems 5.5 to 5.12.

5.2.1 Example 5.3 No-Sway Rigid-Jointed Frame 1

A rigid-jointed, two-bay rectangular frame is pinned at supports A, D and E and carries
loading as indicated in Figure 5.15 Given that supports D and E settle by 3 mm and 2 mm
respectively and that E1=102.5x10° kNm?;

i) sketch the bending moment diagram and determine the support reactions,
ii) sketch the deflected shape (assuming axially rigid members) and compare with the
shape of the bending moment diagram (the reader should check the answer using a

computer analysis solution).

16 kN 20 kN

Hy

E
=
- =
=
=]
Iy s 6 kMN/m
L 20m . 20m J-VLJ 4.0 m L 20m
I E =x

Support D settles by 3 mm; Support E settles by 2 mm
EI'=102.5 = 10° kNm® :
A
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Figure 5.15
Fixed-end Moments:
The final fixed-end moments are due to the combined effects of the applied member
loads and the settlement; consider the member loads,
16 kN 20kN
M, B My Meg C

-Lrl'l.

4.00m
G0 m

N ———

support 1 seitles by 3 mm
support E settles by 2 mm
EF= 1025 = 10° kNm?

} 20m | 2.0m ] 4.0m | ),
Figure 5.16
Member AB *
My=—LEo_160X3 _ ¢ 0kNm
8 8
Mga =+ ";f' =+ 16.0x4 _ + 8.0 kNm

* Since support A is pinned, the fixed-end moments are (Mga—0.5Mag) at B and zero at

A
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(Mpa — Mig/2) = [+ 8.0 + (0.5 x 8.0)] = + 12.0 kNm.

Member BC
2 A e ™
My =P [_[ED.{}X 40x2.0 ﬂ 20N
- 6_
2 2
Mes=+ 222 =4 [{m.nmg x2.0 } =+ 17.8 kNm
L 6
Member CE *
Meg = - wh | _S0x6 18.0 kNm;
12 12
2 2
Mee=+2L _ L 80X6 | 180 kNm

12

* Since support E is pinned, the fixed-end moments are (Mce—0.5Mgc) at C and zero at E.

(Mce — 05Mec)=[-18.0 - (0.5 < 18.0) ]=-27.0 KNm.

Consider the settlement of supports D and E: d,5=3.0 mm and dgc=1.0 mm

3.0 mm

3 E.
2.0m 2.0m 4.0 m [ 2.0m

= ,;_ 4 i" _[ 2.0 mm
=

L P

Figure 5.17



Examplesin structural analysis 386

EIS 3(102.5%10° x0.003
{L;:' :"H}z_ ( 4[}2 ] =_ST.6kN"1

AL

dps = —

Note: the relative displacement between B and C i.e. 6gc=(3.0-2.0)=1.0
mm

O(E15I85e) _ 6(1.5x102.5x107x 0.001)

Mo =+ = =+ 256 kNm
L 6.0°
ﬂ'ﬂ;‘n =+ 25‘6‘ an]
Final Fixed-end Moments:
Member AB: My =10 My =+ 12.0 - 57.6 = - 45.6 kNm
Member BC:  Mpr=—89+256 =+ [6TkNm M=+ 17.8+25.6=+434 kNm
Member CE My = = 27.0 kNm Mye=0
Distribution Factors: Joint B
ks = (ixL = 0,194 DFyy = Jpa 019 54
47 4.0 kg  0.63
1.57 _ kpe D25
kpe = | —— | =0.25¢ Ky = 0631 Dfpe= 1 = —— =04
" [ﬁ.ﬂ] e " ks 063
L
-‘-'l!l:: [le] -_ﬂ]i;lj DFHD“ h = E = []H]
440 Koy  0.63
Distribution Factors: Joint C
i 5
ke ™ %] = 0251 DF e = :A - E -0.57
: ' o Ko = 0441 k'“" '1 .
k‘.l. = ix i] = {19/ DFep= —tL = ﬂ_ =043
L4 6.0 kps 044

Moment Distribution Table:
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Jeint A [}] I [ E
AR | DB BA RO B R CE EL
Dyistribsution
Factors (] 1. 0.3 03 04 0.&T 043 1.0
cd-end - 4560 “167 P T
Balance v EGT +RGT c1LsG g L 935 - T.0%
Carry-over -467 T T 578
Balance =140 + 140 + AT - 3. - 2,00
Carry=over = 0% + 393
Balanee + 0,49 + A e J 1 - 083 =i
Carry-over - 027 + .33
Balance 008 +0.08 | +0.01 =019 | -0.14
Total ] 0 =306 | + 1068 | +24.0 + 3708 | - 3708 o

Continuity Moments:

D 3406 kNm _ B _24.31 kNm MOSKNm

*_
J7.08 kNm

10.65 kNm

4.00m

10.65 kNm
B 2431 kNm
3496 kNm

Fixed Bending Moment Diagrams

Free bending moments:
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| 16k kN
B C

!.umJ 20 m

£0LN ) B0 LN
T
I Pl
L
Member AB: Member BC
L 16xd Pab 20x4%2
Mipe = —= = 160 kN Mipe = —= ——— =667 kN
T T m o M= = 3 m
Member CE:
C
15.0KN 4
oo Miee = % - &x00 :“i = 27.0kN
18.0KN .
E
37.08 kNm
10,65 kNm 16,62 KNm rﬂﬂ”
i 1] ! T ="

e S =

N 2431 kNm M= = 1662 + 2667 ;

396 kNm M=+ 10.08 kNm =8

i

Maximum bending moment
Mo+ (05 x 3496) + 1620
M=+ 3348 kNm

Maximum bending moment *
M= 1064 KNm =

_-_-1-_'--1rn'l1TI'|’T'I'I}T'ITI'[-'|nhm...

Bending Moment IMagram
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The maximum value along the length of member CE can be found by identifying the
point of zero shear as follows:

C 2408 KN
N ITOEKNm T
II'.II .—\'1:) EM-=0

= ) \ £ (6.0 6.0 % 3.0) - 3T08 — (M % 6) =10
= DHim = Hy=+11.82 kN —=

- -

" 1& &= (11.826.0)= 19T m
Hy B Moarimam = (0.5 % 1.97 % 11.82)= 1164 kNm

11,82 kN

Shear Force Disgram

i 3430 kiNm

A0m
i m

6.0 kXNm
1182 kN L=
Consider Member BD ! 4.0m J20m 3
ive J EMy =0 .
o Hp=+266 kKN —=

+ 10,65 - (Hp* 4.0)=0

Consider a section at B
+ve ) EMy=0
+24.31 + (20,0 = 4.0) = {1182 = 6.0) + (6.0 = 6.0 » 3.0) =V} = 6.0) =0

L We=+2357kN |

Consider Member AB:

16 kN 34.96 KNm

tve ) EMy=10
~34.96 - (16.0 % 2.0)+ (V, x 4.0) =0
s Va=+16.74 kN

Hy

¥y 2 m J/ Xom ;,_

For the complete frame:
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+ve | EF, =0
+ 16,74 = 160 =200 + 2357+ Ip=0 S Fp==4.31 kN .].
tvg == LR, =0
Mo+ 1182 = 266 - (6.0 = 6.0)=0 o Hy =+ 21,52 kN —=
B [..'II.\iﬂII_EITiiI_I:.'_' ' -’1 R C
oo | toion wnderide. || dmme—eofom—---F--
underside L
1 ! I paints ol
: - \L_.m;m I conlrallenisne
iersion | : 1
: - 1
D I!¢r|.m1r|.: 1
|
I
WF E
5& Defected Shape
5.2.2 Problems: Moment Distribution—No-Sway Rigid-Jointed
Frames

A series of rigid-jointed frames are indicated in Problems 5.5 to 5.12 in which the relative
El values and the applied loading are given. In each case:

i) sketch the bending moment diagram and determine the support reactions,

ii) sketch the deflected shape (assuming axially rigid members) and compare with the
shape of the bending moment diagram, (check the answer using a computer analysis
solution).

25 kN

Problem 5.5
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Problem 5.6

30 kN 45 kN

10 kKN/m

Mp
=) D 'If_
ﬂL 3.0 m )2 2.0 mﬂL 20m|
Problem 5.7
o H, A
12 kN/m — 24 kN

E —de
3 ¢
© £

) ' 3.0m Lijr 1.0m
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Problem 5.8
A
it
H_.'.L N
=
=
q-r
Problem 5.9
Mo
. H
Horizontal E. 1 g
Prop -t
=
=
=
HI.\ =
A g T b

Problem 5.10
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Problem 5.11
16 kN 20 kN
e
ANl
8 kN/m Horizontal
E Prop
=
= £
=
et
Ha
—r

L
o

l 2.0m 4L 2.0m 4|, 2.0 m=5F

Vo

Problem 5.12
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5.2.3 Solutions: Moment Distribution—No-Sway Rigid-Jointed
Frames
Solution

Tapic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.5 Fage No. 1

Fixed-end Moments:

Member BC
PL 25x8
Mpc=- =i =250 kNm
ol
M=+ Tk = 28 a5 0 kNm
] B
Distribution Factors : Joint B

)
ks = (EJ =02

2f
km' - [TJ_ 0255

Ky = ASF

In this case, since there i only one internal joint, only one balancing operation and
ane carmy=over will be required during the distribution of the moments,
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.5 Page No. 2

Moment Distribution Table:

Joint

Distribution Factors
Fixed-cnd Momcents
Balance
Carrv-over + 5.5 =
Total + 5.5

Continuity Moments:
1120 kMm
10 ksm B

I KN

”.
JLOKNm

"”Fﬁ|"'1l|[ MO W

F M\dﬂmdmg Mansent Diagrams

Free beniding mament:

lISLN
B m— —

lZ*kh 4 m 4,0m ?IEJHN

WMMJ“ i

= 50,0 kNm
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.5 Page No. 3

2.0 ke
215k .

110 kNm M

~

Mavimum bending moment:
A== [ w10+ 320 + 0.0
M =4 185 KkNm

Bending Mament [Nagram
55 kNm
Consider Member AB:
B 1
tve ) EMy =0
11,0 kNm + 5.5+ 11.0={ff, x50)=0 S Hy=+33kN —=

For the complete frame:
+yg —= Zf. =0
33+ H:=0 S He=—33kN -
tve JEM =0
+E5H (250 =40) =33 x50+ 20 =(Fpr = 80)=0
L Pe=+1513kN |

+ve FEF, =0
Fa=250+15.13=0 S Vy=+987kN ¢}

fenston outssde tension oulside

==

tension inside

pomnts of contrallesane

lension outside

AL rero slope
s

Defected Shape
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Solution
Topic: Moment Distribuiion = No-Sway Rigid-Jointed Frames
Problem Number: 5.6

20m J._ 2im } 2.5m

Length of member AB = ,J(2.0° +4.0°) = 4472 m

Member RC*

wi? ) ) E0x5°

12 5 12
wi? W0.0x5 $.0x5°
—

PL
Mep=+ —+ —
ci B 12 7 12

== 4167 kNm

=+ 4167 kNm

*Rinee support O is pinned, the fived-end moments are (Mye = 0.540,) at B and
zero at .
(M = 0.5M ) = [= 4167 = (0.5 = 41.67)] = = 6251 kNm.
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Solution
Topic: Moment Distribuiion = No-Sway Rigid-Jointed Frames
Problem Number: 5.6

Distribution Factors : Joint B

kps = f \_ﬂ"’"}f
e [4.4?2) S

e = ix[i_] = 0,15/
13

Kiara = 0L3T]

Maoment Distribution Tahble:

Joint

Distribution Factors

Fixed-end Moments

Balance

Carryv-over

Total

Continuity Moments:
36,58 kMm

1844 kNm

Fined Bemding Momem Diagrams

Free bending moment:
J0kN

Membser BC:
rLoowl?
My = — +
"4 s
L A0S | 80x50°

4 &
75,0 kNm
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.6 Page No. 3

i |84 KNm

i

Maximum bending moment:
M == (05 = M0ER) + 750
M o= & E656 kNm

Bending Moment DNagram
Consider Member BC:

25m L 25m *

tve JEMy=0
~36.88 + (40.0 % 2.5) 4 (8.0 % 5.0 2.5) - (Fe x 5.0)=0 = Ve=+3262kN |

Far the complete frame:
#ve JEM, =0
F1BA+ (40D = 450+ (B0 = 5.0 = 4.5) - (3262 = 7.0 # (M- = 4.0)=0
S He s = 3R KN -—
wve lzF =0
Fy =400 - (8.0 = 50)+ 3262 =10 o o=+ 4738 kN T

Fye == ZF =0

flay=3753=0 SoHy =+ 3TEIRN —

temsion ousids '

T TETEEETY

-
lensdion inside B }f+ T

poinds of contrallexune
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.7 Page No. 1

3m

s

Fixed-cnd Moments:

* Since support A is pinned, the fixed-end momenis are zero at A and (Mgs = 0.5M )
at B

( My, = 050y = [22.5 + (0.5 = 22.5)] = + 33.75 kNm,
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Solution
Topic: Moment Distribuiion = No-Sway Rigid-Jointed Frames
Problem Number: 5.7 Page No. 2

il _ # =—22.5 KNm

= 45";"" =225 kKNm

Member BD

2 2
Myp =+ 2w s LBOBT 1021 kN

1021 kNm

Distribution Factors : Joint B

3 15 4
ks = —H[To] =019

kac = [ﬂ =0.25/ b Koo = 0.731

I
ko = [ﬁ] =029/

Moment Distribution Table:

Joint A B
Al BA BD BC
Distribution Factors 1.0 .26 .40 0.34
Fixed-cnd Moments +33.75 | + 10,21

[
Balance - 558 | — 858 | - 7.3
Carry-over
Taotal +28.17 | +1.63 | - 298

-

S

Mote: the sum of the
moments at joint B = 2ero
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.7 Page No. 3

Continuity Moments:
iy 28,17 kNm

14.5 kKNm

2507 kNm

,.“rnnmnrfﬂl]'im”m . | I ] I |I|,ls.a: kNm

T
A B i L B L8

Fived Bending Momem Diograms

Free bending momenis:

LN RE3AN
I C

. 20m | I.ﬁm?
iom l J0m ] ] | 4

150 kN 15.0 kN

] !gw\mﬂﬂﬂl‘f'“ %‘Jx

- 225kM I25KN

wi?
"L 10 kNm — T'

T
LED R

Free Bending Momeni Dixgrams
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.7 Page No. 4

Member AB:
PL _ 30.0x6
4

Miyee =+ =450 kNm

Member BD:
wi’ 10033
8

Mg = + = 15.31 kNm

Member BC:

- w 350%4 o 45 0kNm

) 29.8 kNm
T T 1

| ! ! Maximam bending momeni:
Mlasinawen bending moment: = A== 0.5 % {298 ¢+ 158)] + 45.0
M = =05 w38 1T) + 450 : M=+ 20,7 KNm

M =+ 3052 kNm

Masimum bending moment: *
M =703 KNm

—l

145 kNm

Bending Moment Diagram

# The maximum value along the length of member DB can be found by
identifving the point of zero shear as follows:
& 1382 kN

| 163 kMm ¢
100 kN / wf:“} IMp=0
#1063 - (10= 3.5 1.78) - 145+ (Mp= 3.5)=10
/ | CoHfp=4+ 2108 KN +

,._me/ | ox-@LISN00)=2118m
[ | L Musmam = (0.5 % 2118 % 21.18) - 14.5 = 7.93 kNm
2LIS kN

Shear Foree Dingram
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Solution
Topie: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 3.7 Page No. 4

Consider Member AB:

ZE1T KNm

ve ) EMy=0
#2817 = (300 x 3.0) 4 (V, x 6.0) = 0 & Fy=+ 1031 kN

Consider Member BC:

45 kN
29.5 kNm

e JEIMz=0

~ 298+ (d5.0 % 2.0) + 188 =(Vex 40)=0 o Vem+19.75 kN

For the complete frame:
wve f 2R, =0
1031 =300 -430+ 19.95+ Fp=0 o Fo=+ 4494 KN T

There is insufficient information from the moment distribution analysis to
determine the values of H, and Hi separately; ie.

+yg —= EF. =0

(100 = 3.5)+ Hy + Hop+ He =10 Sy 4 He = (350 - 21.18) = 13.82 kN

Eeni L)

fension slope
b

I luﬂml-.§“
% [4 PR S]] Ikl'-”_;o“
undrside underside .;" paints ol
i point of contralesure conirallesure
= pointof
L contmfley ung

A tonsion topside

rension

Defected Shape
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Solution
Topic: Moment Distribuiion = No-Sway Rigid-Jointed Frames
Problem Number: 5.8 Page No. 1

Member BCY
Pab® _ wil _ 24.0x3x1'  120x4°

A 12 4 12
r 7l 3, a2 5 2
Pah " wil . 24023 % " 12.0x4

Men =% 75 "3 & 12

J.I'.Fiu_' ks T El],‘r kNm

=+29.5 kNm

# Since support C is a roller, the Nixed-end moments are {(Mse — 0.3M) at B and
ero at C.
{Mac = 0.5Mp) = [- 20,5 - (0.5 x 29.5)] = - 35.25 kNm,
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.8 Page No. 2

Length of member AB = [ 6.0° + .'!.5’] =65 m

Distribution Factors : Joint B

w3, 20)
B ‘I-I'K[EJ

b R = 0.TL

Moment Distribution Table:

Joint
BA BD

Distribution Factors J 0.32 0.41 0.27
- 3525

Fixed-cnd Moments

+ 1128 |+ 14,45 +9.52

Balanece
Carrv-over
Total + 1128 |+ 14.45 | —25.73
Note: the sum of the moments
at joint B = rero

Confinuity Momenis:
Tere




Rigid-jointed frames 407

Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.8 Page No. 3

1573 KNm

|

|

||,
Al "l'.'

128 K

Wy B

B 1445 kxm — B

Fixed Bending Moment Dizgrums

.25 kNm
Free bending moments:
B c MNode:
E In this problem, the paoint ol
00 kN i0m \l_\_‘l.ﬂm ,‘_.421: kX wera shear in member B

ogcurs under the point load,

L 11]——

=T 36,0 K m

Member BC: My =+ [{42.0 % 1.0)—(12.0 % 1.0 0.5)] = + 36.0 kNm

A 28573 kNm
i T 11.28 mm\‘i
l.”ﬂ | l”| iﬂ" e A3 K
1445 KN = i‘"-lf C
= Il

= '-

k- '

3 | -
:‘_'-. Maximam bending moment:

= = o (LS PETT) 4 T

Bending Mement Diagram D £ e e e

7.23 kNm A = 29,57 kN
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.8 Page No. 4
Consider Member BC: 24 LM
12 k%/m

-

ool
M 2573 kNm Fﬁ
] %

3 m | l_" 1.0 m
| TR =
+ve JEM=0 s

— 28734 (120 % 4.0 % 2.0) + (240 % 3.0) - (Ve x A0)=0 ., Mem+3557kN |

Consider Member BL:
b~

-  —f
1445 kNm
E ve ) EMy =0
- + A5+ T2 (M 3.5)=0 - Hy=+610KN ==
Ho TS

For the complete frame:

g — LF, =0

+ Hy# Hy=0 S Hy s =619 KN =—

e JEML=0

+ 723+ (1220 = 4.0 = B0)+ (24.0 = 9.0) - (35.57 = 10.0) = (6.19 = 6.0) = (I}, = 6.0)
=)

S Pp=+35T3kN

sve EF, =0

3573 — (120 % 4.0) - 240+ 3557+ ¥, =0 L¥e=+0TkN

2 .‘l-_.:nsim topside
. c

B L
] lension =5 -
lemsion : wnderside poiml af
L s contrallexune
13ensian B
TR slop
n ]

[kefected Shape
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Solution
Topic: Moment Distribuiion = No-Sway Rigid-Jointed Frames
Problem Number: 5.9 Fage No. 1

12 kN

16,0 kMNm

20 16.0kNm
el
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Solution
Topie: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.9 Page No. 2
Member CD*
Mepm=Tem 3‘5':"" =~ 18.0 KNm
M=+ 'F:'=+ w =+ | §.0 kMm

* Since support D is pinned, the Oxed-end moments are (Mop = 0.5Mpe) at C and
reroat 1.
(Mep — 0.53Muc) = [ 180 — (0.5 = 18.0)] =-27.0 kNm.

Distribution Factors : Joint B

iy = (L] =0.251 DFyy = LT 0.5
40 k05
Brppent = 0,517
ke = [i] =0.25/ DFpe= 22 =825 L5
) by 05
Distribution Factors : Joint C
e = (.lL] =0.25] Dy = Ko Lii =0.57
- Kyoea = 0447 k:""] o
3 (I . oo 019
= Zx| = | =0.197 DFcy= —- = == =43
ko= [4.0] O e 04
Moment Distribution Table:
Joint A B [ I¥
AB BA BC CB Ch o
Distribution Factlors 0 0.5 0.5 0.57 043 1.0
Fixed-end Moments | - 16.0 4+ 1460 - 27.0
Balance L -850 | -0 L+1539]|+11.6]
Carry-over = 4,0 +7.7 - 4.0
Balance L-385 | -3.85.] L +228 | +1.72
Carry-over - 1.79 + .14 —1.93
Balance 1 -os7|-0s7] L +1.0 | +0.83
Carry-over - (.20 + 0557 T -0.29
Balance -027]|-027 +0.17 | +0.12
Carry-over 0.3 T
Taotal = 2235 +3.31 | - 3.31 + 12,72 | —12.72
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Namber: 5.9 Page No. 3

Continuity Moments:
I35 KNm

B
L3 ke

1272 k%m

= 331 kNm
2135 kNm =
i

12,72 kim

3IEN WITTTre-
|| hy ™" e N EE T s[||h. B

Fixed Bending Momen Diagrams
Free bending moments:
120 kN -
C

MMOKN  IEDEN 2o0m m

q©

=

g
_i"_.f..
4

*

Frewe Berding Momsent Diagrams

Member AB: My = (12,0 = 4V = 24.0 kNm
Member CD: My = (36,0 2 434 = 36,0 kMNm
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 3.9 Page No. 4

21135 kMm

.............. 1‘-2:11.\-rn
r“r\“‘ L3 kNm
1] 1=
. rlll LI

Maximum bending moment:*

M = 1516 kNm

.| J1TETRREI TIIT T

1272 kNm R 36 l\."un

1T
1272 kN ]J E._|_|‘|,-|v'-u"h

Maximum bending moment:
Bending Moment Diagram Mo (5w 12,72) 4 360

AP =+ 2964 KNm
. T

The maximum value along the length of member AB can be found by
identifving the point of zero shear as follows:

2235kNm 120 H";-"'ﬂ 330 KNm

Shear Force Diagram

tve ) EMy=0
—2235 - (120 x40 20) + 331 + (Ko 2 4.0)=0

s W=+2876kN |
x=(28.76N2.00=24m

Masiimen = (0.5 =% 2.4 x 28.76) = 22.35 = 12.16 kNm
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Solution
Topic: Moment Distribuiion = No-Sway Rigid-Jointed Frames
Problem Number: 5.9 Fage No. 4

Consider Member C0x:

G kN

A
1571 I«.le

e ) EM=0
1272+ (36,0 x 2.0) = (Fyx 4.0) =0 L Pp=+1482kN 1

For the complete frame:
+ye 1' EF,=0
28.76 - (12.0 * 4.0) - 36.0 + 1482 + Ve =0 & Fe=+4042 kN {

+ve ) EM, =0
~2335 +(12.0 % 4.0 % 2.0) + (36.0 x 6.0) - (40.42 x 4.0) - (14.82 x §.0) - (Hy, * 4.0)
=0
S Hy=+ 235 KN —=
tve —= XF, =0
+Hy+ Hp=0 L Hy==235kN =—

wension lemsion FLTO
fopside tepaide shape

A Hanns AdE T=====F

] v N
wension wndersides

1
paint of contrallesune
nenshon
i Iemsi
b lopside
L
L ) I
q 1 i
tension underside sd ﬁ"l.{. -——— "_-:ég
podnt of contradlexune

Deflected Shape
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Solution
Topie: Moment Distribution = Ne-Sway Rigid-Jointed Frames
Problem Mumber: 5,10

Horizontal Prop

Fixed-cnd Moments:

_200x6°
12

_, 200x6°
12

= — 600 kNm

=+ 0.0 kMm
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Solution
Topic: Moment Distribuiion = No-Sway Rigid-Jointed Frames
Problem Number: 5,10 Page No. 2

Length of member AB = [(4.0° +4.0°) = 5,657 m

Distribution Factors : Joint B

2.0/
kpo= | —— | =0.351
e [s.ass'.r]

Kreent = 0.61
1.5

ki = | === | = 0.25¢

" [m]

Distribution Factors : Joint C

151 \
= | —| =025/
ken [ .0 ]

3
ko= Tx| o b Kget = 0,697

—] =1.257

¥

Moment Distribution Table:

Jaoint A
AB
Distribution Factors | 0
Fized-end Moments
Balsnce
Carry-aver
Balance
Carry-over
Balance
Carry-over
Balance
Clrr}.‘-ar:r
Tatal




Examplesin structural analysis 416

Solution

Topic: Moment Distribuiion = No-Sway Rigid-Jointed Frames
Page No. 3

Problem Number: 510

Continuity Moments:

136 kMNm

LELETTY

126 kNm 452 kNm

426 kNm

n.|1[[n"rrr-p,._

=i
\\\:’jzl.ﬁ RMm

Free bending moments:

Fined Bendimg Momaenl Dingrems é
136 kNm &

2000 KNim ]

Free ]i..'rulins_ Mlomsent I?Il'.\gmm
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Solution
Topic: Moment Distribufion = No-Sway Rigid-Jointed Frames

Problem Number: 5,10 Page No. 4

2okm s

QR &

Maximum bending moment: *
M= 449 KN

426 KNm

£
15
136 km 2| E
213 kMNm

Bending Moment Diagran

* The maximum value along the length of member BC can be found by
identifying the point of zero shear as follows:

dL6kNm  2000kNm 4RI kNm
C

0 m

Shear Force Diagram

+ve JEM =0
=426 = (200 % 6.0 x 3.0) + 48.2 + (F x 6.0) = 0 wVy=esoaky |

X = (391720000 = 2.96 m

Mopasimem = (0.5 2 296 x 58,13 — 426 = 44.9 kNm
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 510 Page No. 4

A

IT.0 KNm

Congider Member CE:
tve JEM: =0
=270 =136 < (Hy=40) =0
S == 1008 kN

Censider Member CD:
+ve JEM: =0
— 2004 (M= 40y =10
S Hp= 4 520 KN —=

Consider Member ARB:

#ve ) EMy= 0

426+ 213 = (Hy = 40)+ (P =40y =0
s M=V, + 1598
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Solution
Tapic: Moment Distribution = No-Sway Rigid-Jointed Frames

Problem Number: 5.10

20kNm

I,

Consider a section at C:
ve JEM-=0
+ 482 (20060 =300+ 203 - (Hy =400+ (M, = 10.0)=0
S =25V, - T263

o P+ 1598 =250, - 7263 Sve=s0akN |

L H,=TSIRN —
For the complete frame:

+yve —= EF. =0
+T501+528- 1018+ Ha=0 S Hp=+T70.2 KN =—

There is insufficient information from the moment distribution analysis to
determine the values of Fp and Fg separately; ie.
svel ZF, =0

= (200 % 600+ 501 + Fp+ Fp =0 o Pt Fy=+ (1200 =5%1) = + 60.9 kN

1]

[
I
Lension :
I

pensioe topside IEmI{rI_NIr\'.IdE

C

tension B pension enderside

i
f
:lummu
|

=5 ; .
A E A slope E

eected Shape
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Solution
Topic: Moment Disiribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.11 Page No. 1

| S0m | 2om L
o 7 L

Fixed-end Momenis: L

| 5.0m | 20 | 20m |
Member BC *
Mo = m 2004 o5 0kNm
3 8
Mep = +%= + m'%"— + 25,0 kiNm

*Since support C is pinned, the fixed-end moments are {Mae — 0.500) at B and
zero at C.
(M = 0.5Me) = [- 25.0 = (0.5 = 25.00] = - 37.5 kNm.
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Solution
Topic: Moment Distribuiion = No-Sway Rigid-Jointed Frames

Problem Number: 511 Page No. 2

Distribution Factors : Joint B

¥
ku\:EH[ﬁJ =023 faly \=i—E=ﬂZ]
4 0 e 112
k1
e = ix['—‘r =038/ DFpc= s = 038 _ g5
4 L40) K 112
P Fo R = 112 P e
foo = [_J =029 DFgp= B = —— =26
3.5 T 112
8 ¥
L™ [i] =0.22/ Dy ke _ 022 _ o9
5 J kpoy LI2
Maoment Distribution Table:
Joint A 1] 1] E [
AR DB BD | BA BC | BE ER | CR
Distribution Factors | 1.0 [} 03e | 021 | 033 [(¥] [] 1L
Fixed-end Moments =315
Balance IR R ELEEN EEER
Carry-over + 4.8 F+ 38
Total 0 | +49 #97 | +70 [ 250 [+78] [+38] 0
Continuity Momenis: D
4.9 kNm =T
=
9.7 KNm
ZEFD, 250 kNm e

A —w B w C —x
T kNm
7.5 KNm -

4.5 m
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Solution
Topic: Moment Distribufion = No-Sway Rigid-Jointed Frames

Problem Number: 5,11 Page No, 3

TS km

B 11 .

L|
=Y
= 38 kNm

Fixed Bending Moment Dinprams

Free bending moments:

[

v
- Lm_l_l! bm

N1l

Free Bending Momemt Dingrum

Member BC: My = (300002 4350 = 50,0 KMm
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 3,11 Page No. 4

25,1 km

79 kim | 71255 kim
T

= LR
2.5 kNm ‘Ll:

§ R

1 x
k Maximum bending moment:
M o==[05x251)+ 50.0

A=+ ML A5 KNm

Bemding Mom ént Diagram

Congider Mun ber A

+\1;) My =

+ TR (Fy SI}]'—D
S ¥y=+158kN

Consider Member BC:

+ve JEM, =0

=250 (500 = 2.0y = {Ve=d4.0)=10
S Ve=+1873kN

25,1 kMNm
r

2 |
. 2m o

Consider Member BE:
e JIMp=0
FI5 438 = (Hp=45)=0
S Hy=+151 kN —*




Examplesin structural analysis 424

Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5.11 Page No. 4

Consider Member BD:
e S EMy=0
FOT+ 4.9+ (Hy =3.5)=0
S Hy==41TkN =—

There is insufficient information from ihe moment disiribution analysis to
determine the values of fy, He, Py and Fy separately; ie.

g == IF, =0

Hy+ He=4.17+251=0 o Hy o+ He =+ 166 kN

wel k=0
~500+ 158+ 1873+ Vy+ V=0 o Vot V= +29.69 kN

lermion
tension togside

A . : I
B, lemsion 5
-&_ : " an Fern -
| underside shopse
: " podint of
1 comiraflexure

tonsion

tension

TR TIooAS
1 paimt af

painl of ‘xl contrafleyne
confrallexung

Fan]
< shope

E
DeNected Shape
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Solution
Topie: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5,12 Page No. 1

Haoripontal Prop

Fixed-end Moments:

Member AB

|
- B0t 1047 Km
I"!I

804" 4 10.67 KNm
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Solution
Topie: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5,12 Page No, 2

[ 2z 2 ] 23]

250x6 N If-.ﬂx'l.?x 4.0 . 20,0 -I.E}H 2.0 = _98.] KNm
12 6" Y

ﬁ - Ba'h + Pa'h

12 i i

1 H 20 B |
[25.[;;5 ]+[]ﬁ.ﬂx;_? x4.ﬂ]+[2n.ux:.? x].ﬂ] = +99.9 kNm

Member CD *

h'.l':.: ﬁ.DXﬁ:
A Eh = e =4 B0 LN
feo =473 12 "
Cowl a0x6t .
Mo = == = S22 = = 180 kNim
* Since support 12 is pinned, the fixed-end moments are (Mep — 0.5Moe) ot C and
#ero at [

(Mo — 0.5Mpc) = [+ 18.0 + (0.5 = 18.0) ] = + 27.0 KNm.

Distribution Factors : Joint B

!
kap = | — | = 0,257
e (4.0]

!
kpe= | — | =017
o= (&)

by = D421

Distribution Factors : Joint C

I
=|]=017
krn [6.0] 0177




Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5
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A2

Solution

Page No. 3

Moment Distribution Tahle:

Joint

A

AB

0

Distribution Faclors
Fized-end Momenis

~10.67

Balance
Carry-over

+ 2623

Balance

+ 1086

Carry-over

Balance

+ 1.5 7

Carry-over

Balance
Carry-over

+ 0.6 4

+ 18.52

Tatal

Continuity Momcnts:

20 K

-

N

52,1 kMen

IB.51 kNm

3'}.I1LNIIH

3,

|
1

FE66 KNm

T

N

2852 kim

Fived Bending Moment Diagrams

=
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5,12 Page No. 4

Free bending moments:
16 RN
250 kN 'm

20N

G kMM

A MOKN

L
Rt
Mg mnismen = 1454 kNm *

Iree Berding Mament Diagrams
Member AB: My, = (8.0 478 = 160 kNm
* Member BC: IGORN 200 kN

20m | Xm | Xlm
I

I -1 -
23N T30 3N

T

4 X | ABTENULTRN

#ve ) EMe = 0
— (16,0 % 4.0) = (20.0 % 2.0) = (250 % 6.0 % 3.0+ (V% 6.0) =0 Fy=+92.3 kN

Position of zero shear x = [2.00+ (263 / 25.0)] = 3.05m

=003 =923 +42.3) = 2,00 + (0.5 = 105 = 26.3)
= 48,4 KNm

Mo iree ersling memmi

Member DO Miree = (6.0 % l&’]-"ﬂ =27.0kNm
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Solution
Topic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5,12 Page No. 5

1 RNm
JE66 kNm

A866 kNm

[Tt

| [ Rt |||||_“” “IU“H | L_I.'.-" :"-r‘

Manimum bending moment:®
A =+ 86,67 kiNm

~rﬁi==ri-|;:;:-|-:1:';le:'..',L
t

i

. '\‘lnlm um bemding moment:®
Al M =407 kNm

28,52 kNm

Eending Moment Diagram

m"’:‘“&:fm'-:ﬁ'|‘.|._[h1

1]

* The maximum value along the length of members BC and DC can be found

by identifying the point of zero shear as follows:

Member BC: .
IOKN oky S0 RN +'m"} EMe=0
B KN 3866 km = B0 = (16,0 = 4.0) = (20.0 x 2.0)
L ¢ — (250 % 6.0 3 3.0) + 3566 + (Fy = 60) =0
Fip=+ 10:0.8 kN
&b
. 50,8 LN o= 20+ (34.82500=3.39m
MO swy Masumaes = [0.5 % (100.8 + 50.8) x 2.0]
e + (0.5 = 139 = 34.8) - 89,1
: | —
"lt—"”"‘" L FRIRN Mosiimen = 86,67 KNm
Shear Force Diagram

Member CIX:
A !
JB6h kNm / +w.:_) EMe=1)
~ 3B66 = (6.0 % 6.0 % 30)+ (Hy 60y =0
Hp=+ 2444 kN =—

/ = X = (244600 =407 m
MW | L Mauises = (0.5 % 4.07 x 24,44) = 49.74 KNm

Shear Force Dingram
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Solution
Tapic: Moment Distribution = No-Sway Rigid-Jointed Frames
Problem Number: 5,12 Fage No. 6

Consider Member AB:

Consider Member AB:
+ve JEMy = 0
st pwm PRI H2RE2 (0= 402200 (M= 4.0)=0
oo Hy = 154 RN —

For the complete frame:
g —= LF, =0
1341 4 (8.0 % 4.00 + (6.0 x 6.0) = 24,44 = Ho= 0 o He=+569TKN —

+ve JEM. =0

#2852 + (B0 % 4.0 % 2.0) + (25.0 6.0 x 3.0)+ (16.0 x 2.0) + (20.0 * 4.0)
(5697 % 4.0) + (6.0 * 6.0 % 1.0y + (24.44 % 20) = {Vy % 6.0) =0

o Wy=+8525kN |
wvelzr =0
Py = (25.0 = 6.0) - 16.0 - 200 + 8525 =0 o W=+ 10075 kN

“"‘"i_m lersion
Topside Lopside B

= temsion underside  fC -

e a7
| St

I point of contraflexane
1

lension

paint of
: contrallexun:
i 10
. . o slops
enshnn

A A

Defected Shape
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5.3 Moment Distribution for Rigid-Jointed Frames with Sway

The frames in Section 5.2 are prevented from any lateral movement by the support
conditions. In frames where restraint against lateral movement is not provided at each
level, unless the frame, the supports and the loading are symmetrical it will sway and

consequently induce additional forces in the frame members.

Consider the frame indicated in Figure 5.18(a) in which the frame,
supports and applied load are symmetrical.

16 kN

The reader should analvse this
frame to confirm the results

-

4?-; & & indicated in Figure 5.18 (b).
— A Dl
g d0m | 4.0 m g @)
] 80m J s
16 kN
C The frame loads and meactions

1]
satisfy  the cquations  of
6.74 kNm cquilibrium, i.c.
EF, =0, EF, =0, ZFomemn =10,

T4 KNm
%A D $_
6,74 kN 2 A AT RN
B kN B0kN b

Figure 5.18

Consider the same frame in which the load has been moved such that is now asymmetric
as indicated in Figure 5.19(a)

1 16 kN
B 7] T The reader .-i]h.'l-:lll;: analyse this
frame to confirm the resulis

indicated in Figure 519 (b).

J0m
=
-

L)) (a)

A
¥ 3 i 2
EE_;_ = 30m S0m i‘gﬁ\\

l] 6 kN
o < The frame  loads and reactions
DIy NOT satisly the equations
of equilibrivm, i.e.
512 kNm EF, w0, EFnomens ® 0,

753 kNm
A ]
783 kN Gk SAGE 512 kN
106 kN sS4 KN ib)

Figure 5.19
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It is evident from Figure 5.19(b) that the solution to this problem is incomplete.

Inspection of the deflected shapes of each of the frames in Figure 5.18(a) and 5.19(a)
indicates the reason for the inconsistency in the asymmetric frame.

Consider the deflected shapes shown in Figures 5.20 (a) and (b):

J16kN 8 L 1ok g
i n-““.. rif“""- ot
L] o ST
A A
SR T (b) W
Figure 5.20

In case () the deflected shape indicates the equal rotations of the joints at B and C due to
the balancing of the fixed-end moments induced by the load; note that there is no lateral
movement at B and C.

In case (b) in addition to rotation due to the applied load there is also
rotation of the joints due to the lateral movement ‘6’ of B and C. The sway
of the frame also induces forces in the members and this effect was not
included in the results given in Figure 5.19(b). It is ignoring the ‘sway’ of
the frame which has resulted in the inconsistency. In effect, the frame
which has been analysed is the one shown in Figure 5.21, i.e. including a
prop force preventing sway. The value of the prop force ‘P’ is equal to the
resultant horizontal force in Figure 5.19.

Prop Force

SN No-Sway Frame W

Figure 5.21

The complete analysis should include the effects of the sway and consequently an
additional distribution must be carried out for sway-only and the effects added to the no-
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sway results, i.e. to cancel out the non-existent ‘prop force’ assumed in the no-sway
frame.

Sway Foree

Final Forces = *No-Sway Forces® +
*Sway-Only Forces'

Y

SRR Sway=-Only Frame

Figure 5.22

The technique for completing this calculation including the sway effects is illustrated in
Example 5.4 and the solutions to Problems 5.13 to 5.18.

5.3.1 Example 5.4 Rigid-Jointed Frame with Sway- Frame 1

A rigid-jointed frame is fixed at support A, pinned at support H and supported on a roller
at F as shown in Figure 5.23. For the relative El values and loading given:

i) sketch the bending moment diagram,

ii) determine the support reactions and

iii) sketch the deflected shape (assuming axially rigid members) and compare with the
shape of the bending moment diagram, (the reader should check the answer using a

computer analysis solution). EI=10x10° kNm?
12 kN 12 kN
3 kN/m =

r
4.0m

[ Jom 3Jm | 30m (1.0 m 3i0m
. _ IR

Figure 5.23
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Consider the frame analysis as the superposition of two effects:

Final Forces = *No-Sway Forces' + *Sway Forces®

12 kN 12 kN

r
Prop Force
M,
b
Fa P No-Sway Frame
Figure 5.24
P

Sway Force

e
iy, . .
’ Sway Frame

Figure 25.5

Consider the No-Sway Frame:
Fixed-end Moments Member BCD

‘;'\- X0m l_ 30m 72 Sm 30 mm
: 2 : 3 Gu2{10:10% | 0.003
L owl GEl 1226 B=6 [ }
Mpc=- —- - & = - - = —d3.0kNm
e TR 5 12 0° '
. 42 - r Gu2{10:10% |2 0003
M=+ Py b 8H ;5 12XE  BxE t ,] =+ 23.0 KNm
1 12 - ] 12 6.0

Fixed-end Moments Member DEF
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Myn

¥

L] w
1.0m | 30m L
x Li

Since F is a roller support, the fixed-end moments are (Mpe = 0.500) a1 [ and zero at F.

Mop=-

27 40P 407

2 - 2 3
Pab . 6F.'f§ - 12x1.0=3.0 + G 10 107 = 0003 — +4.5 kKNm

O Path GEL . 12107 %30 6x10x10° x0.003
Mp=+——+—=d =+ T 3
I : 4.0 4.0°

=+ 13.5 kMm

(M = 0.5Myp) = [+ 4.5 - (0.5 % 13.3)] = - 2.25 kNm,

Fixed-end Moments Member DGH
Since support H pinned, the fixed-end moments are (Mpy—0.5Myp) at D and zero at H.

(Mo = 0.5Mep) = [+ 3.0+ (0.5 = 3.0)] = + 4.5 kNm.

o D #
| M=+ '"T*' =+ 82340 5 0kNm
s
= PL _ 6x4.0
—l Mup= - T iyt = 3.0 kMNm
2

Distribution Factors : Joint B

Ko = [iJ =02/ DFygy = Sa_ o L}j =033
> Koo = 0.531 ko 0.3
2! . k 0.33
ko= 2] = 0331 DFup = —22- = 222 = 0,62
* [ 6 J o e 0.53

Distribution Factors : Joint D



Examplesin structural analysis 436

- o
f [iJ =0.33/ Dy = Jon. 2 033 _ 4 46
G o 71
kpy = Ex(ij =0.19f Ko = 0L70F Doy = i‘,," = E 0.27
4 4 Iti‘ﬁ.-uul 0.71
bop= ix[i] =0,19f Py = ﬂ =019 0,27
a\4 kres 071
No-Sway Moment Distribution Table:
Jalnt A [} 1] ¥ 1
AR BA 1] NB i F FIr | HD
Distribution Factors |0 M 46| 027 | .27 L0 | L0
Fixed-end Moments =430 + 3.0 +4.5 | <234 L] ik
Balamce = 1654 | + 26,66 - 1162 | -682 [ - 682
Carry-aver + 517 1 = 581 4 ™+ 1333
Halamce 221 + 360 — 613 | - 360 [ - 360
CArry-over + 1,110 4 = 3107 4 = + 180
Balamce +1.17 + .90 —83 | —049 | - 08
Carry-aver + {58 - = (41 4 + 0L
Halance 005 | +026 — 044 | 025 | —02%
Carry-over + (0% T
Tatal + 093 & 1087 | - 1987 #2000 | -G | = 1340 1] 1]

Determine the value of the reactions and prop force P:

12 kN 12 kN
ol —
Prop Force

0,93 kNm

= .

iy ’ J‘”

Consider member DEF:
13,40 kN I 12kN tve ) EMp =10
- . ~ 1340+ (120 % 1.0) = (Fy x 4.0) =0
e P AWV =-035KN |}
LY :'I

Consider member DGH:
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#ve )} EMy =0
— 6,66 — (6.0 % 2.0) — (Hyy % 4.0) =0
o Hy=—4.67kN -

Consider member BA and a section to the left of D:

£ KNI N 2006k
10 kN : 10 kN " 0:06 kN

9.93 KNm . 993 kNm
I o
Fall? Fy
+ve ) EMs =0 _
+993 4 (Vyx3.0)— (H, x4.0)+ 1987=0 . V,=-993+ 1334, Equation

1)

ve ) EMp=0 _
£9.93 4 (Vy % 9.0) = (I, % 4.0) - (8.0 x 6.0)(3.0) - (12.0 x 3.0) + 2006 =0 Equation
o Va=+16.67+044H,  (2)

Solve equations (1) and (2) simultaneously:

— 903 & 133, = + 16.67 + 0.44H, A H =080 KN —=
¥, =+ 16,67 + (0.44 = 20.89) 2 Py 2082 kN T

Consider the equilibrium of the complete frame:

wve FEF =0
Fa—(8.0 % 6.0)— 120+ Fy— 120+ ¥ =0
+29.89 - 48.0- 120+ ¥y - 120-035=0 L Va=+4246kN

byg == EF, =10
Ho+ 100+ 6.0+ Hy = P =10
+2089+ 16.0-467-P=0 S P=+4LI2EN
Since the direction of the prop force is right-to-left the sway of the frame is from left-
toright as shown.
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—

Sway Force

” FII
Apply an arbitrary sway force P’ to determine the ratio of the fixed-end moments.

i

%" ' 6ElS, T 1
B Ian

BEIS g
LT I
Lan

H'y

Fixed-end Moments due to Sway

The fixed-end moments in each member are related to the end-displacements (3) in each
case. The relationship between 8, dap and dpy can be determined by considering the
displacement triangle at joint B and the geometry of the frame.

Displacement triangle:

D Length of Ly = 43.0° + 4.0°
B /S =35.0m

I San Cos@=3.0/50=006
- ‘\.\ Sind=4.0/5.0=018

I ;. dan = (Fyp Cosl) = 0.68,,
"_‘\':nu—']‘ oy = (Fap Sind) = 0.8 e

Ratio of Fixed-end Moments:  Map 0 M, 0 Mo 0 Mop - Moy
. 6{ErS ) . 6(ElS.) _— 6 Elda) . 6 Ef b ) . 3(ET )

J‘.“-“ l|l--"j.;\.lq llr-'|=-u!| l;«fm I -"-'Em

__6(ELS,, ) 6(EIS,,) | 6(ET=8,,Cost)  6(Elxd,,Cos@) I(El=8,,Sint)
L?\H ’ li’-"il: I '|r4=1I:|- ’ "-’Ell:l I ﬂfﬂl

_ 6 EFS,,) . 6 EfS,,) " 6({20E15,,=06) _6(20ELS,, =0.6) _ I(E1S,, )= 0.8
500 7 s0f 6.0° ’ 6.0° ' 4.0°

=41=-024: 0241+ 0,20+ 020 0,135} = (EfSn
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Assume arbitrary fixed-end moments equal to:

{—24.0:-24.0:+20.0:+20.0: — 15.0} x (EI&)an/100

Sway-Qnly Moment Distribution Table:

Joint A | H [1] ¥ 1]
AR | Ba [ ] [FIH 1¥H I F FIb Hil¥
DEstribution Factors 1] 0.8 0,532 bAG (3 iy 1.0 1.0
Fined-gnd Moments | = 34 =20 | + 0.0 = 2000 | = 15.0 [1] [
Balande -t 152 + AR g L= 230 =135 = |35
Carry-over & i, Tin = 1.1% e e |
Balanee -+ 044 | +0.70.] L —057 | —033 | —033
Carry-over + 22 — {120 LET)
Halance s 010 NER — s | -0 | — a0
Carry-over + 005 1T | =008 T [~+ 0.0
Balance |+ L3 + 03 = i),05 =002 = (L2
Carrv-over + 0.02 |
Total =21195 | =200 | + 2100 = 18560 | - 1680 | — 13D i L

Determine the value of the arbitrary sway force P’

. P

Adbitrary Sway Force

M

Consider member DEF:

150 KNm +ve ;} EMn=10

: *
- : - 1B —(FEx4.0)=0
:=uﬂ-" E F ?% s P = =045 kN I
| o P

Consider member DGH:

+ve EMp=10
= 1680 = {(fH=4.0)=0
SoHy = =420 kN=-—

Consider member AB and a section to the left of D:
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1860 kNm

+ye J £l n= 0 .
~ 2205+ (P % 3.0) - (Hix4.0)-2190=0 - F,=+1495+ 13345 Equation
(3)
+ve ) EMp=0 _
— 2205+ (V' x 0.0) - (H’ x 4.0)+ 18.60=0 . V', =+0.48+ 0445’ Equation
(4)

Solve equations (3) and (4) simultaneously:

+ 1495 + | 3347 =+ 0,48 + 044407, SR =~ 1626 KN ==
Fo o=+ 048 = (0,44 = 16.26) S K= - 66T KN

Consider the equilibrium of the complete frame:

sve } £F, =0
Vit Vig+ Km0
~6.67+ Vi~ 045=0 avp=+ra2m f

s e I LA 1
Hy+ Hy+'P=0
= 1626 =420+ P'=0( o P 2046 kN
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12 12N

kM
Settlement = 3.0 mm

HWEFKNS T No Sway Frame

/ L x (E1S)/100

Sway Only Frame

\ 667 kM T2 kN J

For the complete frame:
Final Forees = ‘No-Sway Forces' + *Sway Forces'

P+P'=0
~ 41.22 + [20.46 = (El&)as/100] =0 S (EI®)ap/100 =+ 2,02

The multiplying factor for the sway moments=+2.02
Final Moments Distribution Table:

Joint A B D F|H
AB BA BD DB DH DF FD|HD
No-Sway +9.93| [+19.87|—-19.87| [+20.06| —6.66{—13.40 0l O
Moments
Sway —46.36| |—44.24|+44.24| |+37.57|—33.93| —3.64 0l O
Momentsx2.02
Final Moments|—36.43| |—24.37(+24.37| |+57.63|-40.59(—-17.04 0l O

(kNm)
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. [z.ozxmnj _ [E.OExlﬂﬂ

OB = 7
El 10x10°
The horizontal deflection at the rafter level=554=0.85,5=(0.8x20)=16 mm

Final values of support reactions:

] =0.02 m=20 mm

My =+9.93 - (22.95 x 2.02) = — 36.43 kNm
Hy=+2989 - (1626 x 2.02) = - 296 kKN «—
Va=+29.82 — (6.67 % 2.02) = + 16.35 kN
Hy=—467-(420%x2.02)=-13.15kN  *—
Vi=+ 4246 + (7.12 x 2.02) = + 56.84 kN T
Ve=—10.35—(0.45 x2.02)=— 126 kN l

Continuity Moments:

17048 KMm

1 I
E

D /= 10,59 kNm

wmmmuﬂ'ﬂmmmu

] s 1

_ L
3 . k=
300 kM kN
M, = [£+iJ - [—'z“ﬂ—“““‘ ]=5|.a KNm

4 b 4 b3

Free bending moment member DEF:
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12 kM
D§ E F T
I_“m.| 30m [ Sl.{f}k‘.\ln
9.0 kN 30N Miee = [@ = [M =9.0 kKNm
L 4
Free bending moment member DGH:
30kN
6.0 kNm
J _(PLY _(6x4.0) _
5763 kNm
17.04 kNm
B

Eou____ F

1437 kNm - " -
————— 4059 ENm

il

Mavimum bending moment* . -
M =+ 41,03 kNm G 26.30 kNm

M

* The maximum value along the length of members BCD can be found by identifying
the point of zero shear as follows:

12KN 8 KN/m tve IS =
57.63 kNm "c-l') ZMp=0

S #2437 = (12,0 x 3.0) = (8.0 x 6.0)(3.0)
6 B +57.63 + (V% 6.0) =0
i Vp=+1633kN §
A
A= X =F
16,33 kN |“\\
7,67 W x=(1633/8.0)=2.04 m
| M, =24.37 + [(0.5 x 2.04) x 16.33]
1967 kN

an mum — + "11-{'3 kJ'qI'I]
Shear Force Dingram 4367 kM :
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Tension ouside

temsion
alsighe

Defected Shape A
5.3.2 Problems: Moment Distribution - Rigid-Jointed Frames with
Sway

A series of rigid-jointed frames are indicated in Problems 5.13 to 5.18 in which the
relative El values and the applied loading are given. In each case:

i) sketch the bending moment diagram and
ii) sketch the deflected shape (assuming axially rigid members) and compare the shape
of the bending moment diagram with a computer analysis solution of the deflected shape.

25 kN

YA 40m | 40m

i

Va

Problem 5.13
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16kN 20kN

.0 m

6 kN/m

Hl}

Problem 5.14

Problem 5.15
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M, 12 kN/m
' B

HA‘

4.0m

| 40m 1 20m | 2.0m P

1 A ]

Problem 5.16

Problem 5.17
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20 kN

16 kN

i
|
=

4.0 m
6.0m

Support D settles by 3 mm
Support E settles by 2 mm
Ef=102.5 = 10° kNm®

[ 20m L 20m

=

Problem 5.18
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5.3.3 Solutions: Moment Distribution—Rigid-Jointed Frames with
Sway

Solution
Taopic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,13 Fage No. 1

Consider the frame analvsis as the superposition of two effects:
Final Forces = *No-Sway Forees' + “Sway Forces®

254N o
Prap Farce P P Arbitrary Sway Force

C

[

Mo-Sway Frame Sway Frame

Consider the No-Sway Frame: ZEkN

Fixed-end Moments:

Member BC*

"l._p‘m.ll...L!' luﬁ

1

= = 250 kNm

w =+ 250 kNm

PL
Mg =+ 5 =+

* Since support C is pinned, the fixed-end moments are (Mae — Mw/2) at B and zero
atC.
(Mo = Mep/2) = [= 25.0 = (0.5 = 25.0)] = = 37.5 kNm.
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,13 Page No, 2

Distribution Factors : Joint B
I
gy ™ (E] =0

3 fzr]
ke =2 5| =1 | = 0,101
w=3* 3

Ky = 0L39F

In this case, since there is only one intermal joint, only one balancing operation and
ong carry-over will be requined during the distribution of the moments,

Mo-Sway Moment Distribution Table:

Joint A
AR
Distribution Factors 1]
Fixed-cnd Moments
Balance
Carrv-over + 056~
Total + 9.56

Determine the value of the prop force P:

5N
112 KNm

L/ bl 19.12 kNm
19.12 KNm

/1 ..,\ua kNm Q.56 kNm
—$T1 A ’ A
M~ )

+ve D EMy =0
#19.12 +9.56 — (Hy x 5.0)=0 A Ho=+574kN —>

For the complete frame:
+ye —= IF, =0
+5 M =P= S P=5T4 kN
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 513 Page No, 3

Since the dircetion of the prop force is right-to-lefi the sway of the frame is from
left-to-right as shown, Zan
#  Arhitrary Sway Force

Apply arbitrary sway force Fixed-end Moments due to Sway

Ratio of Fixed-end Moments:
Mg : Mm:_ﬁiﬁ‘:‘snu} - ﬁ{E‘:‘fnu} = _ 6(E45,,) - 6(E18,,)
i g 25 25
= =024 =024 } = (Eld)un
Assume arbitrary fixed-end moments equal 1o {= 240 : = 24.0) = (Ef8)n/ 100

Sway-Only Moment Distribution Table:
Joint A

AB BA

Distribution Factors 0 0.51
Fixed-end Moments - 24.0 - 24.0
Balance L+ 12.24
Carry-over +6.12
Tetal - 17.88 - 11.76

Determine the value of the arbitrary sway force P
TErD

11.76 kMm

1176 kN 11,76 kMm

I1TES kNm
A
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,13 Page No, 4

+ve ;) E.‘U‘u =0

=176 - 1788 —(Fp= 3.0)=0 S =383 KN
For the complete frame:

tyg —= LF, =0

=583+ P'=0 SR me 593 KN —

23 kN

No Sway Frame Sway Oaly Frame ® (Ef&),n /100

P+ F'=10
=574 % [5.93 » (Ef8)a/100] =0 S CELR w100 = 0,968

The multiplving factor for the sway meiments = 0,968

Final Momenis Distribution Tahle:
Joint A
AR BA BC
No-Sway Moments + 056 +19.12 - 9,12
Sway Moments » 0,968 | - 17.31 - 1138 +11.38
Final Moments (kNm) | =7.75 + 7.74* =T7.74

0.968 = 100
Ef

For horizontal equilibrium at prop level: = 5,74 + (5.93 © 0.968) = 0
Fimal value of if, =+ 5.74 = (5.93 = 0.968) =10

Thie horizontal deflection at the rafier level = &y, =[

] =06 RIES

* Since the horizontal reaction at A is equal 1o #ero, the moment at the top of
column AB is equal to My, i.c. approximately 7.75 kNm.
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,13 Page No, 5

B A ERLNIE]
A

It

For the complete frame:

#ve JEMA =0

=775+ (25.0 = 4.0) - (Ve x 8.0) = 0 v Vemsnns3kn |
tve f ZF, =0

+11.53 =250+ F,=0 S Fy=+ 134T kN T

Continuity Momenis:
.
275 kN 773 khim

B UL s e
B

A
T.75 kiNm

Free hending moments:

Member BC:

B "k'\]\m |H
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,13 Page No, 6

.78 kNm ﬁ;'--
B

Masimum bending moment:
A = =05 = 7,75) = 5000
M= 4 A1) KNm

Bending Moment Diagram

T3 KNm

peaed
1L3FRN

A

B

134TEN Support Reactions

tension oulside

" -
Tk o - .@.
B lermbon inside By I:: e e == T
y

point of contmilexure

Lensdon calsids

1
1
i
I
! I
; i
1

I
1
1 i
1
i
I
I
1

Defleeted Shape

o slopss

e &S
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Solution
Topic: Moment Distribuiion = Rigid-Jointed Frames with Sway
Problem Number: 5,14 Fage No., 1

Consider the frame analvsis as the superposition of two efTects:
Final Forces = *No-Sway Forces' + *Sway Forces®

lkn  JOEN

o Arhitrary Saay Force

No-Sway Frame (see Problem 5.12) Sway Frame

Mo-Sway Moments are given in the Table below: (see Problem 5.12)
Joint A B C
AB BA BC CB Ch

No-Sway Moments | + 28,52 +89.1 | - §9.1 + 3866 | - 38.606
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,14 Fage No, 2

Determine the value of the prop force P:

s 20kN
25 kN'm = 1 ke

BSI5 KN
Prop force P= 5697 KN «— (s¢¢ Problem 5.12)

Since the direciion of the prop foree is righi-to-lefi the sway of the frame is from
left-to-right as shown below.

e

I 1
F°  Adhitrary Sway Fonce ]

Apply arbitrary sway force /*° Fixed-gnd Momenis due to Sway

Ratio of Fixed-end Momemts:

6f £l o FIF) 3| £l
.'ll[-\|i:.lfﬁ.-,:.1lﬁ'|]'—— { ; }.rl‘r - [ . }.I.I L_J{ _ }:.ln

“Al 'r".t.'lr ' 'r';'rr a a
dn ™ dp = F
e(Es),,  6(E18),  s(Em), [ ol
16 ’ 16 ' 36
= (=035~ 0.375: < 0.083 | = (El®
Assume arbitrary fixed-end moments equal to {- 37.5 1 - 375 - 8.3} = (Ef&/100
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 514 Page No, 3

Sway-Only Moment Distribution Table:
Joint A B
AB BA BC
Distribution Factors 1] [ 0.4
Fixed-end Moments | -37.5 -315 4
Balance + 225 + 15.0
Carrv-over £ 11,257 + 2,37
Balance =142 =095 J
Carry-over -0.71 1 -2.14 7
Balance + 1.28 + (LBG
Carry-over + 0.64 4 + .14 4
Balance = [.08 = (LM
{:J.l.rr_\'-mrr = 0.04 4
Total = i 36 — 1522 | + 1522

Determine the value of the arbitrary sway force P*:

15.22 kNm : 1522 KNm 7.02 kmy

26,36 kNm

Consider column AB:
+ve JEM=0
1522 - 26.36 - (I, = 4.00=0 Sy == 104 kN +=—
Consider column C[:
tve JEM:=0
=702 - (Hpx60)=0 S pm =132 kN +—
For the complete frame:
tyg —= LF. =0

=104 =132+ =0 S P =117 RN
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,14 Page No, 4

RS2 L Nm 26,56 kNm

1341 kN A & kN

[LEURREY 3
2444 kN

REISKN

No Sway Frame Sway Frame x (EI8 /100

P+ Pi=0
= 56,97+ [101.72 = (Ef&/100] = 0 S (ERRS100 = 4,861

The multiplving factor for the sway moments = 4,861

Final Moments Distribution Tahble:
Joint A L

AR BA CH (o 1]

No-Sway Moments +28.52 + 89.1 + 38.66

Sway Moments « 4861 | - 128,14 - T3.08 + 385

Final Momenis - 9062 + 15,12 * 1716

The horizontal dellection at B = 8= 486, 1/E7

Final value of Hy =4 1341 - (104 # 4861} = = 3T.14 kN -—
Final value of Hy = = 2444 = (1,32 = 4.861) = = 30.86 kN =—
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,14 Page No, 5

For addiiien of Coniinuity Moments and Free Bending Moments sce

Problem 5.12.
1502 kNm .-Ir-.‘"--“-.h“-‘I---“-.-”““-"”-.:I;ﬁ 29,16 KNm
P Al < gl

Maximum bending momeniz® —] ; -
M =+ 1040 KNm '—q

ot
=1}
== Maximum bending moment:®
M o= T3 KNm

=l

ShE2 KNm

Bending Moment [Nagram o
(1]
# The maximum value along the length of members BC and CI can be founcd
by identifying the point of zero shear as follows:

Member BC:
IGOEN MEN  250kNm +.,._,.'] Mo =0
1512 kNm 06 kN = 15,12 = {160 = 4.0) = (20.0 = 2.0)
C {250 = 6.0 % 303+ TG+ (Fy = 6.0y =0
Sy =+820kN
6.0m
e 320kN X =204 (16025.0) = 2.64 m
FHIRR F““-‘—x‘im [0 M, =[0.5 = (§2.0 + 32.0) = 2.0)
MOKN | (0.5 % 0.6d % 16,0) - 15,12
Measimesn = 104.0 kNm

- HOEN

Shear Foree [Hagram

T kMm
x = (3086600 = 5. 14 m

M, = (0.5 % 5.14 = 30.86)
Masiimes = 79.31 kNm

Shear Force Diagram
FOBG KN
L 3085 KN




Rigid-jointed frames 459

Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,14 Fage No, 6

Consider the complete frame:
tve JEM, =0
0962 + (RO =40 = 20)+ (250« 6.0 = 30) + (16,02 2.00 + (20,0 = 4,0)

+(6.0 % 6,0 % 1.0)+ (30.86 * 1.0y~ (V= 6.0) = 0
L Vp=+ 1040kN |

e '|'IF". =0
+ V= (250 = 6.0) = 16.0 = 20.0+ 104.0=0 S V=4 B0 KN 1'

kN RN

6 k™N'm

0BG KN Support Keactions

1040 K%

B __l-:wsiunw-sidu tension topside  © B
¥
!

ension underside

povint of palm aff

1
I
I
|
i

comrallesure contmllesun:

Lemsion |I
]
! point aff

b contrallex e

SUTO

i
1
1
1
1
I
!
1
L
#= = slope
A

52;:-..___‘-______

DeNected Shape
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,15

25m Lim
s

Consider the frame analvsis as the superposition of two effects:
Final Forces = *No-Sway Forees” + ‘Sway Forces®

0N
. Prop Farce P P

Asbieary
Sway
Foree
No-Sway Frame
(see Problem 5.6)

Iy Ly

Mo-Sway Momenis are given in the Table below: (see Problem 3.6)

Joint A B

AB BA

No-Sway Moments | + 18.44 + 3685

Determine the value of the prop force P
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,15 Page No, 2

Prop force P=37.53 kN <—  (sce Problem 5.6)

Since the dircction of the prop foree is right-to-left the sway of the frame is from
left-to-right as shawn below,

P Aubitrary Sway Fonce

iy
Py

Apply arbitrary sway force /*° Fized-end Moments due 1o Sway

Displacement trianghe:

Length of Ly =207 +4.0°

=4472 m

Cosfl= 20447 = 0,447
Sindd =304 472 = 0,894
= (s Costh

Ratio of Fixed-end Momems:

~6lER, ]| ) ﬁ{fm‘,,} 3lER)

lll-1.I| L'l.ll. L;.u.'
__OlELS)  6(EIS,) | HENS, x0.447)
44728 T aar?t 5.0°

Mon § M @ M =

={=030:- 030+ 0,05 } = (Eldw)

Assume arbitrary fixed-end moments equal to {= 3000 : = 30.0 1 + 5.0] = (Ef&y)/ 100
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Solution
Topic: Moment Distribuiion = Rigid-Jointed Frames with Sway
Problem Number: 5,15 Page No, 3

Sway- Only Moment Distribution Table:
Joint A
AB BA BC
Distribution Factors 0 .59 0.41
Fixed-end Moments | - 30,0 - 30.0 +3.0
Balance + 1475 + 10,25
Carrv-over +7.38 1

Total - 22,62 — 15.25 + 15,25

Determine the value of the a rhitrary sway force P

C
P =
-4 1525 kNm i
' LN

2262 KNm 2 AL

I5.25 KNm %"r

]

Consider beam BC:

sve ) EMy=10

#1525 - (Fe=50)=0
For the complete frame:
tve JEM, =10

= 2262 < (305 = TNH{F =400 =0 SOP'=4 1099 kN —
MkN

s ve=+305kN

8 kN'm —

305 kX

1544 kNm 2262 khm

A ITSIAN 1099 kN
TR RN «

L 305 kN

No Sway Frame Sway Frame x (£, /100
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 515 Page No, 4

P+pi=0
= 3753+ [10.99 = (EfS/100] =0 S (B 100 = 3,415
The multiplving factor for the sway moments = 3,415

Final Moments Distribution Table:
Joint A B
AR BA BC
Mo-Sway Moments + 18444 + 3688 | - 3688
Sway Moments = 3415 | - 77,25 - 52,08 | +35208
Final Moments - 5851 = 1520 | + 1520

The horizontal deflection at B = (dys Sindh) = (3415087 = 0,894 = 305, 3/Ef
The vertical deflection a1 B = &y Costh = (341.5/E0 = 0,447 = 152,7ES

Final valwe of By =+ 37,53 — (10,99 = 3415y =0
Final valiwe of M=+ 3262 + (3.05 = 3.415) = + 430 kN T
Final valwe of My =+ 47.38 = (3.05 = 3.415) =+ 37.0 kN T

'-l-‘!-'n'lnlm um bending moment:
T M = [0S X152+ (40 % S0)40 = (80 - 50°0R0)
=§1.6 kNm

BEMm -

tension inside
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Solution
Topic: Moment Distribuiion = Rigid-Jointed Frames with Sway
Problem Number: 5.16 Fage No. 1

1I2EN'm

20m
A

Consider the frame analysis as the superposition of two effects:
Final Forces = *No-Sway Forces' + *Sway Forces®

12kN'm

Prrop Foree B I-.a
I ]

Arbitrary Sway Foree

No-Sway Frame  (sce Problem 5.9) Sway Frame

Mo-Swav Moments are given in the Table below: (see Problem 5.9

Joint A B C

Al BA BC CB D

MNo-Sway Moments | — 22,35 +3.31 | - 3.31 +12.72
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,16 Fage No, 2

Determine the value of the prop force P:
IDASRNm  — |3 kNm

Prop Force P |

Prop force P=40.42 kN | {see Problem 5.9)

Since the direction of the prop force is upwards the sway of the frame is

downwards as shown below,
BEN 4y

L

) #p
Adbltrary Svay Force P* | .
) 3 I
Gn=dp=4§ 12

A1l

Apply arbitrary sway lorce /*° Fixed-end Moments due 10 Sway

Ratio of Fixed-emd Momems:
Moap : Man : Men = - ﬁ{h{ﬂ.\u} - E‘“—{".m] e 3“: 'i‘ 3 n}

A L o

= ﬁ'{tl'r"iml.} - (.‘l:-!"?eghl:l.:l . g J{EIJML}
e T L O

= - 0375 : - 0375+ 0,188 | = (E15)

Assume arbitrary (ixed-end moments equal o {-37.5 1 = 37.5 0 + 18.8) = (EM100
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,16 Page No, 3

Sway-Only Moment Distribution Table:
Joint A B
AB BA BC
Distribution Factors 1.0 0.5 0.5
Fixed-end Momenis - 37.5
Balance + 18,75
Carry-over +0.4 7 - 536 7
Balance I + 268
Carry-over +1.34 4 = 2168
Balance |, + 1. .34
Carry-over +0.29 4 =034
Balance 0. LY
Carry-over +0.2 1
Total — 26,27 — 1454 | + 14,54

Determine the value of the arbitrary sway force F*

1627 KiNm 26.27 kNm 148 KNm
B

SR KNm D i
]

Consider beam AB:
+ve ) EMy =0
—2627 - 1454+ (= 4.0)=0

Consider beam CD:

+ve ) EMe=0

+582-(Fpxa0)=0 avp=+iraekn |
For the complete frame:

e TLFy:D .I
+ 102+ 146-P'=0 S P 1166 KN 4
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,16 Page No, 4

IAIINm 2 ki £ 2627 kNm
A P

14,82 kN

No Sway Frame Sway Frame = (£18)/100

P+Pi =0
+40.42 - [11.66 * (E18)/100] = 0 & (EIS 00 = 3.47

The multiplving factor for the sway moments = 3.47

Final Moments Distribution Table

Joint A B
AR BA BC

No-Sway Moments -22.3%5 +3.31
Sway Moments = 3.47 =916 = 3043
Final Momenis = 113.51 =47.14

The vertical deflection at © = &= (34TEN

Final valee of ¥y = + 2876 + (3.47 = 10.2) S Fy= 4 64,15 kN T
Final value of  Fp=+ 14.82 + (347 = 1.46) o Fp=+ 1089 kN

Consider the complete frame:
+ve ) EMy=0
=S5+ (1200 4.0 = 200+ (360 = 6.0) = (1980 = &) - (Ha=40)=0
o Hp=+ 984 kN —>
g —eLF, =10
+Hy=Hp =0 s Hy==984 kN *+—
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Solution
Topic: Moment Distribuiion = Rigid-Jointed Frames with Sway
Problem Number: 5,16 Page No. 4

TIAE]I KN m

el
[| ||T“‘.nl::--.._ 7.14 kNm

A I B

118
— | 47,14 kMNm

Maximum bemdling moment:
Moo= (08w TAT)# (360 = 404
E M o= 30,74 KNm
CHE b D
TATKNm W-.'.:j'\_-'!__‘“.r.-u_,‘_,l.--"

Bending Moment Diagram
A 115,51 K¥m ¢ 12 EMm
GRIkN

il 15 kN

Suppaort Reaclions

1989 kN

lension F

§ i g-_I_,:nh\:ll"\c
o temsian undersids ! Hy e k- -

paint al comraflevure

Lension

tension uederside v I
g —_

Deflected Shape
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Solution
Topic: Moment Distribuiion = Rigid-Jointed Frames with Sway
Problem Number: 5,17 Fage No. 1

20kN'm —

Consider the frame analvsis as the superposition of two effects:
Final Forces = *No-Sway Forces' + ‘Sway Forces®

Arbiirary Sway Faree P*

No-Sway Frame (sce Problem 5.10) Sway Frame

MNo-Sway Moments are given in the Table below: (see Problem 5.10)

Joint A B C

Al BA - B | b | CE

No-Sway Moments | + 213 | | + 456 +482 | =210 | =271
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 517 Page No, 2

Determine the value of the prop force

Priop Foree P

213 KNm 13.6 kNm

750 kN 1015 KN =i
A . E
9.1 kN

o
Prop force P=TOLZ kN +— (see Problem 5.10)

Sinee the dircction of the prop foree is right-to-left the sway of the frame is lefi-to-
right as shown below,

s
'
b

Arbitrary Sway Porce

65 e
)

L
B2 W i
L
it 652 Wan
-T"ll.l-

Fixed-cnd Moments due to Sway

Ap ™ g ™ the horizental displacement of joint B since BC is assumed 1w be axially
rigid.
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 517 Page No. 3

Displacement triangle:

Length of L =+ 4.0° + 4.0°

= 5.65Tm

Cosll= 4.IW5.657 = 0.707
Sind'= 4.0/5.657 = 0.707

[ e ™ (Jan Cost
o g = ey -2 dop = dop = (g Sindd)

MNote: .”.m - .”m. .Um;' - .”r;k ﬂ-fu - .UH'

Ratio of Fixed-end Momenis:

Mt Mot Mg Mep=— SE20an) , , lEVSIOne) , _ SlEMSG) , , HEHoc)

L L Lie Lo

o HEEy) O£ < 0T07) | olEAE 2 0.707) N bty #0.707)
56577 a0’ ) e i 4’

={=0375 : +0.177 - = 0.265 oR0E3) = (ER)

Assume arbitrary fixed-cnd moments

Mgt Mpa ¢ Mo @ Mt Mo 0 Mee t Mep ) % (EXg) 10D
cqual to:

(=375 =375+ 107 +17.7: =2635: =26.5: + 133} = (Eldm) 100

Moment Distribution Tahble:

Joint T, N E
: Ef

Distribution Factors L o
Fixed-end Moments | —37.5 -5

Balance

Carry-over © =081

Balance

Carry-over - —L7E

Balanie

Carry=over B = =003

Balanee

Carry-over ol | N}

Total 5 =182
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 517 Fage No, 4

Determine the value of the arbitrary sway force P'

Consider Member CE:
tve JEMe=0 -2973-2812-(Hy*d.0}=0 - Hy=—1446kN

Consider Member CD:
e _:)I.’lf{- =0 + 1078+ (Hp=4.M=0 S Hy=m=2T0 KN =-—

Comsider Member AR:
+vg ‘) EMy=0 =2509-313 (MW= 40+ (Fy=40)=0
A Y

Coensider a section at C;

tve ) EMe=0

F 185 - 313 (= A+ (M = 100 =0
B m 25, = 3.09

o P = 1400 = 258 = 3.09 L PR ==1146 kN |}
o HY == 2556 kN =—

For the complete frame:

tyg = I, =)

— 1446 =270 -25.56 + P =0 L P =+ 42T2RN —
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,17 Page No, 5

13,6 kMm 1.3 kNm 12 kNm

TEIEN, 1008 kN A ISEGAN A6 AN -
A E \ )

00 kN Iy 1086 kN F

No Sway Frame Sway Frame % (£, /100

P+pi=0
=702+ [42.72 = (E/San100] =0 o LET R 100 = 1,643
The multiplving factor for the sway moments = 1643

Final Moments Distribution Table:

Joint A B [

All BA B CB ch CE

MoeSaway Moments | 4 213 4426 | 46 #4582 [ =210 =271

Sy & - -
Sy &‘:,"f"'“ 5143 | | e | sanar | |3z | snm | —anes

Final Momenis =3,13 4138 | 1.8 47033 | 3139 | 75908 =508

The herizontal deflection at B = (Jys Sind) = (164.3/EN = 0.707 = 116,25}
The vertical deflection at B = (S, Cosd) = (164350 = 0.707 = | 16.VES

Final valwe of 7, =+ 50,1 = {1146 = |.643) S Fy =+ 40,27 kN

Final valwe of £, = + 75,1 = (25.56 = | 643) SoH =310 KN —=
Final value of My = = 1018 = {14.46 = 1.643) A Hp==3393KkN -
Final valwe of i =+ 3528 —(2.71 = L&43) S Hp=+083KN  —=

There is insufficient information to determine the values of Fyand V.
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 517 Page No, 6

7933 kN
44, ]vﬁl:;_?ﬁpl. -

B8 KN oo 7595 kNm

“ETIZL. E

239 kNm

Maximum bending momeniz *
M =550 kNm

Bending AMoment [agram

* The maximum value along the length of member BC can be found by
identifying ihe point of zero shear as follows:

135 kvm 200 kN'm TR 15 km
B I ¢
P 0 m

AT RN [

— Skear Foree Diagram

tve JEM: =0

= 138 = (2000 = 6.0 = 300+ TR15 = (Fy = 6.0) = 0 Py =+ 47.04 KN

X o (470420000 = 235 m
Memimem = (0.5 = 235 x 47.04) ~ 138
=5389 kNm
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,17 Fage No, 7

083 kN

20 kN —y

I3 Km S9.50KNm

5 . g "
AR I0KN ILIIEN vy upport Reactions

B 53 .
AT E

tension

lersion tension
togrmle

f-"kr\_‘-\._,..p-:_;-"l-'

point of contrallexure

s paimt of comtrfleure

- rero shope oo slope - | F

Defected Shape
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,18 Fage No. 1

i
Suppom 13 seides by 1 s
Support E séttles by 2 mim
El= 1025 « 107 kNmi'

i 20m 2im i
- ¥ -

}

Consider the frame analysis as the superposition of two effects:
Final Forces = *No-Sway Forces' + ‘Sway Forces®

NN
Arhitrary Sway Force P

No-Sway Frame (see Example 5.3) Sway Frame

Mo-Sway Moments are given in the Table below: (see Example 5.3)

Juint A E [] s
AR | ERE By B CR CE
No=Sway Moments [ 1] + 243 + 3708
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 5,18 Fage No, 2

Determine the value of the prop force P:

I kM

Prop Forge P

1674 kN

ki

1182 kN

AT RN

Prop force P=2052 kN —  (see Example 5.3)

Since the dircetion of the prop force is lefi-to-right the sway of the frame is right-lo-
left as shown below.

Arhitrary Svay Force #*

Apply arbitrary sway force /'

3Ny

L

Sn=&n=4

Fixed-end Moments due to Sway
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Solution
Topic: Moment Distribution — Rigid-Jointed Frames with Sway
Problem Number: 5.18% Page No. 3

Fatio of Fixed-end Moments:

IElE,,) ) +3[EML1_} . 3 EfF) . I(EL518)
f{,,, ’ !ﬁl 40t 6.0°

= [+ 0088+ 0,125} = (ELH)

Moy + My =+

Assume arbitrary fixed-cnd moments

IMen : Meed = (EIS/100= {+ 188 : + 125) = (E15) 1000

Moment Distribution Tahle:
daint A 3
AR | ER A

1.0 | 1.0 0.3

[Detribution
Fagtors

= %64 - 751 J
-3563 1
| + 0.6 + 14,25
| Carey-over + 10,72 4

| Balance =321 [ =4 |
| Carey-sver =203
| = (Ll +L61 + LK1
o 0 -4832 | 13968 | -91.38

Determine the value of the arbitrary sway force P'
. w B =
P .

15968 kNm
1368 kKNm

Consider Member BD:

by .‘)E.lf]. =0 & 3068 - (K« 40)=0 o W=+ 3492 kN —
Consider Member CE:

+ve ‘) EMe=0 +B528-(H=x6.00=0 S He =+ 1421 kN —
For the complete frame:

g —= I =0

+3492 41421 =F=0 L4003 kN 4—
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Solution
Topic: Moment Distribution = Rigid-Jointed Frames with Sway
Problem Number: 518 Fage No, 4

r‘-I'J'. LR

14.21 ki

No Sway Frame o Sway Frame % (E/8) /1000

P+P'=D
+21.52 - [49.13 = (E/H/1000] = 0 2 (EIR1000 = 0,438

The multiplying factor for the sway moments = 0438

Final Moments Distribution Table:
Jodnt A E B

| Al | EBE A 114 BT
| Mo-Sway Moments | @ 0 =396 | +1065 | +M.80

| Sway Momenlts
« 0438 LI —30.06 | +6LIE | — 4002

| Final Momenis g | a =856.12 | +718) | —15871

The horizontal deflection of A, Band C = &= (438N

Final value of iy = + 266 + (34.92 = 0.438) Sy =+ 1795 KN —
Final walwe of =+ 11,82 +{14.21 = 0,438) Sl =+ 1804 kN —

Consider Member AR:

Ll 6,12 KNm

bve ) EMy=0
8612 = (160 % 20)+ (M, % 4.0)=0 L My=+2203 kN §
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Solution

Topic: Moment Distribution = Rigid-Jointed Frames with Sway

Problem Number: 5,18

Page No, 5

Consider a section al B
+ve ) EMy =0

— 1570+ {200 % 4.0) - (15,04 = 6.0) + (6.0 = 6.0 % 3.0) = [ Fp. * 6.0)

For the complete frame:
+ve i‘ Efy=D
+22.03 - 160 -

Moo= (05 = S6,02) + 16.00]
= 4406 kNm

s

1571 kNm

oy 4.0m

5 V=4 10,68 kN |

2000+ 1068+ V=0

Vp=+320kN |

1570 kNm
Mifszs---

| 2.0m
,

-

0 kN

B

56,12 kNm

M == 505 + M6.6T)
= 2162 kim

‘ilnlmum bending moment; *

-2'?13-&‘\._

*The exact valee ogcurs shighily off
mitlsheight but the ermor im this cosee
i= negligible.

Bendimg Moment Diagram

= (0.5 = 02T} + {60 * 6, n'm "~

"‘--—---.I..

Lersinn

fension

o ol ol condrallesune

DeNMecied Shape




6.
Buckling Instability

6.1 Introduction

Structural elements which are subjected to tensile forces are inherently stable and will
generally fail when the stress in the cross-section exceeds the ultimate strength of the
material. In the case of elements subjected to compressive forces, secondary bending
effects caused by, for example, imperfections within materials and/or fabrication
processes, inaccurate positioning of loads or asymmetry of the cross-section, can induce
premature failure either in a part of the cross-section, such as the outstand flange of an |
section, or of the element as a whole. In such cases the failure mode is normally buckling
(i.e. lateral movement), of which there are three main types:

o overall buckling,
o |ocal buckling, and
o |ateral torsional buckling.

The design of most compressive members is governed by their overall buckling capacity,
i.e. the maximum compressive load which can be carried before failure occurs by
excessive deflection in the plane of greatest slenderness.

not considered in this text

Typically this occurs in columns in building frames and in trussed
frameworks as shown in Figure 6.1.

Bckling of compression boom
are upgighis In rool s
# -

>
e e g

\'l_ Buckling of
— .
4 column in frame

b B s ] |

—a =3
Figure 6.1

| 4
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Compression elements can be considered to be sub-divided into three groups: short
elements, slender elements and intermediate elements. Each group is described
separately, in Sections 6.1.1, 6.1.2 and 6.1.3 respectively.

6.1.1 Short Elements

Provided that the slenderness of an element is low, e.g. the length is not greater than
(10xthe least horizontal length), the element will fail by crushing of the material induced
by predominantly axial compressive stresses as indicated in Figure 6.2(a). Failure occurs
when the stress over the cross-section reaches a yield or crushing value for the material.

The failure of such a column can be represented on a stress/slenderness
curve as shown in Figure 6.2(b).

[ |
- F I wield stress'erushing steength
i crushing yicld
s :;
s == £
I ! [ ! ‘,;.l
ﬂ z
(-]
, &
' f crushisng sl £
-
increasing slendemess —
(a) (b)

Figure 6.2

6.1.2 Slender Elements

When the slenderness of an element is high, the element fails by excessive lateral
deflection (i.e. buckling) at a value of stress considerably less than the yield or crushing
values as shown in Figures 6.3(a) and (b).
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v deformed column

strgss < vigldorushing value

e R
increasing slenderness —_—

(b)

-

—_ a=
==lr=al. et
increasing siress  —e
-
*

(a)

Figure 6.3

6.1.3 Intermediate Elements

The failure of an element which is neither short nor slender occurs by a combination of
buckling and yielding/crushing as shown in Figures 6.4(a) and (b).

] ll
‘ f
]
F
1 #
1
. ¢
i =
i =
I £
: g ‘
i g siness < yielderushing value
1 =
q *
increasing slendermess —»
{a) (b)

Figure 6.4

6.2 Secondary Stresses
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As mentioned in Section 6.1, buckling is due to small imperfections within materials,
application of load etc., which induce secondary bending stresses which may or may not
be significant depending on the type of compression element. Consider a typical column

as shown in Figure 6.5 in which there is an actual centre-line, reflecting the variations
within the element, and an assumed centre-line along which acts an applied compressive

load, assumed to be concentric.

—

-
]
L}

-,

asgpemed centre-line and
jilh."l.ir"ilL'|il'|ll I.'I!‘ |III\.' .I:lill.1

-
it

"1:..::'..-...-.

B

actual centre-ling

l

Figure 6.5

fp LT S——

ool §

ElP

i —— mctual load position

.............. actual ceming-lime

_ assumed contres=ling
amd load position

______ actual load position

X ....-1--r--=-=-:.--------:-'.L

ay

relative positions of centre-lines and
load al section X=X,

At any given cross-section the point of application of the load P will be eccentric to the
actual centre-line of the cross-section at that point, as shown in Figure 6.6.

actual centre-line i|P

i PN

te

Figure 6.6

actual load position
=TT,

P

'y
e E

e T ST TPy

1

1L
—r'-L_ -
il

eccentricily ' of the applied load
£ from the actual centre-line

The resultant eccentric load produces a secondary bending moment in the cross-
section. The cross-section is therefore subject to a combination of an axial stress due to P
and a bending stress due to (Pe) where e is the eccentricity from the assumed centre-line

as indicated in Figure 6.7.
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P P
L
L | Pe
n= ':"]' - X - T X
i H
L I
—l L ——E-'L__,

Figure 6.7

[ P PEJ
o=|—t—
The combined axial and bending stress is given by: A4 £

where:

o Is the combined stress,

P is the applied load,

e is the eccentricity from the assumed centre-line,

A is the cross-sectional area of the section, and

Z is the elastic section modulus about the axis of bending.

This equation, which includes the effect of secondary bending, can be considered in
terms of each of the types of element

6.2.1 Effect on Short Elements

In short elements the value of the bending stress in the equation is insignificant when
P Pe

compared to the axial stress i.e. [ A ] 4 and consequently the lateral
movement and buckling effects can be ignored.
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6.2.2 Effect on Slender Elements
In slender elements the value of the axial stress in the equation is insignificant when

<<
compared to the bending stress i.e. 4 Z particularly since the eccentricity
during buckling is increased considerably due to the lateral deflection; consequently the
lateral movement and bending effects determine the structural behaviour.

6.2.3 Effect on Intermediate Elements

Most practical columns are considered to be in the intermediate group and consequently
both the axial and bending effects are significant in the column behaviour, i.e. both terms

N
in the equation 4 Z are important.

6.3 Critical Stress (ogitical)

In each case described in Sections 6.2.1 to 6.2.3 the critical load P, (i.e. critical stressx
cross-sectional area) must be estimated for design purposes. Since the critical stress
depends on the slenderness it is convenient to quantify slenderness in mathematical terms
as:

Lg
slenderness A= —
»
where:

Le is the effective buckling length,

!
r is the radius of gyration:\(; and

I and A are the second moment of area about the axis of bending and the
cross-sectional area of the section as before.

6.3.1 Critical Stress for Short Columns

Short columns fail by yielding/crushing of the material and o¢isica=Py, the yield stress of
the material. If, as stated before, columns can be assumed short when the length is not
greater than (10xthe least horizontal length) then for a typical rectangular column of
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cross-section (bxd) and length L~10b, a limit of slenderness can be determined as

follows:
i
radius of gyration ‘ﬂ’
l 2x b b d'
L 104 - i
slenderness ~30~35
r b/ 243

From this we can consider that short columns correspond with a value of slenderness less
than or equal to approximately 30 to 35.

6.3.2 Critical Stress for Slender Columns

Slender columns fail by buckling and the applied compressive stress oeitica<<Py.

The critical load in this case is governed by the bending effects induced by
the lateral deformation.

6.3.3 Euler Equation

In 1757 the Swiss engineer/mathematician Leonhard Euler developed a theoretical
analysis of premature failure due to buckling. The theory is based on the differential
equation of the elastic bending of a pin-ended column which relates the applied bending
moment to the curvature along the length of the column, i.e.

2
Bending Moment = Ef[d 'f]
dx”

[d -}J]

2
where dx approximates to the curvature of the deformed column.
Since this expression for bending moments only applies to linearly elastic
materials, it is only valid for stress levels equal to and below the elastic
limit of proportionality. This therefore defines an upper limit of stress for
which the Euler analysis is applicable. Consider the deformed shape of the
assumed centre-line of a column in equilibrium under the action of its
critical load P, as shown in Figure 6.8.
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Pi‘ -Pt
pinned end , —= Y Y
H | ;;
Jd ) [
:x o~ ] I’ .x
1S e
54 i i
s P
I'. ‘ ' I:—ns-sumod centre-ling
[ HE
Tt | |
deformed shape 4 '-,1 !
1.‘:: ,.f:
pinned end e —r—1 ‘i
P;f Fe
Figure 6.8
The bending moment at position x along the column is equal to [Pex (=0)] == Pey
and hence Bending Moment
d* d*y
=g | S 2\ =—py o E|EL|+Py=0
dx dx
2
d
a f +hy=10
This is a 2" Order Differential Equation of the form: ~ dx”
2
n El
: . . F. = n’ 2
The solution of this equation can be shown to be: L
where:
nis0,1,2,3...etc.

El and L are as before.

This expression for P defines the Euler Critical Load (Pg) for a pin-ended
column. The value of n=0 is meaningless since it corresponds to a value of
P.=0. All other values of n correspond to the 1%, 2" 3. . etc. harmonics
(i.e. buckling mode shapes) for the sinusoidal curve represented by the
differential equation. The first three harmonics are indicated in Figure 6.9.
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-Pl.rllh'.i I|I-'|-|'||I||.1|I ;ji.'rlllfl]
v . o
/| 2 e - e
n=| ',: ne=d "q = n=3 Fj"__x-h
2 LI Y e s I - '
a“El L dxcEF @ _ TS e
P f— ¥
-‘"tm'd :,ﬂ'llhtd P-mlu:d
(a) )] ]

Figure 6.9—Buckling mode-shapes for pin-ended columns

The higher level harmonics are only possible if columns are restrained at the appropriate
levels, e.g. mid-height point in the case of the 2" harmonic and the third-height points in
the case of the 3" harmonic.

The fundamental critical load (i.e. n=1) for a pin-ended column is
therefore given by:

n’ El
Iz

Euler Critical Load Pg=

This fundamental case can be modified to determine the critical load for a column with
different end-support conditions by defining an effective buckling length equivalent to
that of a pin-ended column.

6.3.4 Effective Buckling Length (Lg)

The Euler Critical Load for the fundamental buckling mode is dependent on the
buckling length between pins and/or points of contra-flexure as indicated in Figure 6.9. In
the case of columns which are not pin-ended, a modification to the boundary conditions
when solving the differential equation of bending given previously yields different mode
shapes and critical loads as shown in Figure 6.10.
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Figure 6.10—Effective Buckling Lengths for Different End Conditions

The Euler stress corresponding to the Euler Buckling Load for a pin-ended column is
given by:
2 ¥ g
> =I ,H and I=A° S O Euler = E—E,
Areal A) LA (L"}']L
where (L/r) is the slenderness A as before.

F Fuler =

Note: In practical design it is very difficult to achieve full fixity as
assumed for the end conditions. This is allowed for by modifying the
effective length coefficients e.g. increasing the value of 0.5L to 0.7L and
0.7L to 0.85L.

A lower limit to the slenderness for which the Euler Equation is applicable
can be found by substituting the stress at the proportional limit ¢ . for o
euter &S Shown in the following example with a steel column.

Assume that ¢ =200 N/mm? and that E=205 kN/mm?

s 200 = = 100

n? x 205 x10° _{Uﬂ:\[ﬁ!xznﬁxm?
(Lr) 200

In this case the Euler load is only applicable for values of slenderness>~100 and can be
represented on a stress/slenderness curve in addition to that determined in Section 6.3.1
for short columns as shown in Figure 6.11.
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The Euler Buckling Load has very limited direct application in terms of
practical design because of the following assumptions and limiting
conditions:

« the column is subjected to a perfectly concentric axial load only,

« the column is pin-jointed at each end and restrained against lateral loading,

« the material is perfectly elastic,

* the maximum stress does not exceed the elastic limit of the material,

« there is no initial curvature and the column is of uniform cross-section along its
length,

* lateral deflections of the column are small when compared to the overall length,

« there are no residual stresses in the column,

« there is no strain hardening of the material in the case of steel columns,

» the material is assumed to be homogeneous.

A X
\\ O & - .
L I'his section is not applicable
< yield stress '
- Ty —_— N
L :
2 ; ™,
E oot | e g
< i Euler Stress = s
= . (L#y
= i
5 = ,
£ Short : Intermediate ; Slender
l | -
= 30 = 100
Increasing Slenderness (Lfr) —
Figure 6.11

Practical columns do not satisfy these criteria, and in addition in most cases are
considered to be intermediate in terms of slenderness.
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6.3.5 Critical Stress for Intermediate Columns

*
A Y curve to represent
? intermediate elements
RN
- R .
= |
)
]

Short 1 Intermediate | 5lender
e —

| | -
slendemess —_—

Figure 6.12

Since the Euler Curve is unsuitable for values of stress greater than the elastic limit it is
necessary to develop an analysis which overcomes the limitations outlined above and
which can be applied between the previously established slenderness limits (see Figure
6.11) as shown in Figure 6.12.

6.3.6 Tangent Modulus Theorem

Early attempts to develop a relationship for intermediate columns included the Tangent
Modulus Theorem. Using this method a modified version of the Euler Equation is
adopted to determine the stress/slenderness relationship in which the value of the

modulus of elasticity at any given level of stress is obtained from the stress/strain curve

for the material and used to evaluate the corresponding slenderness. Consider a column

manufactured from a material which has a stress/strain curve as shown in Figure 6.13(a).

N A

[ Jj‘f_?:.th -ullI|I
Fl L
E {: — . 5 ‘f” position x
% o % IS SO . T
A Limit for slender columns =
- i : 1 -
tran i
s slenderness (4)
(a} (b
Figure 6.13

The slope of the tangent to the stress/strain curve at a value of stress equal to o is equal to
the value of the tangent modulus of elasticity Et (Note: this is different from the value of
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E at the elastic limit). The value of Et can be used in the Euler Equation to obtain a
modified slenderness corresponding to the value of stress ¢ as shown at position ‘X’ in
Figure 6.13(b):
% a
b O . . ol O
- . Slenderness A at positionx = (L/r) = L
(L)

If successive values of X for values of stress between o . and ¢  are calculated and plotted
as shown, then a curve representing the intermediate elements can be developed. This
solution still has many of the deficiencies of the original Euler equation.

H:

6.4 Perry-Robertson Formula

The Perry-Robertson Formula was developed to take into account the deficiencies of the
Euler equation and other techniques such as the Tangent Modulus Method. This formula
evolved from the assumption that all practical imperfections could be represented by a
hypothetical initial curvature of the column.

As with the Euler analysis a 2" Order Differential Equation is established
and solved using known boundary conditions, and the extreme fibre stress
in the cross-section at mid-height (the assumed critical location) is
evaluated. The extreme fibre stress, which includes both axial and bending
effects, is then equated to the yield value. Clearly the final result is
dependent on the initial hypothetical curvature.

Consider the deformed shape of the assumed centre-line of a column in
equilibrium under the action of its critical load P. and an assumed initial
curvature as shown in Figure 6.14.
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Vo = assumed hypothetical initial
curvature 1o represent all
practical imperfections

» = additional curvature due to
buckling

Figure 6.14

The bending moment at position x along the column is equal to=—P.(y+Y,)

dx’
z.,
o df +£y=_ I:::J.}'Io
dx” El El
Fri

Vo = @ Sin(—]
If the initial curvature is assumed to be sinusoidal, then L where a is
the amplitude of the initial displacement and the equation becomes:

(d-*f] + (i];p =_ [if]a SinE
dx” El El L

The solution to this differential equation is:

F,

P, (P o (m
y=ACos| —=x | + B Sin x|+ —=—— Sin|—
EI El at P L
I’ EI
The constants A and B are determined by considering the boundary values at the pinned
ends, i.e. when x=0 y=0 and when x=L y=0.

and hence the bending moment = Ef[d"y] == Py +yo)

Substitution of the boundary conditions in the equation gives:
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i ) F
x=L y=0 s B Sin [E._jf L] =1} For [b_}] not equal to zero, then H=10

= —H—J Sin [EJ I the equation 15 divided throughout by [%J then

2 E
. e N
a Sm[—J 3 uSLn[ ]
y= i The Euler load Py = e T Y7
TiEf I [PF J
——1.0 — 1.0
PL P,

The value of the stress at mid-height is the critical value since the maximum eccentricity
of the load (and hence maximum bending moment) occurs at this position;

. e
aSin| T
when x=L/2, Sin[-]%-] =1.0  and Vessnheigm = = 4

7

(Note: y, at mid-height is equal to the amplitude a of the assumed initial curvature).

The maximum bending moment

M:Pc {a{'}'rm[d-hcight}zpca ]+

The maximum combined stress at this point is given by:

axial load . bending moment x c] _ [F; . M ch

A .r' A Arl
where c is the distance from the neutral axis of the cross-section to the extreme fibres.
The maximum stress is equal to the yield value, i.e. 6maximum=0y

T maximum (

b M P, | :
o (Bt B g s <
A Ar A P Ar
—~£ 10
£

The average stress over the cross-section is the load divided by the area, i.e. (P/A)
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. - I ac _ Fe ac
<o Ty = O gvenge 'i'aa.vfmgl: ﬂ -F:__ ® r_:r = F pvernge 1+ ﬂ ‘-ﬂ- Kr_l

O gverape = (Pe/A) and & Euter = (PEuter /A4)

O ac
Oy = hyverage l+| ————— |x—
O — Ja'-t'."am' r
The (ac/r?) term is dependent upon the assumed initial curvature and is normally given
the symbol .

HOg
O —0

Oy = Cyverage | +
L
This equation can be rewritten as a quadratic equation in terms of the average stress:
':":',' (Jlf - G_H\.'r.':nu?’b] = Jm‘fmgi: [{I + -F.IJG} - G—a\'cn’lg::]
Jzavcragt - G-a'.'rrag:: [J;.' + (I + ?}]G}] + 'Oa'ﬂ-i-i = "'}
The solution of this equation in terms of Gayerage IS:

B [ff:,- +(1+ FI)UE]_JI‘-T}- +(1+ W}JL]: —do 0

average ~
2.0

This equation represents the average value of stress in the cross-section which will induce
the yield stress at mid-height of the column for any given value of n. Experimental
evidence obtained by Perry and Robertson indicated that the hypothetical initial curvature
of the column could be represented by;

= ﬂ-:"'[Lcﬂi':cti\'t: ."I ].'Dﬂ!’;}

which was combined with a load factor of 1.7 and used for many years in design codes to
determine the critical value of average compressive stress below which overall buckling
would not occur. The curve of stress/slenderness for this curve is indicated in Figure 6.15

for comparison with the Euler and Tangent Modulus solutions.
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Figure 6.15
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6.5 European Column Curves

Whilst the Perry-Robertson formula does take into account many of the deficiencies of
the Euler and Tangent Modulus approaches, it does not consider all of the factors which
influence the failure of columns subjected to compressive stress. In the case of steel
columns for example, the effects of residual stresses induced during fabrication, the type
of section being considered (i.e. the cross-section shape), the material thickness, the axis
of buckling, the method of fabrication (i.e. rolled or welded), etc. are not allowed for.

A more realistic formula of the critical load capacity of columns has been
established following extensive full-scale testing both in the UK and in
other European countries. The Perry-Robertson formula has in effect been
modified and is referred to in design codes as the Perry strut formula and
is given in the following form:

(P = PPy = Pe) = 11 PE Pefrom which the value of p; may be obtained
using:

. p 1) Y N
Rp—— . inwhich g= 20 e )
TS o

+ ‘_f’}:f’y

where:
py is the design strength
A is the slenderness

The Perry factor n for flexural buckling under axial force should be taken
as:

n=alA— A)/1000 =0 where A, =02 (1’E f,m}"'j

Ao is the limiting slenderness below which it can be assumed that buckling will not occur.

The European Column curves are indicated in graphical form in Figure
6.16.
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The Robertson constant a should be taken as 2.0, 3.5, 5.5 or 8.0 as
indicated in design codes depending on the cross-section, thickness of

material, axis of buckling and method of fabrication.

Stress (o)
o

European Column Curves

Slenderness (A) —

Figure 6.16

Typically, the values of ‘a’ are allocated to various cross-sections as

indicated in Table 6.1.

Type of section Maximum Robertson’s
thickness (see constant ‘a’
Note 1)
Axis of buckling
X-X y-y
Hot finished structural hollow 2.0 2.0
section
Cold-formed structural section 55 55
Rolled I-section <40mm 2.0 3.5
>40mm 35 55
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Rolled H-section <40mm 3.5 55
>40mm 5.5 8.0
Welded | or H-section (see Notes 2 <40mm 3.5 55
and 4) >40mm 35 | 80
Rolled I-section with welded flange <40mm 2.0 3.5
cover plates 0.25<U/B<0.8 (see >40mm 35 55
Figure 6.17a)
Rolled H-section with welded <40 mm 35 55
flange cover plates 0.25<U/B<0.8 >40mm 55 80
(see Figure 6.17a)
Rolled I or H-section with welded <40 mm 35 2.0
flange cover plates U/B>0.8 (see >40mm 55 35
Figure 6.17D)
Rolled I or H-section with welded <40 mm 35 55
flange cover plates U/B<0.25 (see >40mm 35 80
Figure 6.17¢)
Welded box section (see Notes 3 <40 mm 35 3.5
and 4) >40 mm 55 | 55
Round, square or flat bar <40 mm 35 3.5
>40mm 9.5 9.5
Rolled angle, channel or T-section Any axis: a=5.5

Two rolled sections laced, battened
or back-to-back Compound rolled
sections
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Note 1 : For thicknesses between 40 mm and 50 mm the value of p. may
be taken as the average of the values for thicknesses up to 40 mm and over
40 mm for the relevant value of py.

Note 2 For welded I or H-sections with their flanges thermally cut by

machine without subsequent edge grinding or machining, for buckling

about the y-y axis, a=3.5 for flanges up to 40 mm thick and a=5.5 for
flanges over 40 mm thick.

Note 3 The category ‘welded box section’ includes any box section
fabricated from plates or rolled sections, provided that all of the
longitudinal welds are near the corners of the cross-section. (This is to
avoid areas in the cross-section which have locked in residual compressive
stresses which induce premature failure at a reduced buckling strength).
Box sections with longitudinal stiffeners are NOT included in this
category.

Note 4 For welded I, H or box sections p. should be obtained from the
Perry strut formula using a py value 20 N/mm? below the normally
assigned value. (This is a simplification to avoid the use of a different set
of curves which are required for fabricated sections).
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Table 6.1

— e . ‘ ‘.'
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Figure 6.17

The design of the majority of concrete and timber column members is usually based
on square, rectangular or circular cross-sections, similarly with masonry columns square
or rectangular sections are normally used. In the case of structural steelwork there is a
wide variety of cross-sections which are adopted, the most common of which are shown
in Figure 6.18.

o o] ) 5 "‘:r-‘"'.. T
UB/UC Hollow Compound Laeed Battened Welded Box
segtions seclions seglions seclions seetions seclions
Figure 6.18

In all cases, irrespective of the material or member cross-section, an assessment of end
and intermediate restraint conditions must be made in order to estimate effective buckling
lengths (Lg) and hence slenderness A. It is important to recognise that the effective
buckling length is not necessarily the same about all axes. Typically, it is required to
determine two Lg and A values (e.g. Lgy, Ay and Lgy, A), and subsequently determine the
critical compressive stress relating to each one; the lower value being used to calculate
the compressive resistance of a member. In the case of angle sections other axes are also
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considered. The application of the Perry strut formula to various steel columns is
illustrated in Examples 6.1 to 6.4 and Problems 6.1 to 6.5.

6.6 Example 6.1 Slenderness

The square column section shown in Figure 6.19 is pinned about both the x-x, and y-y
axes at the top and fixed about both axis at the bottom. An additional restraint is to be
provided to both axes at a height of L, above the base. Determine the required value of L,
to optimize the compression resistance of the section.

¢ S Fimned smppont For oplimum compression resistanee the maximum
— T slenderness for lengths AB and BC must be the same,
- e A ™ j[—.('

Ao = Ay = Lifr (1 = Py since the section is square)

1 hl i (Lean/ ry=(Leped r)

\
T!

. [‘:I:_::m Consider the effective lengths of AB and BC
R Ly =085 and  Lepe= 104,
o DEBRLy =100,
| The total height of the column (£; + L) = 6.0 m

S By # 0BSE = 6.0 and henee Ly =324 m
Ly=2T76m
The required value of £, = 3.24 m

A

Fixed support

Figure 6.19

6.7 Example 6.2 Rolled UC Section

A column, which is subjected to a concentric axial load ‘P’, is shown in Figure 6.20.
Restraint against lateral movement, but not rotation, is provided about both axes at the
top and the bottom of the column. Additional lateral restraint is also provided about the y-
y axis at mid-height as shown.

Using the data provided determine the compression resistance of the
column using the Perry strut formula.
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assume  pinned P
at the top ‘\\ ,

225m

=

&

\\
%
45m

225m

E

pinned base
Figure 6.20

Data:

Yield Stress  p, =355 N/mm’° E =205 kN/mm’

R.obertson Constants: y—y axis a=35.5
X—X axis a=3.5
Section
Secti
Pmp'e“r':y 203 x 203 x 60 UC
Universal Column
Cross-sectional Area (4) 76.4 cm’
Radius of Gyration (r,,) 5.2 cm
Radius of Gyration (r.) 8.96 cm
Solution:
Perry strut formula:
] 3
Pe= -—-P'!'P!" 3 where ¢ = —PF i (ji+ I}P'; H M= [¥
¢+{:¢2 “PEP}'T - A

p=alh=)1000  but fp=z=0
Ay = 02(2Elp,)*
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Consider the y=yp axis: (o= 5.5)

Buekling length Ly 2(l.0x225)=225m
The effective buckling length Sl ,=235m
22
Slenderness A, 2230 43.27;
’ 320

) [#®%205x10°
Z 43.27°

Euler stress pg = [ ] = 1080.6 Mimm®

Limiting slendemess A= 0.2(7Elp,)"" = [0.2 % (n° = 2050000355)")
15.1

= a{d - A)1000 = 5.5(43.27 - 15.1)/1000 = 0.155

Cop e 355+{0155+1)10806
- 2 B 2 -
_ Pyt _ (1080.6x355)

g+ -pop,J”  8015+(801.57 ~1080.6x355)”

¢ 800.3

= 202.8 Nfmm

I8

Consider the x=x axis: (o= 235)
Buckling length Lowz(l0xd45)=45m
The effective buckling length Lyy=45m

4500
Slendemess 4, | = = 522
cndermness 4, 0.6

2 2. 3 .
Euler stress py: = [’:—,F] = [M] = §02.2 N/mm~

Limiting slendemess 1, = 0.2(xElp,)"* = 15.1
=i — A)1000=3.5(50.22 — 15.1)/1000 = 0.123

_py+ln+py 35540123 +1)802.2
2 2
Py B (802.2x 355)

o+ -pen, )" 62194279 -s022:355)"

= G27.9

Pe= = 297.0 Nimm?

Critical value of p, = 292.8 Nimm®

Compression resistance  Pr=(p, x A) =(292.8 x 76.4 = 107107 = 2237 kN

6.8 Example 6.3 Laced Section
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A column comprising two Universal Beam sections laced together to act compositely is
shown in Figure 6.21. The restraints to lateral movement about both the A-A and B-B
axes are as indicated. Using the data given determine the compressive resistance of the

Data:

Section Property

Section

533x210x82 UB
Universal Beam

Cross-sectional
Area (A)

105 cm?

Radius of
Gyration (ryy)

4.38 cm

Radius of
Gyration (rx)

21.3cm

2" Moment of
Area (Ix)

47500 cm*

2" Moment of
Area (lyy)

Solution:

Pised =
Suppon

Laweral
(L= TN

'.'.
Pinned

suppont =

Flestraint ot
Lhiz A-A, spras

Figure 6.21

15m

LY

2010 cm*

5m

im

I L‘tm
s 4"

i
Besroant about
the B-1E asis

——k

section using the Perry strut formula.

Yeild Stress P,=275 N/mm?

Young’s Modulus E=205
kN/mm?

Robertson Constants:
X-X axis a=5.5
y-y axis a=5.5

kerocs at
2.Fm cealres

150 mm £ 150

M
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Composite Section Properties:

A = (210500 ) =21.0 x 10° mm’
I a=2 x[2010x10* + (10500 x150 J] = 512.7 x 10° mm*
T = (2 % 47500 = 10%) =950 = 10° mm*

512.7x10° 950 = 10"
F = f———— = | 56.25 mm; Foop = |——— =212.7mm
A ETITS S ETyreeTS

The possibility of buckling of the individual UB sections and the composite section must
be considered in this problem as follows:

(Extract from to BS 5950-1:2000 Structural Use of Steelwork in Building)

“The slenderness A of the main components (based on their minimum
radius of gyration) between consecutive points where the lacing is
attached should not exceed 50. If the overall slenderness of the member is
less than 1.42 the design should be based on a slenderness of 1.4..”

Perry strut formula:

_ Pyt (7+)pse .

IO
Psly where ¢

95+(¢3 _‘PL:PF)M 2

- TE
E ‘J':

g=ald =) 1000 but #5z0
Ao =0.2(7Elpy)"’

Pe=

Note: Since the same curve is used for both the A-A and the B-B axes in this case (i.e.
a=5.5), the compression resistance will correspond to the axis with the highest
slenderness value, i.e. the one which produces the lowest p; value.
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Y 533x210=82UB

b

Buckling of individual section
between the laces

Consider an individual UB section:

Assume  Lg, = (1.0 x 2000) = 2000 mm
ry =43.8 mm
A =(2000/43.8) = 45.66
<30
1.44. =(1.4 x 45.66)=63.92

Consider the composite section:

Consider the A—A axis:
Buckling length L, 5, =(1.0x4.0)=4.0m
=2(0.85x11.0)=935m

The effective buckling length .. Ly, =935m

9350
156.25

= 59.84
< .44

Slenderness Apn=
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laces at 2.0 m centres
¥ 4 ¥

I ] '
e et el |

Y

¥

L

S

}. ."\. }.
Consider the B-B axis:

Buckling length Lppz(1.0x40)=40m
>(1.0x3.0)=3.0m
=(0.85x5.0)=425m

The effective buckling length .. Lg.g=425m

4250
Slend = —— =19.9§;
enderness AB B 127

<144

Since 1.42 is the largest value this should be used to determine the value of p. using the
Perry strut formula.

2 2 3
Euler stress pg = | — E| o | 22x205X107 | _ 155 5 Njmm?
A 63.92°
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Limiting slenderness Ao = 0.2(7Elp)"* = [0.2 = (z° = 2050000275)"*] = 17.15

g=ald = 21000 = 55(63.92 - 17.15/1000 = 0.257

g 2 +r+)ps 275+ (0.257 +1)495.2
2 2

PRp— - (495.2x275) = 193.4 N/mm’

p+lg*—pep, )’ 4487+ (4487% — 49525275

= J48.7

Critical value of g, = 193.4 N/mm’
—; — 3 3 _
Compression resistance P.=(p. x A)=(193.4 x 21.0 x 10°)/10° = 4061 kN
A similar approach is taken when designing battened struts, the
corresponding Clause in BS 5950-1:2000 Structural Use of Steelwork in
Building is as follows:

“The slenderness A of a main component (based on its minimum radius of
gyration) between end welds or end bolts of adjacent battens should not
exceed 50. The slenderness A, of the battened strut about the axis
perpendicular to the plane of the battens should be calculated from:

2o = (A + 2™

where A, is the ratio Lg/r of the whole member about that axis. If A, is less than 1.4 the
design should be based on A,=1.4A.. ”

The application of this is illustrated in the solution to Problem 7.5.

6.9 Example 6.4 Compound Section

A column ABCE of a structure is shown in Figure 6.22. The column is 15.0 m long
and supports a roof beam DEF at E. The beam carries a load of w kN/m length along its
full length DEF. The column is fabricated from a 152x152x23 UC with plates welded
continuously to the flanges as shown. Using the data given determine:

(i) the compression resistance of the column, and
(i) the maximum value of w which can be supported.
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Data:
Section Property Section
152x152x23 UB Yield Stress p,=275
Universal Beam N/mm?
Cross-sectional 29.2 cm? Young’s Modulus E=205
Area (A) kN/mm?
Radius of Gyration 3.70cm Robertson Constants:
(ryy)
Radius of Gyration 6.54 cm X-X axis a=5.5
()
2" Moment of 1250 cm* y-y axis a=5.5
Area (Ix)
2" Moment of 400 cm’
Area (lyy)
Fixed
Huppon m
'\-\‘!‘ g

= g C e T

e 1 ¥y

Supporl 22000« 10 mm plates 152 = 152 = 23 U0 Support

Restraint about Cross-section of colamn Hestraing ahout
the A—A axis the - axis

Figure 6.22
Solution:

(i)
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A=[2920+2 % (10 x 200)] = 6.92 x 10° mm’
=5 3
I = [Zx[,‘%q-{lﬂxﬁﬂl}xﬁl.f]]-t-dﬂﬂxlﬂ"-‘ = 30.41 x 10° mm*

]
Jsn = 125010* +[2x%] =125.83 % 10° mm*

[:] - 0
Fan ™ 1‘M— = 6629 mm; p= .JM- =61.10 mm
6.92x10° 692107

Perry strut formula:

3 1 p,. g+ 1) p. E
p: = 4}’—1‘ “Irhcrc ¢= L%‘I pl_: B [1—3]
¢+ (¢ - pery) -

n=allo- 1000 bt pz0

Ao =027 Elp,)?

Note: Since the same curve is used for both the A-A and the B-B axes in this case (i.e.
a=5.5), the compression resistance will correspond to the axis with the highest
slenderness value, i.e. the one which produces the lowest p. value.

Consider the A-A axis:

Buckling length Lanz(085%2.0)=1.7Tm
=2(1.0x4.0)=4.0m
=(1.0x9.0)=9.0m

The effective buckling length S Ly Aa=90m
9000
Slenderness Asa=——=135.77;
66.29

Consider the B-B axis:



Buckling instability 513

Buckling length Lgp2(1.0x6.0) =6.0m

=(0.85x9.0)=7.65m
The effective buckling length S Lgp=7.65m
Slenderness Agp = % = 125.20;

Since Aa-a is the largest value this should be used to determine the value of p. using the
Perry strut formula.

o) 3 1
Euler stress pe = il ,L o 205x*l 0 = 109.8 N/imm’
A 135.77°

Limiting slenderness 4, = 0.4 Elp,)"" = [0.2 = (a” = 205000/275)"] = 17.15

n=ali - V1000 = 5.5(135.77 = 17.15)/1000 = 0.652

4= P+ 0pe 2754 (0.652+1)109.8
2 2
_ PPy _ (109.82275)
6+ -pep,)”  2282+(2282% —109.8x275"

=228.2

e

= 80.28 N/'mm’

Critical value of p;=80.28 N/mm?
Compression resistance P.=(pcxA)=(80.28x6.92x10%)/10°=555.5 kN
(i)
(D) 5.0m . 15.0m
w kN/m — N

Ve

Figure 6.23
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The maximum value of the vertical reaction at E=555.5 kN

+ve‘) EMe=0 (150 Vg) - (wx20%2)=0
"s Winaximum = (15.0 % 555.5) /200 = 41,66 kN/m

6.10 Problems: Buckling Instability

A selection of column cross-sections is indicated in Problems 6.1 to 6.7 in addition to the
position of the restraints about the x-x and y-y axes. Using the data given and the
equation for the European Column Curves, (the Perry strut formula) determine the value
of the compressive strength p. and hence the compression resistance, for each section.

Data:

Table 6.2- Section Property Data

Problem No. | py (N/mm?®) | E (kN/mm?) Robertson Constant

XX y-y
6.1 275 205 3.5 2.0
6.2 255 205 3.5 3.5
6.3 275 205 5.5 5.5
6.4 255 205 3.5 3.5
6.5 275 205 5.5 5.5
6.6 275 205 5.5 5.5
6.7 255 205 5.5 5.5
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Table 6.3- Section Pro perty Data

Section Section
Property

533%210x82 | 457x152x52 | 200x90x30 | 150x100x10

UB UB Channel Hollow Section

Overall 528.3 mm 449.8 mm 200.0 mm 100.0 mm
Depth (D)
Overall 208.8 mm 152.4 mm 90.0 mm 50.0 mm
Breadth (B)
Cross- 105 cm? 66.6 cm? 37.9 cm? 42.6 cm?
sectional
Area (A)
Radius of - - 2.88 cm 3.01cm
Gyration
(ryy)
2"Moment | 47500 cm* | 21400 cm* | 2520 cm* 1160.0 cm*
of Area (Ix)
2" Moment | 2010 cm* 645 cm* 314 cm* 614.0 cm*
of Area (lyy)
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. é denotes a pinned

o]
[ E—— Bz
s
Lo
ﬁ: <3 = o
=
B kil
s
=3
E
=

40m | 40m
80m

support

denotes a fixed support

b

Restraint Restraint
alboul the about the
Y= ANis N—X axis
Problem 6.1
] n

[

it
[

13m

A

in.
q
TJL

B——o denotes a lateral restraint
250 mm = 10 mm thick plate

533 =210 = 82 UB

! 250 mm = 10 mm thick plate

W,

SB0 parm wide = 10 man thick plate
e and botrom

533 =210 B2 UB

Resiraind Restraint s
whowut the about the : H L
A-A axis E-B axis 125 mm | 125 mm
— 4 i
¥ A ¥
Problem 6.2
i Y L
E =
=
- &
N wi
g’_‘ 3 E
& " |
E F—1 =
e -
=
E =1 £
= W
e
[ sl . — e
.. s
Restrain Feestraing
about the about the
A=A axis 3-13 axis SRl 2l0=B2UR

Problem 6.3



itm l

[ 1.0m [ 1.5m
.

Kedrnt
about the
A=A o

Problem 6.4

25m \,m )

| 40m

ks

Restraint
about the
A= anis

Problem 6.5

k

20 m1:.o m  iim

117

25m l

et
Bestramt
about 1he
A-A s

Problem 6.6
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A
2 " 45 mm 10 nmm 45 mm
I
E 10 mm thick T E
S g
-r E — -
2 B B E
%— —_— g
E & mm thick plate i
= E
A e 1y thick T -]
Resiraint A
nbowt the
B-B axis
Y A
vl
L te-p-- battens at 1.25 m centres
E i
- i i ‘e 312mm
3 eeeeees S 1
L& B 90 mm gap
A (SR 2/200 x 90 % 30
Restraint =t channel sections
about e FA
Bt axis A
B A
¥ iy
g Lo
o
e
=
B S
i [ T
P |
. =i H
B—1 —F :
= H
pd ;
b I ,'I-' | T2 200w W 30 channel sections

P

estraing
kot the
B axis

Bl

weldod @ the oes
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i R— < ] A
- ; loces &t 1.5 m cemres _\‘.ll1l'.'lmm :Ilﬂmm\;r
E - A §
wy -
2l | ' =
= - &
- -
B— —T%|a—{ 3 :
= = i
B = B - e
w B :
.
-

R 'I-
~ ~ i —

20130 = 1040= 10

Restraing Restraing S H
about the about the Rectangular Hollow Sections H
A=A axis B-13 axis A

Problem 6.7

6.11 Solutions: Buckling Instability

Solution
Topic: Buckling Instability
Problem Number: 6.1 Page No. 1
— e, -

i E
= B x, a 533 = X100 = BF LIES
=
B i E
e =
=
T —_—
Restrail K i
_‘;,;JE.: n::;almhl. ¥ 2800 = 10 mam hick plate
oy anis X s
" Section
P’;“;ﬂ“;}_ 533 % 210 = 82 Py =275 Nimm®_
Universal Beam £ =205 KMN/mm”
Owerall Depth (1) 528.3 mm
Owerall Breadth (4 208.8 mm R.oberison Constant:
Cross-sectional Area (A 1S e K= AXIS a=3%5
._"_r—l_L—!_
2™ Moment of Area (f,,0 AT500 em v axis a=2.0
[ =01t cm? | L -
2™ Moment of Arca (5.0 20010 cm

A= [10500 + 2 = (10 = 250)] = 15.5 = 10" mm®

by = [zx[%}mwmu‘] = 46.14 = 10° mm?

how= {-I‘F!r[]ﬂxl[}‘ 2% +{mr250x259.15’}|” = B37.28 % 10° mm®

46, 14 10* rss'.r_zsxm*'
Pyoy = 55nl0" = 5456 mm; Fox = TS = 232.4 mm

Perry strut formula:

[zsoxm‘

. 1 _ 2 -
. Pa iy . where g 2 "[r;*- i = [“’ __-*'J
_FLF:T "

=gk = o) 1000 bt nz=0
Ay = 0.2 FEp )t
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Solution
Topic: Buckling Instability
Problem Number: 6.1 Page No. 2

Consider the ¥=¥ axis:  (a=2.0)
Buckling length £y 2 (10 = 2.0 = 2.0m
=(0.85x20)=1Tm
The effective buckling length . Ly, = 2.0m
Slenderness & = L L 3060;
AT Sase

= 15055 Nfmm’

x*xzusnm‘]

Euler stress iy = 2 | = [

A
Limiting slendemess As = 0200 Elp )" = [0.2 % (7 » 2050000275 = 17.15
n=alAd - LY 1000 = 2.0(36.66 — 17.15)1000 = 0.039

gu Pt le oy 295+(0039+ 15055

2 2
Py - {1505.5x275)
¢+ -pep,]”  919.6+(019.6% -1505.5x 275"

=016

=262.6 N/mm®

=

Consider the x-x axis: (o= 3.5)

Buckling length L. 2 (1.0 x4.0)=4.0m
=(0.85 = 4.0)=34m

The effective buckling length - L., = 4.0m

Slendemess 2= S0, _ |7.2];
2324

2 2.9 ] .
Euler stress py = (.rr E] - [’ur gt el ] =5831,1 Wimm
Limiting slendemess A = 0.2(7Ep )" = 1715
n=ald = Y1000 = 3.5(17.21 = 17.1511000 = 0.0002

e+l 275+ (0.0002+1)6831.1
¢= - -
2 2
Peb, _ (68311 275)
gl -pep, [ 355374355377 —6831.1x275f

=3553.7

= 2749 Nimm®

f

Critical value of p, = 262.6 Nfmm®
Compression resistance  Po= (p, % Ag) = (262.6 x 15,5 x 10°W10" = 4070 kN
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Solution
Topic: Buckling Instability
Problem Number: 6.2 Page No. 1
. A%0 em wide = 10 mm ihick plae
e I W“_"_\ Lo ard bottom
E
iy
g:—f —
E W E E 1-.‘-.?\'%.\
e - = =
=t
-l
E B
= -+ :
| ] i
—_— A :
e = S S,
mﬁ; mﬂmur: 125 mm _125 i
A=A anis B-13 axis -
b * ¥
S Section
P:":;"[:’:} S =210 %62 py = 255 Nimm®
Uiniversal Beam E =205 kN/mm*
Owerall Depth (13 538.3 mm
Orwerall Breadth () 2. E mim Robertson Constant:
Cross-sectional Arca (A) 105 cm’ A-Aaxis @=31.5
2" Moment of Arca (f,.) 47500 em” B-Baxic a=3.5
2™ Moment of Area (1, b 20010 cm’

A= 2% [10500 + (10 x 480)] = 30.6 x 10° mm’®
1
&A"Erﬂﬂ%?L}QMﬂﬂf+hMMfoﬂwﬁlﬁxlwmﬁ

f",“=2x{4?5ﬂﬂxll'l' 'm'::“'“ + (10 480 269.15° ]I]} 1645.52 % 10° mm*

-
552 6511? 13439 mm: Fap= M:Z}].ml“m
*"\ 306510 " 306x10

Perry strut formula:

Pl o, +lip+1)p 7'E
#ﬂ “-hl:m ¢= 'TI = FJ: = _:
#+l¢* - pep,) . A

= alh = i) 1000 bt =0
A= 027 Elp)"*
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Solution
Topic: Buckling [nstability
Problem Number: 6.2 Page No. 2

Note: Since the same curve is used for both the A=A and the B=B axes (e a = 3.5),
the compression resistance will correspond to the axis with the highest slendemess
vilue, e the one which preduces the lowest p, value,

Consider the A=A axis:

Buckling length Loz (1.0 = 4.0)=4.0m
z2{10=30)=30m
2(0ES = 5.0)=425m

The effective buckling length . Lyy =425 m

4250

¥ g - = b I
Slendemess Ay o 13439 3l.62:

Consider the B-B axis:

Buckling length Ly g2 (1.0 = 4.0)=4.0m
2(085=110)=%35m

The effective buckling length . Ly gy =935 m

Slendemess Ay = —— =

Since Ayp is the largest value this should be used to determine the value of p, using
the Perry strut formula,

: 2 3
Euler stress py, = [::ﬁ] = ['T :-c!l]S:-_c]l] ] = 1244.6 Nfmm®

Limiting slendemess A = 0.2(7 Elp, )" = [0.2 x (° » 205000/255)"%) = 17.82

n=el A= AV 1000 = 3.5(40.32- 17.82Y1000 = 0.079

= 79896

py e pe 2554 (00794 1)1244.6
¢= = -
2 2
Pl . (1244.6 = 255)

" = 2324 Nimm®
g+ -ppJ 719096+ (194.96° 1246255

P

Critical value of p, = 232.4 MNimm’

Compression reslstance  Po= (pe x.Ag) = (2324 % 3006 = 1000107 = TH11 kN
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Solution
Topic: Buckling Instability
Problem Number: 6.3 Fage No. 1

r

|3.l.rm| 35m | 40m

L

45Tx 152« 32U

Restraing Reestmaint L
aboist the about the S33 = 200 82 UR

A=A axis B-B ais

Section

Iﬁ‘;‘;“r:r E33x210x82 | 457152052 Py=275 Nimmy’_

Universal Beam | Universal Beam Fo= 205 KN mm™

Owerall Depth () 3283 mm 4498 mm
Overall Breadth () 2088 mm 1524 mm Robertson Constant:

Cross-sectional Arca (4) 105 cm’ 6.6 cm” A=Anxis a=355

2 Moment of Area ([l 47500 em’ 21400 em’ B-Baxis a=353

Moment of Area (£.) 2000 em’ fidd em’”

A= (10500 + 6660) = 17.16 % 10" mm’

= 6660 4.8+ 224.9)

17.16: 10" = 8913 mm

Ia= [2010510% + (1050089157 |+ 21400 10" + (6660 140,557 ]
= 449.11 = 10" mm*

Ty = [[47500510 )+ (54510" )] = 481.45 x 10° man*

4491110 481.85x10°
- ,,— - 151.78 mm: - 1'—_ = 167.51 mm
R ETRTTS el ETITTE "
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Solution
Topic: Buckling Instability
Problem Number: 6.3

Perry strut formula:
Py

py+{m+1)pe

-

Pe where g=

) #*’{'ﬁl_FEF}rs =

1
Pe= [ﬂ] s pEalh- 1000 bt mz0 A=02(7Ep)
A :

Note: Since the same curve is used for both the A=A and the B-B axes (i.c. a = 5.5),
the compression resistance will correspond 1o the axis with the highest slendermess
value, 2. the one which produces the lowest p value,

Consider the A=A axis:
Buckling length Lo 2{1.0= 3.00=30m
2{10=x351=35m
Z(l0xa0)=40m
The effective buckling length . Ly =40 m
4000

= = ¥
Slenderness Ay TIRT 24.72;

Consider the B-B axis:
Buckling length Ly p 2 (0.85 x 5.25) = 4463 m
The effective buckling length . Ly g =4463 m
g o 63 _
Slenderness Ay 6751 26.64;
Since App is the largest value this should be used to determine the value of pe using
the Perry strut formula.

Y 2 3
Euler stress i = - [” b ] = 2850.9 Nimm?

Limiting slendemess 4, = 0.2(7Ep,)"* = [0.2 = (7 = 2050007275 = 17.15
n=alA - AV 1000 = 5.5(26.64 — 17.15)/1000 = 0,052

o, +lp+ e 2754 (005241028500
iﬁ - ]

2 2
_ Pupy _ (2850.9%275)
Pe= 3 w 5 )
¢+l -pep,]” 16371416371 ~ 285095275

Critical value of p, = 260.0 Nmm®

= 1637.1

= 260.0 Nimm?*

Compression resistance  Po= (pe %.Ag) = (260,0 % 17.16 = 1077107 = 4461 kN
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Solution
Topic: Buckling Instability
Problem Number: 6.4 Page No. 1

A

45 mm 10 mm 45 mm

10 e thick T

& mam thick plate

[}
I’ﬂi 1] |'K| mm | 80 |r

10 mm thick T
Restraim
aboul the
BB nxis

Py = 255 Nimm®, E =205 kN/mm’;
Robertson Constant: A-Aoaxis  a= 35 B-Baxis a=35

A= 2 [(10 % 100) + (10 x B0} + (& = 90)] = 5.04 = 10’ mm’
0= 8’ 103 100° snxm’]

B +|[9Dx8=¢5-i’]+ T

!A.1=2K|:

= 5.887 = 10° mm"

Ll 1 X
fpp=21x [%H{mxﬁﬂx S:’nﬂq—%-p[mxlﬂﬂxw’h Bt ]

12
= 16.602 x 10° mm*

5887 =10% 16.602 = 10°
Faa = gf=——————— =318 mm: rggp= |——— =539 mm
AR FY TS # \J 5.04x10°

Py . 1)p,
PPy gberw g p,,+[r:+ Jﬁ:

[ +{'#: = Pefy =

walh - 3a)1000  but p=0
27 Elp,)"

e =
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Solution
Topic: Buckling Instability
Problem Number: 6.4 Page No, 2

Mote: Since the same curve is used for both the A=A and the B-B axes {i.e. a = 3.5), |
the compression resistance will correspond to the axis with the highest slendemess
vialue, i.e. the one which produces the lowest p. value.

Consider the A=A axis:

Buckling length Lo, 2{1.0x 1.0)= 1.0m
z2{l0=x15=15m
2{l0=35)=35m

The effective buckling lengih . Lyo=35m

3500

Slenderne = = | 2.4;
endermess Ay s TR

Consider the B-B axis:

Buckling length Ly p=(1.0x20) =20m
(085 x40)=34m

The effective buckling lengith . Lgg=34m

. - 3400
Slendemess = = 59,24
STLOCTIHESS L 5139

Since A i5 the largest value this should be used to determine the value of p, using
the Perry strut formula,

ﬂ] . [;’ % 205%10°

Euler stress py = [ = ] = 195.0 Nfmm®

FS 1024°
Limiting slendemess A = 0.2(7 Elp,)"* = [0.2 = (7 » 205000/255)"] = 17.82

0= ali - A)1000 = 3.5(102.4 — 17.82)/1000 = 0.296

Cpytlre e 2554 (0.296+1)193.0

2 2

Pely _ (1930 255)
golg =pop, )" 25264(2526° 193.0x 255"

= 2526

¢

= 131.8 Nimm’

m=

Critical value of = 131.8 Nimm®

Compression resistance  Pe= (pe % Ag) = (1318 x 5.04 x 10°)10° = 664.3 kN
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Solution
Topic: Buckling Instability
Problem Number: 6.5 Page No. 1
. e A
B y | ¥
i) Somtooloolo- - baltens @ 125 m centres
E I
n .f. ‘g . 2mm
e w
Bwa B
E I
& o S A gap
- -
— i — H ! = 1 HHD T 30
_ ok CRERIDNE LRSS channel sections
Hestraim Fesiraim i ] :
ahowul the whout the ¥ )
A=A s B axis A
Section Py =275 Nimm*
Pty 200 % 90 % 30 E = 205 kN/mm’
e Channel Section
Owerall Depth (20 2040 mm Robenson Constant:
Overall Breadth (£) 90,0 i A-Aaxis a=53
Cross-sectional Area (A) ETT B-Baxis wa=3535
Radius of Gyration (., ] 288 cm
| 2°7 Moment of Arca (£, 2520 em’
| T Moment of Area (1.} 318 em’” Compasite Section Properties:

A=(2%3790) = 7.58 = 10° mm®
Ina=2x [B1ax10* +(3790x76.2% )] = 50.29 x 10° mm"
Fop = (2 = 2520 = 10° ) = 50,40 = 10" mm*

50.20%10% $0.40%10°
Faa= Jf————=8l45mm: fp= |————— =8L5d mm
SR FXTTMTE # \J?.ﬁsxm’

The possibility of buckling of the individual channel sections and the composiie
section must be considered in this problem as follows:

{Extract from to BS 5950+ 1:2000 Structural Use of Steelwork in Building)

The stenderness A of a main component fhased on fis minfmum rading of gyration)
betweenn end welds or end bolrs of adiocent bavrens shonld ol exceed 50, The
slendermess Ay of the battened strnt about the axis perpendicular o the plane of the
baitrens shonld be calerlated fram:

A= {.?,..z + 5 wihere A, is the ratio Lyr af the whole member abont (hal axis,

I A ix less than 1 44 the design should be based on A, = 144
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Solution
Topic: Buckling Instability
Problem Number: 6.5

Perry strut formula:

b B, + Ler+ L)y,
po= —By _ where g= DT {” :I.r,_:

s+lg* - pon, I’ 2

()

=l =)V 1000 bt pz0
Ao = 0.2 Elp)"?

MNote: Since the same curve 15 used for both the A=A and the B-B axes (e, a = 5.5)
the compression resistance will correspond to the axis with the highest slendemess
value, i.e. the one which produces the lowest g, value.

Consider an individual channel section: ¥

Assume L, = (1.0 ¢ 1250) = 1250 mm b+ “"‘I" * 30
Fo=288mm ! t—— chanre] soction

1.25 m centres

Ao =(1250/28.8) = 43.4 B e
=50 .
144 = (14 x 43.4) = 60.76 ¥
Consider the composite seetion:
The axis perpendicular to the battens is the A-A axis A _
Buckling length Ly s 2 (L0 4.0) = 4.0 m ¥l batsens al

2(10x25)=25m
2(l0x20=20m
The effective buckling length . Ly, =4.0m
Ao = (A + 2
Aee = Llra s = (10 x 40000781 45 = 49,1
Ay = (49017 + 4340 = 55,53
> 144,

Consider the B-B axis:
Buckling length  faaz(l0=835)=85m
The effective buckling length ., Lpg=85m

8300 104,24
B1.54

Slendemess Ag g =

Sinee An o is the largest value this should be used to determine the value of p, using
the Perry strut formula.
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Solution
Topic: Buckling Instability
Problem Number: 6.5 Page No, 3

3 2,4 3
Euler stress py = [LE] - [%i] = 1§6.2 M/mm’

i
Limiting slendemess A = 0.2(2Ep, )" = [0.2 % (# = 205000/275)"%) = 17.15

nr= (A - A)1000 = 5.5(104,24 — 17,150 1000 = 0,479

=2752

P+ Dpe 2754 (0479411862
ﬂ = . = =: s
PPy " (186.2:275)

g+l¢ =pep,]”  27524(275.27 18625275

= 118.4 N/mm’

e ™=

Critical value of g, = 1 18.4 Nfmm®

Compression resistance P = (g x40 = (118.4 % 7.58 » 10°W10" = §97.5 kN
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Solution
Topic: Buckling Instability
Problem Number: 6.6

HRE L .

|
IR T TR PRI R AT - PU ]
R LA

2.0 m | 35m

20m |

25m

o

27 2060 = Whae 30 channel seclions
Restraing Reestraim wlded b the toes

absiud the ahoul the

A=A nxis BB axis

Section

Property 200 = B0 = 3D

Channel Section £y = 275 Nimm®
Owerall Depth () 200,10 mm E =208 kN/mm®
Owerall Breadth (5) L0 mm
Cross-sectional Area (4) 3789 cm’ Robemson Constani:

Radius of Gyration (r,.) 288 em A-Aaxis a=355
2 Moment of Arca (/) 2520 em” B-Baxiz a=55%
2™ Moment of Arca (/) 34 em’

A=(2%3790) = 7.58 = 10° mm’
foa=2x [m:-cm‘ +{3T‘]I}x53.3:“ =32.49 = 10" mm'
Fon = (2 % 2520 % 10° ) = 50.40 = 10" mm”

3 6 &
A= ,}M =6547mm,  rpp= fm = §1.54 mm
7.58x10 7.58%10

Perry strul formula:
Py

po= p+(n+1)p;
¢+ -pep, [’ 2 '

[I:E]
==
e

g=alh-)1000 but  g=0
Aa= 02 Elp)"

where  g=
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Solution
Topie: Buckling Instability
Problem Numbor: 6.6 Page No, 2

Mote: Since the same curve 15 used for both the A=A amd the B-B axes (i.e. o = 3.5),
the compression resistance will correspond 1o the axis with the highest slendemess
value, i.e. the one which produces the lowest . valee,

Consider the A=A axis:
Buckling length Laaz2(1.0x2.5)=25m
= (1.0%2.00=20m
2(l.0=33)=35m
The effective buckling length - Lyy =35 m
3500

Slendermess 4y = 2200 = 53,461
NOCTIESS Aan = 54T

Consider the B-B axis:

Buckling length  Lyp2{l.0=2.5)=2.0m
2(0.85 = 5.0)=425m

The effective buckling lengih - Lyy=425m

4250
Slend 0= — = 5212,
ndemess Ayn 3154

Since Aa.a is the largest value this should be used to determine the value of p; using
the Perry strut formiila.

i 53.46°

Limiting slendemess A = 0.2(2Elp,)"* = [0.2 = (=" x 2050000275)"*] = 17.15

ﬂa] _ {f % 2055 10"

Euler stress pr = [ ] = 707.9 Nimm®

7= ald = Ag)/1000 = 5.5(53.46 — 17.15)/1000 = 0.2

Cpy+lnelpe 2754 (0.2+1)707.9
2 2
P Ity _ (707.9:275)

g+lg? - pep,]* s622+(s6227 ~707.9x275)"

é - 5622

=

= 2138 Ninimi®

Critical value of pr, = 213.8 N/mm?

Compression resistance Py = (g, % Ag) = (213.8 % 7.58 » 10°)/10" = 1620 kN
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Topic: Buckling Instability
Problem Number: 6.7

1

B—q

T

Am |I.:‘im||

?”ET

fo

2150w 00 10
Reestraim Restraim Reciangular Hollow ‘s-mmm-
ahowl the about the ¥
A=A axis P=Ib iz

Section
Property

1500 100 x 10 .
Hollow Section =255 Nl'lll'l.l'll"
Owverall Depith (I 100,00 mm E =205 kN/mm"
Owverall Breadih () 5000 mm
Cross-sectional Area (A) 426 cm’ Robemson Constant:

Radius of Gyration (r, ) 300 em A=Aaxis @=355
2™ Moment of Area (/) | 1600 cm B-B axizs a=5.5
2 Moment of Arca (1,,) 614.0 em”

Composite Section Properties:
A=(2x4260)=$.52 = 10" mm®
Ina =2 x[p14x10" + (4260110 )] = 11537 x 10° mm*
fon= (2= 1160 = 10% =232 % 10" mm®
115.37=10" 23.2x10°

Fan = 3| —————— = 116,37 mm; = =52 18 mm
At B52x10° b PP TY

The possibility of buckling of the individual hollow sections and the composite section
must be considered in this problem as follows:

(Extract from 10 BS 5950-1:2000 Structural Use of Steelwork in Building)

The stenderness A, of the main components fhaved on iy nininmm radius of pvration)
henweenr consecntive points where the locing s attached shoufd mar exceed 30 If the
overall slemdermess of e member s loss than 142 the design should be based on a
slewderess of 144,
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Solution
Topic: Buckling Instability
Problem Number: 6.7 Page No, 2

Pery strut formula:
B Peb, _ gyl
P = ————— where ¢=—"——-——;
#v"[-#‘ - r-'.m_.f =

- K
= | =

== 21000 but  p=0
Ao =02~ Elp)"*

Note: Since the same curve is used for both the A-A and the B-B axes in this
case (i.e. o = 5.5), the compression resistance will correspond o the axis with
the highest slendemess value, i.e. the one which produces the lowest p, value,

Consider an imndividual hollow section: ll‘ S0x 100 = 10
Assume  Lge= (102 15000 = 1500 mm ; Rectangular Hollow Sections
Fy= 3000 mim -
A= (15003001) = 49,83 ~
530
1,44, = (1.4 = 49.83) = 69.76

Consider the composite section:

Consider the A=A axis:

Buckling length Ly 5 = (0.85 x 6.25)= 5313 m

The effective buckling length 2 Ly = 5313 m

Slendemess Aua = 1o = 45.66 < 144

116.37 laces an

. . A 1500 mm centres

Consider the B-B axis: 10 mm 110 mm

Buckling length  Lpgz2(l.0=335)=35m ; .
2{1.0= 1.5y = L.5m

>(0.85 % 6.0)= 5.1 m

The effective buckling length . Lpg=51m

5100
5 = — =07, N
Slenderness Ag g AT 97.74

= 144 0050 100710
e Rectangular Hollow Sections

Since Agp 15 the largest value this should be used to determine the value of p, using)
the Perry strut formula.
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Solution
Topic: Buckling Instability
Problem Namber: 6.7 Page No, 3

2.9 3‘
7%%205x10 ]—zll.wwmln’

Euler stress py = ] = [

Limiting slendemess Ax = 0207 Ep " = [0.2 = (2% = 20500002551"%) = 17.82
n=ald - AY1000 = 5.5(97.74 — 17.82)1000 = 0.44

py+lp+lpg 2554 (0.4441)210.79
2 2

Pepy - (211.79x255) = 123.82 Nimm*

g+l -pen, ) 280.0+(280.0° ~211.79:255)

= 280.0

ﬁ:.

Critical value of g, = 123,82 Wimm®

Compression resistance P = (pe % Ag) = (12382 x 8.52 x 10°)10° = 1055 kN




7.
Direct Stiffness Method

7.1 Direct Stiffness Method of Analysis

The ‘stiffness” method of analysis is a matrix technique on which most structural
computer analysis programs are based. There are two approaches; the indirect and the
direct methods. The direct method as illustrated in this chapter requires the visual
recognition of the relationship between structural forces/displacements and the
consequent element forces/displacements induced by the applied load system. The
indirect method is primarily for use in the development of computer programs to enable
the automatic correlation between these displacements.

Neither method is regarded as a hand-analysis. The direct method is
included here to enable the reader to understand the concepts involved and
the procedure which is undertaken during a computer analysis. The
examples and problems used to illustrate these concepts have been
restricted to rigid-jointed structures assuming axially-rigid elements. In
addition, the structures have been limited to having no more than three
degrees-of-freedom and do not have any sloping members. In both
methods it is necessary to develop element stiffness matrices, related to an
element (local) co-ordinate system and a structural stiffness matrix related
to a global co-ordinate system. The development of these matrices and co-
ordinate systems is explained in Sections 7.2 and 7.3.

7.2 Element Stiffness Matrix [k]

One of the fundamental characteristics governing the behaviour of elastic structures is the
relationship between the applied loads and the displacements which these induce. This
can be expressed as:

[F7]=T[k] x [0]

where:
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[F] is a vector representing the forces acting on an element at its nodes i.e.
the (element end forces vector),

[K] is the element stiffness matrix relating to the degrees-of-freedom at the
nodes relative to the local co-ordinate system,

[6] is a vector representing the displacements (both translational and
rotational) of the element at its nodes relative to the local axes co-ordinate
system (element displacement vector).

Considering an element with only one degree-of-freedom, the matrix and

k=
vectors can be re-written as

| =

leading to a definition of stiffness as:

"The force necessary to maintain a ‘unit’ displacement.”

The “axial’ stiffness of a column as shown in Figure 7.1, can be derived from the
standard relationship between the elastic modulus, stress and strain as follows:

stress _ (F/A) _ FL
= = = —_
strain ~ (3/L) A9

Elastic Modulus.

This equation can be re-arranged to give:

cross-sectional area A L;.-

*\\ \:‘.\; —-x‘l‘ ;'51
o g '

i
l v

Figure 7.1
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k-h=-2

hence when 8=1.0 (i.e. unit displacement) then the force stiffness L

7.2.1 Beam Elements with Two Degrees-of-Freedom

Consider a ‘beam element’ of length L, Young’s Modulus E and cross-sectional area A
which is subject to axial forces F, and F, at the end nodes A and B as shown in Figure
7.2.

£y LT

—={] - [ —
node A L kA node B
'l—' x

Figure 7.2

Assume that node A is displaced a distance of 8, in the direction of the longitudinal axis
(i.e. the x-direction) and similarly node B is displaced a distance of 6, as shown in Figure
7.3.

node A node B
Fy—l 70 L —

L &y o L. EA L:‘J;_

Figure 7.3

The force/displacement relationships for this element are:

AE

= ['ATx change in length L] SoFEt T x{:i, —-:i:] (assuming ;> d;)

Considering equilibrium in the x direction:

AE . L
Fy=-F, Fz=—T><(¢|—f‘-’2]

These two equations can be expanded and written in the form:

FI =+ Er}] - Eri_.
L L -

") -

Equation
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)
AE AE
Fr=- Tal * r 9 Equation
()
5 LAE _AE %
. . s s . _ L I
in matrix form this gives: F|=| 4E | AE » s,
L L
ie. [F]=[k] % [5]

where [K] is the element stiffness matrix.

This element stiffness matrix [K] representing two-degrees-of-freedom is
adequate for pinjointed structures in which it is assumed that elements are
subject to purely axial loading.

7.2.2 Beam Elements with Four Degrees-of-Freedom

In the case of rigid-jointed plane-frame structures, the loading generally consists of axial,
shear and bending forces, the effects of which must be determined by the axial, shear and
bending effects on the elements. Consider a beam element with the following properties:

Length =F
Second Moment of area about the axis of bending = /.,
Modulus of Elasticity  (Young’s Modulus) =F

which is assumed to be axially rigid, (i.e. neglect axial deformations), and has
fourdegrees-of-freedom as indicated in Figure 7.4.

I &
Al l:;l [\-._ DR
= L, &f
j-'._,.. gg‘._‘ Fi. & i ILIJ‘:

Figure 7.4
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When this element is displaced within a structure each node will displace in a vertical
direction and rotate as indicated in Figure 7.5, where 8, to 3, are the nodal displacements.

&
— - - -
- - il i
Position after Deformation i
& ) - ) : &
1 WL :
&+ .
v | Original Position i
Axially-Rigid Beam Element with four degrees-of-freedom
Figure 7.5

The forces induced in this element by the loaded structure, and which maintain its’
displaced form can be represented by the element end forces F; to F, as shown in Figure
7.6.

Fi ?
Fi

L, EI

Axially-Rigid Beam Element with four element end-forces

Figure 7.6

The element end-forces can be related to the element end-displacements as in the
previous case giving;

[ 1= k] x [0]
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where ki1, K12, Ki3 etc. are the stiffness coefficients for the element.

The displacement configuration in Figure 7.5 can be considered as
consisting of the superposition of four independent displacements each
having only one degree-of-freedom as shown in Figure 7.8.

Similarly the element end-forces can be represented as the superposition
of four sets of forces, each of which is required to maintain a displaced
form as indicated in Figure 7.9

The values of ki 1, k2.1, k31 and k4 1 (which represent the forces necessary
to maintain a unit displacement) can be evaluated using an elastic method
of analysis such as McCaulay’s Method, (see Chapter 4, Section 4.2).

Consider the case in which a unit displacement is applied in direction 6,,
(i.e. the slope at A=—1.0) as shown in Figure 7.7.

unit
displacement ks

N
K{“f-\.t T L it B
k2 ki Ky,
X |
. >
x L LE!

Figure 7.7
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e
Bl

Position aller Deformation
- - {E T T —T
L - —
N &
Orriginal Position |
=0
Crriginal Position
H‘-\H\\ l.au _p-—'i--""--'.- x§|
+ Posithon alter Delormation - & oaly
Consider §:=10 &y =d;=8,=0
T'_ TS maa - Pasitivn after Deformation = &3 anly
]i“ -u.--.n.____- x&z
~— ===
Orriginal Position
+
Consider §3= 1.0 Sy=ds=8,=0
Position afber Deformation — &5 oaly
_,_..--""------.-"""h-
_._..-_-'-'""'F [‘ﬁ'\h‘- XJJ
Original Position
+
Consider §;,= 1.0 di=di= =0
Pasition after Deformation - d,only | _ m = =="""""7
- 0 x4y

—
Criginal Posilion

Figure 7.8
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L - 'F"'
- Positian after Defomustion X
-
) i

Orriinad Position

Consider &, =1.0 dy=d1=d,=0

Original Position
AN B » 51

N ...--"'F-”--
Bl gy Tmmmaae = p— Tﬁ'l.l

Posithon aller Deformation — & oaly

+
Consider 2= 1.0 &,=d:=4,=0

' Rl T = Josition after Deformation = & oaly
Kz T

kiz ] Kyz

A == B X8
Original Posilion
kyz

Consider 3= 1.0 d,=d:=4d;=0

+
Position after D formation = 5 only &
———— T - i
= -
- - r % EJ
kz.}fku Original Position T-ﬁ'u

Consider §y= 1.0 dy=d:=48,=10

+ kg
Fosition after Dformation = §oly _ === {1
= ki X0y
\’l. -—=="
A == B
qu Original Position
bra| Ky

Figure 7.9
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e.g. F1={(ku1.1 81)+(Kk12 82)+(K1 3 83)+(K14 84)}

The bending moment at any position ‘X’ along the element can be expressed as:

2
Bending moment:” M, = EI d—z =k thx Equation
dx (1)
dy _ v kyx” .
Slope: f=—|=El=— =k x+ +4 Equation
dx dx
)
D e — ) = — ‘I:I,I 2 kll 3 .
eflection: (d=y)=Ely= T: + ?x +Ax+ B Equation
@)

Boundary Conditions;  when x=0;  deflection 5=0 and slope &=-1.0
x=[L = 5: 0 f.l‘: 1]

Substitute for x and 6 in equation (2): (x=0, 6=—1.0)
koo x?
Slope: (H - @] I kg x+ —— +4 Equation
dx dx ' 2
(2a)
El(-1.0)=A4 s A==-EI

Substitute for x and § in equation (3): (x=0, =0)

k ks
Deflection:  (6=y)=Ely="21x" + 2L + Ax+ B £quagion
EI(0)=B . B=0 (32)

Re-write equations (2a) and (3a):

_ :ﬁ _ ‘Q: +ﬁ:_.r
Slope: [3 d\] El e kiix

2

—EI Equation
4)
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k k,
Deflection: (=y)=Ely= —=x* + 2L5° - Ex Equation
2 6
®)
Substitute for x and 6 in equation (4): (x=L, 6=0)
ky I
Slope: (n‘;?:ﬂ) =0=k, L+ 2 _FI Equation
dx 2 5
(6)
Substitute for x and 8 in equation (5): (x=L, =0)
. o _""1.1 2 If"7:!.| 3 .
Deflection: (6=y)=0=—=L"+—==-L —EIL  gquation
2 [
()
Solving equations (6) and (7) simultaneously and evaluating ZM=0, £F,=0 gives:
“:+“_'E'Ir k:_lz—ﬂ kSI:"'E and Ihl:{-ﬂ
) L i ’ L ' Lk

A similar analysis considering the other three unit displacement diagrams produces the
following values for the element stiffness matrix coefficients:

[ 4EF  -6EI  2FEI 6EI |

L r L I

ko ko ks Ky ~6EI 12EI -6EI -12EI

[k] = ko kaa ks ko _| r o r
kiv kia ki Ky 2EI  —6El  4AES 6Ll

ki k-l,! kl.! JI'f-l..: L [ L I

6El  —12EI oEf  12E!
L r r ro

where:

E is Young’s Modulus,
| is the Second Moment of area of the cross-section and

L is the length of the member.
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This is the ‘element stiffness matrix’ for a beam element with four
degrees-of-freedom as indicated in Figure 7.10

£, &
~ 7~
ACE] DB
- L El “-T
el Fud Fy. &,
Figure 7.10

7.2.3 Local Co-ordinate System

The co-ordinate system defining the positive directions for the element end displacements
and the corresponding end forces is known as the ‘local co-ordinate system.” A typical
local co-ordinate system for axially rigid elements in a frame is shown in Figure 7.11.

"?':-]s F] “-’S'_'i-\ F_!-
node A \, C? node B
&, I &y,
we Local Co—ordinate System -
Figure 7.11

7.2.4 Beam Elements with Six Degrees-of-Freedom

A typical computer analysis program for plain frame elements in rigid-jointed frames
uses beam elements with six degrees-of-freedom as shown in Figure 7.12.

o il - ==
.] | & Position after Deformation & -“T'“ﬁ i
i Tresoy " - |
5‘ L] : ﬂ: === Orriginal Position Ir ) i
o L
ok s o &
. le A T node B
{]1- F1 lﬂ‘(.g j {ﬂc - ‘J}'I‘ f.‘:
&, F Local Co=ordinate System Ay Fo
Figure 7.12

The resulting stiffness matrix for such elements is:
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'kl,l 'kl,ll k] A kl A klj I'I"rl.lfr

= B2

_kﬁ.l ks ka:-.?s kﬁ,-! kﬁ.s k-b,-t- i
The values of the stiffness coefficients are as determined in Sections 7.2.1 and 7.2.2,
combining the effects of both the two and four degree-of-freedom cases. The order in

which the values appear in the matrix is dependent on the numerical order defined in the

local co-ordinate system, see Figure 7.12.

d & & o o o
-~ 2t - 2
AE o -Z£ 0 | — A
L L
o JAEL _6EL . 2B 6EI| 3 p
L I2 L 12
0 _ﬁ_? +]2.;3! 0 _6.’.2.’ _12,;5! T 5
] = L I I I
- 0 0 +£ 0 0 — F
L L
0 .g.E _E 0 +£ +£ J s
L I L I’
6EI  12El G6EI  12EI i
0+ - 0 +—— + Fe
i ? P 2 L T

It is evident from the stiffness matrices developed in each case that they are symmetrical
about the main diagonal. (this is a consequence of Maxwell’s Reciprocal Theorem). The
elements in matrices represent the force systems necessary to maintain unit displacements
as indicated in Figure 7.9.

The element stiffness matrices must be modified to accommodate the
orientation of any elements which are not parallel to the ‘global co-
ordinate system’, see Section 7.3. This is achieved by applying
‘transformation matrices’ such that:
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(K] = [T1' (47

where [T] is the transformation matrix relating the rotation of the element to the global
axis system. This is not considered further in this text.

7.3 Structural Stiffness Matrix [K]

The stiffness matrix for an entire structure is dependent on the number of structural
degrees-of-freedom which corresponds with the nodal (i.e. joint) displacements, e.g.
consider the structures indicated in Figure 7.13, (Note: assuming axial rigidity).

o

i
nmle | node 2

Each node iz fixed with respect to
translation and rotation and hence there
are NO degrees-of-freedom.

Mode | at the base of the cantilever is
restrained  in both  translation  and
rotation.

Mode 2 at the top of the cantilever i1z
free 1o move in a horizontal direction
and rofate,

There are TWO degrees-of~freedom in
this structure.

mide 1
4
e == s MNode 1 is restrained in both translation
aind Fotation.
Sinee the element is assumed to Mode 2 is free 10 move in a horizontal
be axially—rigid, the horizonial direction and 10 rotate.
movement at node 3 is the same Mode 3 is free to rotate,
node | s that at node 2, There are THREE degrees-of-freedom

in this structure.,

node 4 node § (Note: since the elements are assumed

y to be axially rigid, the horizontal
movement at node 4 15 the same as tha
at node 8 and hence does o constitute
| mode 9 an  additional  degree-of-frecdom,
similarly for nodes 3, 5 and 9 and
nodes 2, 6, 10 and 12).

rode 12

moule 3

Figure 7.13
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Each level of the frame can sway independently of the others and consequently there are
three degrees-of-freedom due to sway (i.e. translation). In addition all of the internal
joints can rotate producing nine degrees-of-freedom due to rotation.

Three of the supports can rotate whilst one i.e. the roller can also move
horizontally. The total number of degrees-of-freedom when the frame is
assumed to be axially rigid is equal to SIXTEEN.

When the axial deformations of the members is also included the number
of degrees-offreedom increases to THIRTY ONE.

In order to generate a structural stiffness matrix and complete the
subsequent analysis it is necessary to establish a global co-ordinate system
which defines the positions of the nodes and their displacements. The
global co-ordinate system is also used to define the positive directions of
the applied load system.

Consider a portal frame having three degrees-of-freedom as indicated in
Figure 7.14.

Stuctural nodal displacemenis

bl
& identifics a node on the strectune

3 identilies a stroectural clement

Eguivalent Applied Structural nodal loads
Gilobal Co-ordinate System

#

Figure 7.14

The nodal displacements in the structure can be related to the applied structural loads in
the same way as those for the elements, i.e.
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[P]=[K]x[4]
where:

[P] is a vector representing the equivalent nodal loads applied to the
structure (see Section 7.3) relative to the global axes—(structural load
vector),

[K] is the structural stiffness matrix relating to the degrees-of-freedom at
the nodes relative to the global axes,

[A] is a vector representing the displacements (both translational and
rotational) of the structure at its nodes relative to the global axes,—
(structural displacement vector).

The coefficients for the structural stiffness matrix (i.e. Ky 1, Ky 2, Ky 3 etc.)
can be determined by evaluating the forces necessary to maintain unit
displacements for each of the degrees-of-freedom in turn; in a similar
manner to the element stiffness matrices.

Consider the uniform rectangular portal frame shown in Figure 7.15 which
supports a number of loads as indicated.

10KNm 24EN y
=

= HkM
X

- L5 KNI
" Global Co-ordinate System

30m All members have the same EF value

Figure 7.15

The structural displacements are as indicated in Figure 7.16 (assuming axially rigid
members).
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A A
(Al NN
B C
A D 4,
Consider A, = 1.0 A=A=4,=0
Figure 7.16
CAET] 4Ef
) K=+ [2EL [—}
‘-} L L L lam L Jue
o [2ET
= Ky =+ =
L e
[6Er]
Ky==|—
Doy K L 4% Jan
Ky = zero
Consider 4; = 1.0 A=dh=A4=0
(2E
K=+ |22
[ i L e
L L e L len
[6Er]
Ky=—|—
L £ lep
(251
K=+
L 'I:' )
Consider A3:10 A1:A2:A4:0
BT
C : K=~ 6—1
:-‘-‘ K L L lan
N [6ET]
v . Ku=- IE
L& D

[
Dt

Cilabal Axes n

I’H‘,] .-

‘ﬂ‘

l:-:

Elat]

Consider 4,=1.0 A;=A,=A3;=0

e |sz] +[
L AH
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Ky = zeto
251
Ky =+
¥ L L o
I Koo | SET
- 7 L,
Cilobal Axes Ky=+ 4E7
L L LD

KLI KLE KL] JKl.-l

S 1 StifT; Matri IK] l"iZI K:- 2 Ka 3 '
tructural stitiness Matrx = : s s =
Ka Ko Ky Ky

K-l.l K—-‘r.l K-I S K—'H

In each case the size of the structural stiffness matrix is the same as the number of
degree-of-freedom.

7.4 Structural Load Vector [P]

In most cases the loading applied to a structure occurs within, or along the length of the
elements. Since only nodal loads are used in this analysis, the applied loading must be
represented as ‘equivalent nodal loads’ corresponding to the degrees-of-freedom of the
structure. This is easily carried out by replacing the actual load system by a set of forces
equal in magnitude and opposite in direction to the ‘fixed-end forces.’

The Tixed-end forces’ due to the applied loads are calculated for each
applied load case and only those which correspond to structural degrees-
of-freedom are subsequently used to develop the structural load vector as
shown in Figures 7.17. to 7.19.

i 24 kN

o) L1
Iy 'Y PLIS=(24.0 x 6.0/8.0 = 18.0 KNm
R l PLE &l pr2=240/20=120kN
i = wLi12=(1.5 % 3.0°12 = 1.13 kNm
wLi2 = (1.5 % 3.002.0 = 225kN

wi'i
= wili2

¥ Since these values do not

. . #+== comespond  with  any

whinz !‘g\ Ll 1 4 degrees-of-freedom, they
: %\k i are not requined,

Figure 7.17
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The structural displacements and equivalent nodal load system are as indicated in
Figure 7.18, (assuming axially rigid members).

-d-| AI
(i S

Strectural displacemeants
{nssuming axial rigidity
of the clemenis)

£ P
(?‘li T

Ay

s

Figure 7.18
The equivalent nodal loads can be determined as follows:
o 180 KMNm IS0 kNm 10,0 KN
I8 KM 20 KN
= < (r
1% KM
-+
Eqmivnlent nodsl losds duse 1o 2 ————
;""1[';]:"':]1 I:(Df'.d’ on claments EEFD ;‘.:::Iullll:-‘:;cflll-l:unil?:.l N
Figure 7.19
Py=(=1.13+ 150+ 10.0)=+ 26,87 kNm h +26'3?kN:“
Pr=—18.0 kN -~ [P]= Py|_| -18.0kN
Py=(+2.25+8.0)=+ 1025 kN g +10.25kN
Py= zero P, 0

7.5 Structural Displacement Vector [A]

The structural displacement vector can be determined from the product of the inverse of
the structural stiffness matrix and the structural load vector, i.e.
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[4]=[K]" % [P]
Ky Ko K Ky R

NS
e
falite
e
e
=

=
=
=

s
=
P

7.6 Element Displacement Vector [J]

An element displacement vector is required for each element and is dependent on the
relationship between the structural displacements and the element nodal displacements in
each case. The structural displacements in terms of the global co-ordinate system and the
individual element displacements in terms of their local co-ordinate systems are shown in

Figure 7.20.
& &
& A
fi T be——d
f R, AE

i
A -l D

&
Structural Displacements
5 L4 4

Glabal Co-ordinate System

A

L

Element Displacements
Local Co—ordinate Systems

Figure 7.20
Consider elemem AR: Consider element BC: Consider element CD:
vri‘ [1] ’l:;l +.41 1 |:'3'1I [ +£ .
i, 0 &, 0 &, +4
S = "l = 3 - s | = S = ! = ]
[€ |an 5. =T 16 e 5 +a, [&len s "y
_‘T-l =y &, ] iy l L 0

In the direct stiffness method the correlation between the structural displacements and the
element displacements is carried out visually by inspection as indicated above.
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7.7 Element Force Vector [F]otal

The element end-forces due to the structural displacements can be related to the element
end-displacements as indicated in Section 7.2.2.

[F]=[4] x [d]

F, km ‘E"l,z 'km 'k];i 1 0 ]
F, kyy ko Kyso ks 0,
= -

F}"- kj',l ‘k32 'Ii":},l- k3,4 51
F, _k“ ﬁ-'.; 2 k-u Jﬁ"-1,-1_ ‘54_

The total nodal forces developed at the nodes are given by:

[Flrot=[F]+[Fixed-End Forces]

A (kg ka ks k| [6] [FER]
F _ kay kap ks kg y J, N FEF,
F3 ki ksn ks Kaa| |9 FEF,

LFa rogal (kay kaa kis ks [0 | FEF

7.8 Example 7.1: Two-span Beam

Consider a uniform two-span beam ABC which is fully-fixed at supports A and C and

simply supported at B as indicated in Figure 7.21. A uniformly distributed load of 24

kN/m is applied to span AB and a central point load of 24 kN is applied to span BC as
shown.

Using the data given, the degrees-of-freedom indicated and assuming both
members to be axially rigid,

(i) generate the structural stiffness matrix [K] and the applied load vector [P],
(ii) determine the structural displacements,

(iii) determine the member end forces and the support reactions,

(iv) sketch the shear force and bending moment diagrams,
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(v) sketch the deflected shape.

24.0 kN/m S Okh

node | node 2

¥
A
¥ o
C é___x

: L!
| 1
. 30m | 30m 1 Global Axes
. 6.0 m - la ﬁ.{) m .
-PI.'IAI \\E
A&§=M 2 C

Figure 7.21
Solution:

To develop the structural stiffness matrix each degree-of-freedom is given a unit
displacement in turn and the forces (corresponding to all degrees-of-freedom) necessary
to maintain the displaced shape are determined. In this case there is only one degree-of-

freedom and hence the stiffness matrix comprises one element.

Structural Stiffness Matrix [K]: ¥

a4, = 1.0 ﬁ:\x ....... c _I)_- B

U= umit rotation Global Axes

The values of these forces are not
| g—required since they do  not

A correspond o any
" C degrees—ol-frecdom.

k —[L”] +[ﬁ] ‘”“'] ["”] 1 - kg = 134 ET
T Ll LTl TR Sk =L

The stiffness matrix [K]=[ky;]=[1.34EI]

1
= -1 = e—
The inverse of the stiffness matrix 1.34ET

Structural Load Vector [P]:
The structural load vector comprises coefficients equal in magnitude and opposite in
direction to the fixed-end forces which correspond to the structural degrees-of-freedom.
In this case, only the moment at joint B is required.



Direct stiffnessmethod 555

24.0 kM

Fived=-End Forces

w kMNAm wil 12

Fixed-end forces for member AB

FEF, = — (24.0 » 6.0°V12.0 A3 B
= e T20 KMNm r 1
FEF; =+ 72.0 kNm wii2 wli2
FEF; = + (24.0 x 6.0)2.0 = + T2.0 kN 720 kN 7O KN
FEF; =+ 720 kN
- A i im
Equivalent nodal loads for AB o kNm 7200 kN
- . PR 1-“ FLIE
Fixed-end forces for member BC ad
FEF, = — (240 = 6.0)/8.0 . A A
= — 18.0 KNm | in 1
FEF; = + 18.0 kNm L A2
FEF; =+ (24.072.00) =+ 12.0 kN
FEF; =+ 12.0 kN 12,0 kM 120 KN
I H - - H .
Equivalent nodal loads for BC B %ﬂ, = § o
180 kNm 150 KNma
nole 1 node 2 nisde 3
:':ul.\ TAORN T IR0 RN 12 kN
. PN -
A §‘ ‘g Lo Equivalent Modal Loads
TI.0 kNm 0 kNm g 15D KN 150 KNm
Applied load in direction of 0 at joint B = [<72.0 + 18.0] = - 540 kNm
Structural Load Yector [P] = |- 54.00
Structural Displacements  [d]
J— _ 1 A _ 4030 j
(4.0 =1K]" 1P T [-54.0] oAy e radians
40,30
EY mmnl
“‘g.m B id C % ﬁ,\ R (.'%
[
Structural Deflections

Element Stiffness Matrices [k]: ]
. 4EF _ GES . 2ET . GES

F F, L Z L P
oS 12Ef GiES 1265
1} {T 2 TP TF B
L A k] = p i
F g L2 _GEL AEI | GEI

L A L
6Ef 126l 6EI 12Kl
= Tr "E YT

-+
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Element End Forces |F]:

CaEr 6B 261 _6EF[s7 [FER]
F—_— —— _— —
£ £ i i .
r a3 3
F. _.s;:; +1-1::; _ 6I:F _|2;]w 4, FEF
- |2 = & L I I3
e P L R il P YT T T A v I | B
F TE L TTE ||| |FER
= 6ET 12K BEfF 12K
+ ~ - — o— = ﬂ -
L & A £ £ L% | FEF, |
Consider clement Al
AEF  AET . 6Ef  GEI .
= — =0467Ef = _—— =017E}
A 6.0 L e
e . . -
2EF _2EL oy m:.; _ |_.*,1: = 0.06E]
L &0 i ¥l

+ 067 =017 4034 +0.17
=007 006 =017 =006

[Elsu= EF
+0.31 =017 067 +017

+017 =006 +017 +0.06

Displacement Vector [4]: Fixed-End Forces Vector [FEF):
s [ oo ] [FER]  [-720]
&, 0 s % FEF, |  |+720
- ATa_éTu =
& | |-030/E h bl FEF, | | +720
Wil L 0 J | FEF, |, L+72.0]

Element End Forces |F] 4t

. A F] [FEF,

F, FEF.
=4 % Y| =1k]1& + [FEF|
nli E & [Flvosa P FEF, I£]14] + [FEF]

e £ F, FEF,
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+0.67 =017 +034 +017 0 =72.0]
=017 006 =017 -0.06 0 T20
[K118] + [FEF| = EI * BEIN
+034 -0,07 +0.67 +017(| =030/ E£1 +720
017 =006 +0.17 +0.06 0 +72.0

Fy == (034 % 40.30) - [72.0] = - 85.70 kNm s,
Fy=+(0.17 x 40.30) + [72.0] = + 78.85 kN §
Fy=—(0.67 x 40.30) + [72.0] =+ 45.0kNm /™~
Fo==(0.17 % 40.30) + [72.0] = + 65.15 kN

Conasider element BC:

4EI _ 4E . E, g, .
A 3E ogrEr S SE _oaser,
L 6.0 L 60"
v 2
24 2EL =034ES _12;:'.-.‘! - I...‘E.;f = (LOGES
L 6.0 I 1)
+067 =007 +034 +0.107
=007 +0.06 =017 -0.06
[Kluc = EI ’
+0.34 -0.17 +067 +017
+ 017 -0.06 +0,17 +0.06
Displacement Vector [4): Fixed-End Forces Vector |[FEF]:
& [-40.30/E0] "FER]  [-180]
e &y
i, 0 FEF, +12.0
g, 0 &, 3 FEF, +18.0
g L 0 ] |FEF, |- [+12.0]
Element End Forces | F]pc:
b F K] [rFER

F |, | FER
[ j‘ =| ) 4| = k)14 + [FEF
. r_ [Flvea g rer, 14114 + [FEF]

F r-; ) |Fer,
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+0.67 —0.17 +034 +007 || -40.30/ Ef [-18.0

~0.17 <006 -0.17 -00 12,
[£](8) + [FEF] = EF 0 6 0 L *120
+034 0,17 +0.67 +0.17 0 +18.0
+0.07 -0.06 +0.17 +0.06 0 1 +12.0

Fy = = (0.67 % 40.30) = [18.0] = = 45.0 KNm ¥
F;—r{i]l?:-:-lﬂ;nﬂ)r[]"ﬂj—i]HHHN T
Fy== (034 = 40.30) + [18.0] = + 4.30 kNm +~¥
Fy=— (017 = 40300+ [12.0] =+ 515 kN

Reactions:

Support A:
Va=(F)w=+7885kN %
My = (Fi)ap = = 85.70 kNm j

Support B:
Fa = (Fan + (Fidpe = #6513 + 18,85 = 84.0 kN T
M = (F)an = (Fi)ac = 45.0 kNm C j

Support C:
Ve = (Fe =+ 5.05 kN
Me = (Fs)oc =+4.30kNm {

78,85 kN
1885 kN 18,85 kN
A c
B .
| (Rss2400-329m J S KR 515 kN
a i
65.15 kN

5. 70 kMm

Shear Force Dingram

B

| || |||||||I 1 __'l-_ﬁl:lllir?:m
I
HHJW ’ | 10.35 kxm

Bending Moment Diagram

e - - Deflected Shape

Figure 7.22
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7.9 Example 7.2: Rigid-Jointed Frame

A non-uniform, rigid-jointed frame ABCD is fully-fixed at supports A and D as indicated
in Figure 7.23. A uniformly distributed load of 3 kN/m is applied to element BC a central
point load of 5 kN is applied to element AB and a point load at node C as shown. Using
the data given, the degrees-of-freedom indicated and assuming all members to be axially
rigid,

(i) generate the structural stiffness matrix [K] and the applied load vector [P],
(ii) determine the structural displacements,

(iii) determine the member end forces and the support reactions,

(iv) sketch the shear force and bending moment diagrams,

(vi) sketch the deflected shape.

n
B il
A
e N ¥
! ! 3K E
= -‘ﬁ)-h- X 3t =
= = SEN Cilobal Axes
= 257
E
E — I kN'm
T .
4.0m |
*r e u
Figure 7.23
Solution:

Each degree-of-freedom is given a unit displacement in turn and the forces necessary to
maintain the displacements is calculated in each case.
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=10 d=a=0 _ _ _ _
o= [42] o[22
- 'r‘ AH E‘ 1

- [3205) +[ﬂ} =+ 367EI
3.0 4.0

S "
Ky = ﬂJ = [ﬂJ =+ (L.50ES
T . L0

[6E 6| 2.0Ef
Ky= 6£I:| = [[—}]=+ L33Er
AR

s L 3.07

£

A
H-x

Cilobal Axes

A=10 Aj=:4,=0

1] e 3
K= ['—‘E‘r [“—”] =+ DS0E]
L e L40

. [4!’.‘! | [4;-:1
Ry = * =
B L T B 'F' LT

i
i
=X - [ﬂ + [——-"“‘MJ]] =+ 3401
Gilobal Axes 4.0 30
P &) - _ _
: = - 6(3.0E
L an e 1 = M- 072er
L £ o L ADT
o Ter oEn ]
Ky= E = ﬁ{"ﬂ:” =% 133ES
L £ s A
farr]  [6(3.0£0]
K= [SEL| - |SCOED) |, omags
L Jomo | 5.0° J
12 3
Ky = 1-fr] i[l-{;rl
L f‘ Al 'E' e
[12(20e0) ] [12(3.080)
= — |+ — =+ LISES
3.0 5.0

367 030 133
Structural stiffness matrix = K] = Ef| 030 340 072
133 072 118

There are several methods for inverting matrices, the technique used here is given in
Appendix 3.
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The invert of a matrix is given by [K]

K]
where: + - ¥
[K¥] is the co-Factor matrix for [K] 3.67 030 1.33
[K] s the determinant of [K]  and EH050 340 0.72
[K]" is the transpose of the co-factor matrix 133 072 L8

Co-factor Matrix: [K]
(MNote: the transpose of a symmetric matrix is the same as the original matrix)

kS o=+ (3,402 1.18) - (0.72 = 0.720EM = + 3.49E*

kS o= kS = - (0U50 % 1,183 — (133 = O.T2NEM Y = + 037ES®
K o= kS = (0050 % 0.72) = (133 x 3400LEST = —406ENT
K5 =+ {(3.67 = L18) - (1.33 % 133160 =+ 25661

= kT, = [(3.67 = 0.72)—(1.33 = 0503 Ef = — 198671
EE = (367 % 3.40) = (0.50 = 05001 EF T = + 12,2307

-
Ik
Determinant of [A]:
Dt [K] = Er? 1FG6T=34M+ (0.5 = 037) = (1.33 = 4.16 } =+ TA6ES 8

+0.468 +0.050 -0.558]
Inverted stiffness matrix = |Kr" = L‘ +0050 #0343 0265
=0.558 -0.265 +1.639 |

Structural Load Vector: [P]:

Fixed-end forces for member AB
FEF, = + (5.0 = 3.0)5.0

e 28 KN
"1.8% KNm

= 4 LLB8 kMNm
FEF; = — 1.88 kNm
FEF:; = (5.0/2,0) = 2.5 kM
FEF, = 2.5 kN 188 kNm
LEEKN
B
Equivalent nodal loads for AB
— w kN w112
Fixed-end forees for member BC B S LLLL
FEF, = — (3.0 = 4.0°/12.0
= — 4.0 kMNm . L
dhrd 7]
FEF,; = + 4.0 KNm al i
: 1= E]Jﬁﬂhi;l.ﬂlfl.ﬂ} =6.0kN G kN 6.0 kN
Ty = 0K " .
Pk, 23
B § = [
4.0 KNm 4.0 kNm

Equivalent nodal loads for BC
Applicd nodal load at C= 2.0 kN = —»

The equivalent nodal loads required are those which correspond with the nodal degree-of-
freedom as follows:
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Py = (+1.88 + 4.0) = + 5.88 kNm
Pr=—40=-40kNm
M=+ 25+ 200 =+4.5 kNm

e

Cillobal Axes

node 2 : . e 3 L 40 ENm
LEKN

Equivalent Nodal Loads

+5.88
Structural Load Yector [P = | —4.0
id.5
Structural Displacements [d]:
A +0.468  +0.050 0558 | +5.88
|Aj=-|.lf|" [P A “ﬁ #0050 40343 -0.265(| 4.0
Al T 1-0558 0265 +1.639|| +4.50

1 003,
4= E[(“"“‘“ %5.88) (0,05 4.0) - (0.558x4.5)] = +gy Tadians )
2.27

1 - _ ,
& -E[+{ﬂ.ﬂ)r:.ﬂﬂ]—[1}343:-:4.1}:]—[1}.2&5::4.5}] - radians j

| ] 5.15
4= E[H(u_hax5.35}_-{0_265x4.0}+[l.{1391 45)] = T
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notle | s

i
e

Global Axes

rand
%mﬂ 518 Structural Deflections
“ B c 17 m
Element Stiffness Matrices [#]:
[ 4Er GES 2Ef GEN |
fo— m— h— o —
Fa Fy L I L Iy
6Ef 12Ef 6L 1257
ty A L
¥ Ei, . 5\ [K] = L L L L
i A J2BI GBI 4B GFI
L I L i
akEr 12E1 GEf 12E1
+— 8 — +—
I L L L]
Element End Forees [Flyoa:
£ [FER
Fy FEF,
=72 #] 5 = k)18 + [FEF
Flioa= {2 | [ gy | = 119+ IFEF]
F, FEF,
Consider element AR:
; Ax[20E7 3 G| 2.08S
£=M=E.ﬁ?ﬁ; £=x{—~}=|.33ﬁf
L 3.0 L 3.0
3l 2x(2.0ET . 12E1  12x(2.0Ef )
281 2%(20E1) L 122(R08) o cory
L 30 i 3.0

+267 133 +1.33 +1.33
-1.33 +0.89 -133 -0.89
+1.33 <133 4267 4133
+1.33 =089 +1.33 +0.39

[Elue= EI




Displacement Vector |4):
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Fixed-End Forees Vector |FEF]:

rg 0 5 —nd [FER | [+1,887
! (1)
3, 0 FEF -25
&, +0.03/ Ef FEF, -1.8%
§ LW R .
L% )an | +5.15/ E1 ) g T |FEF; |, | -25]
Element End Forces | F]
" F1 [FEF
Y ra £ | FER
Kt [Flraa= | ] e | =[RI8 + [FEF]
F, FEF,
F,| |FEF,
+2.67 =133 +1.33 +1.33 0 +1.88
Fon | =133 s089 <133 -0s89 0 -25
—h!‘q =.!'..;
B #1.33 =133 4267 +133 || +0.03/ Ef -1.88
+1.33 089 +1.33 +0.89 || +5.15/ -2.5

Fo=[+(1.33 % 0.03) + (1.33 = 5,15)] + [1.88] = + £.77 kNm /™
Fo=[-(1.33 = 0.03) - (089 2 5.15)] - [25] = - T.I2kKN =
Fym [+ (2,67 = 0,03)+ {133 = 5.15)] - [1.88] = + 5.05 kNm »
Fo=[+{1.33 2 0.03) + (0.89 % 5,15)] - [2.5] =+ I2kN = —»

Consider clement BC:

M BE L em S5 L 8xH o o3sEr
L 40 L A
y ] q 2
2EL L 2xE _gsp 2R Z2EL g9k
L 40 L 0
+1.0 -0.38 +0.50 +0.38
| -038 s0.19 038 -0.19
[klnc = &I
+0.50 -038 410 4038
<038 -0.09 4038 +0.19
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Displacement Vector [4): Fixed-End Forces Vector [FEF):
(& [+003/ £ [FER]| [-4.0]
& F
&, 0 T T FEF, +6.0
= Fle -
- B i = C

&, =221/ EI & & FEF, +4.0
il L0 | FEF, [, L+6.0]

Element End Forces | F]pc:

Fs F K1 [FEFR

£ FEF,
BB_@TJ;; (Pl =| | *+| gy, | = 141161+ FEF]
ki = F| |FEF,

=038 +40.1% -038 -0.19 0 4 +6.0
+0.50 =038 +1.0 4038 (=227/Ef +4.0
+0.38 -0,1% +0.38 +0.19% 0 +4,0

+1.0 038 +0.50 +03% || +0.037 ES —4,0
= Ei

Fi= [+ (1.0 % 0.03) - (0.5 x 2.27)] - [4.0) == 5.11 kNm ¥
Fy=[- (038 x 0.03) + (038 x 227)) + [6.0] =+ 685 kN T
Fy= [+ (0.50 % 0.03) = (1.0 2.27)] + [4.0] = + 1.75 kNm 7%
Fo=[+(038 % 0.03) - (038 x 227)] + (6.0] =+ 515 kN |

Consider element DC:
AEL _ Ax30EL _, 40 OEL _ &x30E g 2er
L 5.0 L 5.0"
5 2 2
E _ 2= 30K - 12E] l...f.‘.‘ . 12 3.0EF - 0.20F]
1 5.0 L 5.0

+2.40 =072 +1.20 +0.72
=072 4029 <072 =029

(Ko = ET
+1.20 -0.72 +2.40 +0.72

+, 72 029 +0.,72 +0.29
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Displacement Vector [48): Fixed-End Forces Vector |FEF|:
I LI [FEE]  [0]
LI I *
é, 0 FEF, 0
8, ~227/ EI FEF, 0
. . LI B
L Loy [ #3137 ET {-_" % LFEF, o L0,

Element End Forces | Flpe:

D .
Fop F| [FeR
I FEF,
Pl =| 2| *| o | = K181+ [FEF]
L] oa
F, FEF,
#2240 -0.72 41200 +0.72 0 ] i
Fi ’Lr‘; - £ =0.72 +0.29 =072 =029 ] N 0
¢ £120 072 4240 +0.72||-227/E1| [0
+L72 029 +0.72 +0.29[|+305/780 | |0

Fy=[=(1.20 2 2.27) + (0.72  5.15)] + [0] = + 0.98 kNm
Fr=[+(0.72 %227} = (029 % 5.15)] + [0] =+ 0.14 kN —»
Fy=[= (240 % 2.27) + (0.72 % 5.15)] + [0] = = 1.74 KNm ¥\
Fo=[-(072= 220+ (029 = 5.15)] +[0] = - 0.14 kN =+

Reactions:

Support A:

Vo= (Fape = 6,85 kN 1‘ Hy=({F)u=T12 kN 4—
My=(F ) =+8TTkNm 4

Support D
Fo=(Fine =515 kN T o= (Fipe =014 kN —»
My = (Fi e =+ 098 kNm



685 kN
tension

EITkNm

5,08 kMNm*
B
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0.98 kNm |

A
. I 2,12 kN = iension (1:1 .
Shear Foree Dingram
4]

I',_
Axial Foree Diagram
i =
W E
oz
]
n
DRETSS
A
T3 kM
LIZ kN
6,55 kN
e C 004 kN
1 T— |
o LUWm__ SISKN
Bending Mament Diagram

* (the value given at the nodes is the

average fram the two elements).

o J_:, 1.75% KNm

sosknme ol pa i

Figure 7.24

L7 KNm

Deflected Shape

n
h

1

i u
L]

I

] 1
L 1
' 1
1‘ 1
]

11_ 1
' \
1 ]
L] . 1
B! [ L
-.___"- -

7.10 Problems: Direct Stiffness Method
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A series of indeterminate structures are indicated in Problems 7.1 to 7.6 in which the
assumed degrees-of-freedom at the nodes and the relative El values for the members are
given. In each case for the data indicated:

(ihasueratO syt ghscuptil fchand the applied load vector [P,
(iii) determine the member end forces [F],
(iv) determine the support reactions,

(v) sketch the axial load, shear force, and bending moment
diagrams and the deflected shape for each structure.

: 4 Local
Assume all members to be axially rigid. T ) Co-ordinate
e -1 ELE Il system
I w7

10 KN m kN

’.} -

i0m iom

x < Cilobal Axes
4.0m 6.0m
'\ -
Problem 7.1

P 30k

. . ,

: k)
4= _ : _ =
E .
= . f

e 40m reode | a— e x noded @
' N
20m T Gilobal Axes

Problem 7.2

A0 kN

—

} Jam ‘1. Jm \

il m A0m
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Problem 7.3
T n o 4
=]
= ILSEY
RN 1IZ0kNm A, A
i node 2 I||.\J|.'_3: Ay

'
|

node 1 _.} "o

Cilobal Axes

| X0m .L

S0KN'm Global Axes nade 3

Problem 7.5

N 12,0 kMim —
5K " e 2 minde 3 node 4

Cilobal Ases

Problem 7.6
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7.11 Solutions: Direct Stiffness Method

Solution
Topic: Dircet Stiffness Method
Problem Number: 7.1 Page No. 1
10,0 kNim A00kN ¥
mesde | noxde 2 l nosde 3
e kg Lf B __&ﬁd : 2ES % :' -
[
| 30m ] 2m + Calabal Axes
1, 4.0m 2, 6.0m 'l
Assume axially rigid members
A=10 A=0
e w4 2]
A Pl . ¥ s L e T
A\ Bk = -
K B 4E7 4(2.0E0)
. " - — ——— |=+ 233 EI
‘ 30 +[ 6.0
1 [2(20£0)]
LA Ky=| 2EL] o[ 2COEN |, 067 1
Gitobal Axes L L Jpe | 6O
A=10 A,=0
(21 [2(20E10)]
K Kz = 28] _ Q =4+ 067 EI
L £ toe | 60 |
. E ragr]  [4(2.080)]
Kz Ku=|222| =22 |=v133 E1
' S A W
233 0.67]
Structural stiffi atrix = = El
mctural stiffness matrix = [K] [ﬂ.ﬁi' 1.33 )
(&
The invent of a matrix is given by K] = |.R|
+ -
where: 233 0.67
[K*] is the co-factor matrix for [K] Ef ﬂhﬁ? 1"'33
K] is the determinant of [K]  and . '

[K5]T is the ranspose of the co-Tactor matrix
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.1 Page No, 2

Co-factor Matrix: [K*]
(Note: the transpose of a symmetric matrix is the same as the original matrix)
&y =+ 1338
Ky = k5, == 06TES
5 =+ 2335

Determinant of |K|:
Det [K] = £ £+ (2,33 2 1,33) — (0.67 = 0.67)} =+ 2.65 £I°

. 11 3 1% = =1 B —
Inverted stiffness matrix = [K] =] 0253 0.870

1 {0.5&2 -CI.EH]

Structural Load Vector: [P):

12 kN 1312
Fised-¢nd forces for member AB T el b
FEFy = +(10.0 = 4.0%/12.0 A B
=4 ls_sskh-n_l 40m

w2
FEFy == 13.33 kNm
FEF; =+ {10.0 x 4.0)2.0 = + 20,0 kN
FEFy =+ 20,0 kN
:I::_-I k™
Equivalemt nedal loads for AB g
1A kN m 1333 kNm

P PR
Fixed-end forces for member BC
FEFy = = {40.0 x 6.0)/8.0
== 30.0 kNm
FEF; =+ 30,0 kMm

FEF; =+ {(40.072.0) = + 200 kN
FEF; =+ 20,0 kN

Equivalent nodal loads for BC - M c

30,0 kN 3000 kNm

20 kN 0 k™N
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Solution
Topic: Dircet Stiffness Method
Problem Number: 7.1 Page No. 3

Modal load at B ={=13.33 + 30.0) =+ 16.67 KNm
Modal load at C ==30.0 kNm

16,67 kNm

Equivalent Nodal Loads

+16.67]
=30.0 |

Structural Load Vector [P] = [

Structural Displacements [d]:

(4] =& 1P =

1 [ 0.502 -0.253] [+16.67
Ef|-0253 0879 || -30.0

I 15,
& = E[{ﬂ.jﬂlx1ﬁj?}+{ﬂ.253xiﬂ.ﬂ}] =+ 5;('

] 3059
= [ ~(0253x16.67) - (0.879x30.0)] = ~—= radians")

radians (

mode | mide 2 node 3
A C

o

Structural Deflections

Element Stiffness Matrices [k]:
2El
L ——
L
_SET
I
4ET
cfp m—
L
SEI

¥

+
I
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.1

Element End Forces [ Flrou:
A FEF,
FEF,
FEF,
FEF,

[Flvew = = [k][8) + [FEF]

(2ET 6El] [FER, ]
L i
GES 12E1
I
dE! 3 .
: + 1 + 2 FEF;
12E1 GES
r "? + | | FEF, |

FEF,

Consider element AR:
M EE e
L 4.0 '
" E 1 A% E
2E _2xH _os0Er 1“?! = 1"”:; =0.19EF
L 4.0 L 4.0

SEI _ 6xEl _ o338
.0

+1.00 038 +0.50 +0.38
-038 +0.19 -0.38 -0.19
K= ET| 050 —038 +1.00 +0.38

+038 =019 +038 +0.19

Displacement Vector [§): Fixed-End Forces Vector [FEF):
0] [ FEF, | [=13.33]

FEF, +20.0

+15.96/ Ef ; FEFy +13.33

| FEFy |, | +200
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.1

Element End Forces | F]yp:
& £

P
AT%—JB [Flrom = ; = |k]|& + [FEF]

&) &
#1000 =038 +0.50 +0.38 =13.33
=038 +0.19 =038 -0.19 0 +20.0

+
+0.30 <0385 +1.00 +038|| +15.96/ £ +13.33
+0.38 -0.19 +038 +0.19 a +20.0

Fi=(05% 1596)] - [13.33] == $.35 kNm ¥
Fy=—(0.38 % 15.96) + [20.00] = + 13,94 kN
Fy= (1.0 1596)+ [13.33] = + 2020 kNm "
Fo=(0.38 % 15.96)+ [200] = + 2606 kN T

Consider element BC:
£= ax 2.0E7 = 1.33E) _ﬁ-_.f-:{ - 6:-!2.{:}.!
L 6.0 Y
v T P iy 3
W _2x2OE o oy 12ET_12XR0BT
L 6.0 L 6.0
+1.33 -033 +0.67 +0.33
=033 #0101 -03F -0.11
ko= E
Wloe= H| 067 033 133 +033
+0.33 =001 +033 +0.11

= (33£S

Displacement Vector [§): Fixed-End Forces Vector [FEF|:
. [+15.967 Ef [ FEF, | [=30.0]

0 r FEF; +20.0

-30.59/ Ef i FEF; +30.0

LI | FEFy |o. |+20.0]
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.1 Page No. 6

Element End Forces [ Flpc:
[ [ ; FEF, |

F. FEF,
uTi,_ch: [Flrean = cep | = K18+ [FEF}
! ot |

Fi Fi FEF, |
+1.33 033 4067 +033][+1596/E1] [-30.0
-0.33 4001 -033 -0.11 0 . | 200
+0.67 -0.33 +133 +033||-3059/E7 | |+30.0
#0.33 -001 4033 40.11 0 | +20.0
Fy=[+{1.33 % 15.96) - (0.67 : 30.59)] - [30.0] = - 20.27 kNm ¥F™
Fy=[-(0.33 % 15.96) + (0.33 % 30.59)] + [20.0] = +24.83 kN }
Fy= [+{0.67 % 15.96) = (133 x 30.59)] + [30.0] = zero
Fo=[+{033 = 15.96) - (0.33 = 30.59)] + [2000]) =+ 1517 kN t

Reactions:

Support A:

Fr= (Fidan = 1394 kN 4
My={F)am==535 kNm F

Support B:
Fu = (Fidan + (Fadae = (+ 260,06 + 24.83) = 5089 kN

Support C:
Vo= (Fiue = 15.17kN §
2483 kN
13,0 kN [
B

[~

A - : Shear Force Diagram

+I.J-"J‘rn'.| T

""‘“-‘.| 26,06 LN 15.17EN

29,28 kMm*
L34 KNm ,ﬂ'l'ﬁ\
T S . = -I"T,“. C Bending Moment Diagram
A3 kNm B MJ |L|UL"# * {1ke value given al the node is the
ik average from the two clements),

4536 kxm

Deflected Shape
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Solution
Topic: Dircet Stiffness Method
Problem Number: 7.2

K0 m

Assume axially rigid memboers
di=10 A= A=0

= .. E . .
I ry 1% FLIE

- ] = 4 LGTES

"' ] =[£]=+n.m;;
L L L 30

ELi
o I whl
(2.0E7)
8.0
(2(2.0£1)
5.0

] =+ 233ES

] =+ 0L5ET

| 2(z0Er) ppp—
80 -
" ﬂ}
- " =0T " : i TH

, [-ﬂ:ﬁuﬁr]] , [ ﬁ-j“]'].u.nm
0

&0 3.
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.2

1.33 D67 1]
Structural stiffness matrix = |K] = Ef| 0.67 233 0.50
0 050 30

T
(%]
The invert of a matrix is given by [K]" = = |“'I

'I.\."'I - & - 4
e 133 067 O

[K®] is the co-Tactor matrix for [K]

IK] _ is the determinant of [K]  and Eros? 233 03
[KE]T is the transpose of the co-factor matrix 0 05 30

Co-factor Matrix: [£°]
(Note: the transpose of a symmetric matrix is the same as the original matrix)
K= (233 2 30) = (0.5 % 05 EFT = + 6.T4EN
Ky =k, = - 100067 % 3.0)— (0 = 050317 = - 2,081
Ky = k=4 {067 % 0.5 = (0 = 23300 E77 = + 03481
RSy =+ (133 % 3.0y - 03EN = + J0ETT
L= kG == (L33 % 0.5)— (0% 0.6T)EN = - 0.6TES
Kyom 4 (133 % 2.33) = (067 x 0.6T) EF = & 265E0°

Determinant of [K]:
Det [K] = £7* £+ (1.33 x 6.74) - (0.67 x 2.0+ 0) = + 7.62 £1”*
| 0.885 -0.264 0.044
Inverted stiffness matrix = K] = — 0264 0524 -0.087
0044 0087 0348
Structural Load Vector: [P):
Fixed-end forces for member BC
FEF, == (50.0 = §.00/8.0
== L0 kNm
FEF; =+ 50.0 kNm

PLIE

FEF, = + (50.0/2.0) = + 25.0 kN
FEF, =+25.0 kN

Equivalent nodal loads for BC
S0U0 KNm
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.2 Page No, 3

5000 KNm

nosde 3 :

Cilobal Axes

Equivalent Nodal Loads

0
Structural Load Vector [P] = | + 50,0
= 500

Structural Displacements [d]:

A  [0885 0264 00aa ][ 0
l=1K" [P |4 | = —|-0264 0524 -0.087||+50.0
Al 7| o044 0087 0348 |[-500

=L _ _ _ 1540
& H[[fl.ﬁsﬁﬂﬂ} (0.264x50.0) - (0,044 50.0) ] = md.mj

=l

&

[-(0.264:0) + (0.524 50.0) + (0.087 2 50.0) | = +% radians )

= L

Ef

= Lr_[:tl.l'il-l--l % 0) = (0,087 50.0) - (0,348 = SU.Q]] = 273 o dians )
Ef El

naulie 2 il 3
2175
i

Lf

>

Structural Deflections
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.2

579

Page No. 4

Element Stiffness Matrices [K]:

Fy

]

\
F

F
I
¥

Fi

Element End Forees [ Flrowm:

f FEF,
FEF,
FEF,
FEF,

K

+

| Flvew = = [&]l& + [FEF]

2K
T L
GEI
L F3
4Er

[ FEF, |

FEF

FEF

GLS

L.
12E1
_|rl
_6El
l‘:-:
12E1
S

2E]
e

L
6EI

+
J £

-
4EI
LAED

L
af
2 2

4+

| FEF; |

Consider element ARB:
46T _ axbf
L 3.0
2EN 2= KL
L 30

6EI _ 6xEl
i 30
12E1 _ 12xEl
i 0

= 1.33ES

= (L6TES

o

+1.33

-0.67
Klyn= Ef
(11 067

+0.67

0,67
+0.44
-0.67
=044

+0.67
-0.67
+1.33
+0.67

+0.67
-4
+0.67
+0.44

=0.6TES

= 044
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.2 Page No. 5

Displacement Vector |£]: Fixed-End Forces Vector |[FEF):

1 [-15.40/Er] _ [FER |
1] FEF;

+3035 Ef FEF

0 : | FEF, |

Element End Forces |Flyg:
Fotes. ' FEF,
£ ; FEF,
Flowm=| | + I-'F,F; = [K][&] + [FEF]
FEF,
+1.33 =067 4067 067 || -15407Ef
-0.67 +044 -067 -0.44 0
67 =067 +1.33 +0.67 || +30.355 £
+0L.67 044 +067 =044 0

Fi = [=(1.33 = 15.40) + (0.67 x 30.35)] + [0] = zero
Fyw [+ (067 = 15.40) = (0.67 % 30.55)] # [0] = = 1016 kN —*
Fy=[- (067 x 15400+ (1.33 = 30.55)] + [0] = + 3031 |
Fy=[- (0,67 = 15.40) + {0.67 x 30.55)] + [0] = # 10.16 kN =—

Consider element BC:

AEN _ 4x2081 1.0Er 2
L 5.0 L
- 2 O - - o

B 2xDOEL o op  NZEL12XOHI 000
L 8.0 L 5.0

+1.0 =019 +0.50 +0,19

=019 #0005 =019 =005

+0.50 0019 410 40,19

+0.19 005 +0.19  +0.05

6EI _ 6x2.01

0]
-

=0.19EF

[Kloc-= EI
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.2 Page No. 6

Displacement Vector |£]: Fixed-End Forces Vector |[FEF):

(430,557 EF "FEF, | (5000 ]
FEF, +25.0

=21.757 Ef 1 +50.0

425.0]

Element End Forces |Flpc: )
Fy Fi 1 FEF

F. FEF,
B ¢ 1A= 2|+ | o | =408+ (FER
=y

Fi Fs FEF,
+1.0 =019 +0.50 +0.19][+3055/E0] [-50.0
=019 +005 0019 -0D.05 0 " +25.0
+0.50 0,09 +L.0 +0,19|| 2175/ EF +50,0
+0,13 -0,05 +0.19 +0.05 0 | +25.0

Fy = [+(1.0 % 30.55) = (0.5 x 21.75)] - [50.0] = - 30.33 kNm ¥
Fy=[=(0.19 x 30.55) + (0.19 x 21.75)] + [25.0] = + 2333 kN
Fy = [+(0.50 % 30.55) - (1.0 % 21.75)] + [50.0] = + 43.53 kNm 7
Fy=[+{0.19 x 30.55) - (0.19 x 21.75)] + [25.0] = + 26.67 kN

Consider element CI:

£= dx1.5Ef =2.0ET E - ﬁ-x].ﬁqﬂ
L 3.0 I 30
o 5 - > g - ¥

.._M - 2xL5Ef - L.OET 1..13!'.! - ]._J-cl.-_:hﬁ-f
L 30 L 30

+20 =10 +1.0 <10

=10 4067 =10 -0.67

+1.0 =10 +20 <10

+1,0 067 +1.0 +067

= 1.0Ef

= 0.67ES

[&len= Ef
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.2 Page No. 7

Displacement Vector |£]: Fixed-End Forces Vector |[FEF):

é [=21.75/ Ef] : 1 [ FEF, |
8, FEF,

&, FEF,

3, 0

Element End Forces |Flep:

O - ——

= F: £l [FER
7| |FER

F, | |FEFR,

= [k]14] + |[FEF]
f A FEF,
+20 =10 #L0 +1.0 || =275/ K/
= =10 +0.67 -L0 -0.67 0
+1.0 =10 20 1.0 0
410 <067 <10 4067

Fi=[-(20x21.75)] +[0) =-43.5kNm »
Fr=[+{(10%21.75)] +[0] =+ 21.75 kN —»
Fy=[={1.0%21.75)] + [0] == 21.75 kKNm ¥
Fim[=(1.0%21.75)] # [0] == 2175 kN <+

Reactions:
!iup]:url Ac
Fo=(Fadee =2333kN Y Ho=(Fw=1016 kKN —*

Support B:
o= (Fidas + (Fadae = (= 10016+ 21.75) = 1 1L.39 kN —»

Support D:
Vo = (Fidsc = 26.67kN 1 Ho=(Fidn = 2175 kN -+
Mo=(F)ep= - 2175 klNm ¥
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.2 Page No, 8

2175 LN - compression

g8

DTS HEE

Axial Force DNagram

compression

6T kN

Shear Foree Diagram

116 kN D] | 2T5EN

30,32 kNm* ‘Tﬂ‘m | | d,aﬁ”]‘ﬂ | r
= 5 ) =
e =

Bending Moment Diagram
* (ibe vabue glven at i nodes is e
averze from the wo lemenls). fi

43.52% klNm

6 kNm

7

Defected Shape

e
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Solution

Topic: Dircet Stiffoness Method
Problem Number: 7.3 Page No. 1
nisde 1 ninde 2 niwde 3

40,0 kM D00 M m —

i

‘Q—h- x
| A0m ilm
L .

o o
Cilabal Axs 6lhm

Aszsume axially rigid members
A=10 A=4=0
—_—] - ﬁ] =+ LGTES
6.0

L) ] =+ 033E[

[
2B s 033Er
0

'4&';] '4;,?]
— 4| ==
E’ L L [[5F]

; ] [4(|.5£;i|]+'4{1151}]

£
4.0

i
R
f2Er] | 2005E0 e
4.0 o

Cilobal Axes

(21,560
- | 2(1.5E0) =+ 0.75E]
4.0

= _4{"SE’I]_=+ LS0ET

i
R
Gilobal Axes Lo » L 40
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.3

067 033 0
Structural stifThess matrix = |K] = Ef| 0.33 350 0.75
U I ]

T
[x¢]
The invert of a matrix is given by [K]" = W

where; ' P

[KF] is the co-Factor matrix for [K] ) e _
IK] _ isthe determinant of [K]  and Erjo33 330 075
[KE]T is the transpose of the co-factor matrix 0 075 150

Co-factor Matrix: [£°]
(Note: the transpose of a symmetric matrix is the same as the original matrix)

K=+ [(3.50 = 1.50) = (0.75 = 07500 EF T = + 4.69E°
Ky = K = = {0033 % 1.50) — (0 = 0.75)0ENF = - 0.50E1*
K= kS = ({033 5 0.75) = (0 0 35000 17 = + 02517
K, =+ {{0.67 » 1.50) - 0}E = + L.OEF?

o= kG == {067 % 0.75)— (0% 033 EN =— 05080
Ky =+ ({0067 % 3.50) = (033 x 0.33)1E = + 224 E1°

Determinant of [K]:

Det [K] = £ {+ (0.67 x 4.69) - (0.33 % 0.5)+0} = +2.98 £/ :
1,573 -0.068 0,084

Inverted stiffness matrix = K] = l -0,168 0336 -0,168
0.084 -0,068 0752

Structural Load Vector: [Pz w kN/m
Fixed-end forces for member AB {PLE+ w2y L+ wli2)

H:-Z = wls2) e l:.l'.-l]
FEF, = — (200 % 60080 — (10,0 x 60512 = — 60.0 kNm
FEF; =+ 40,0 kNm

FEFy = + {(40.00/2.0) + (10.0 x 6.00/2.0 = + 50,0 kN
FEF,; =+ 0.0 kM
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.3 Page No, 3

0.0 kN Skl kN
A ]

"B e

G KNm 0,0 ksm

Equivalent nedal loads for AB

Fixed-end forces for member BC

{wil12)
P S iaassiaaE

1
(wliX) (wiiZ)

FEF; == {10.0 » 4.0°V12 = = 13.33 kNm
FEF; =+ 13.33 kNm

FEF; = + (10.0 x 4.0/2.0 = + 20.0 kN
FEF, =+ 20,0 kN

Equivalent nodal loads for BC

20,0 kN 00 kN

B ML‘
13,33 KNm 13,33 kNm
Fixed-end forces for member BD

FEF, =+ (16,0 = 6,008 =+ 12.0 kNm

FEF; = - 12.0 KNm
FEF: =+ (16.0/2.0 = + 8.0 kN
EFy = + 8.0 kN

12.0 kNm

Equivalent nodal loads for BD
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Solution
Topic: Dircet Stiffoness Method

Problem Number: 7.3 Page No, 4

P=+60kNm, P={-600+1333-120)=-3867, F=-1333kNm
Py g Py GO0 KN SHEATKNm 13.33 kNm

ndide 2

_l'
i
|
% - X
Crlohal Ases

Equivalent Nodal Loads

+&0,0
Structural Load Vector [P] = | -538.67

-13.33

Structural Displacements [A]:
4 1,573 -0.16%8 0,084 || 600
[Al1= 151" 1F] A= —|-0168 0336 -0.168(|-5867
4 | 0084 0068 0752 || -13.33

4y = #[[1 573%60.0)+ (0.168x 58.67) - (0.08413.33) ] = + mi}llmliuns )
I . a1 2155
ﬁ[—(ﬂ.lﬁﬂx{rﬂ.ﬂ]—[ﬂ.aﬂﬁx53.{-?}+[{J,Lﬁﬂxl3.3a}] = mmansj
= 487 ,
dy= E[[{l.{lsqxﬁﬂ.ﬂ]+[ﬂ.163x53.67}n{ﬂ.?53x13.33j] = +— radians D
103.12
- -l
El

mede 1

Structural Defections
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.3

Element Stiffness Matrices [K]:
6Ef

Fy F, L

1251
t At =
¥ \ L
i £ J2EL_GEL

i
12E1
-

Element End Forees [ Flrowm:
f FEF,
A FEF,
F = |+ = k][R + [FEF
[ Flvomi . FEF, k][R + [FEF]
FEF,

2B 6EL ] [ FER |
L ;
G 3 FEF,
L.
4E1

FEF

| FEF; |

Consider element ARB:
LI LY YTy :
L 6.0 i
EN 2= ES 12Ef 12w El
—= = (. 33Ef o
L 6.0 iy 60"

6EI _ 6xEl

3

=0.1TES

= 0.06E

+0.67 =017 4033 #0107
-0,17 +006 -0.17 -0.06
+0.33 -017 #0567 +0.17
+0,17 006 +0.17 +0.06

|&lsu= EY

2ET
26
L
SEI
L:
4E
JAEL

L
af

=
A
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Solution
Topic: Direet Stiffaess Method
Problem Number: 7.3 Page No, 6

Displacement Veetor |£]: Fixed-End Forces YVector |[FEF]|:
_:35,_ [+103. 12/ ET] _FEli_ =600

8, : FEF, +50.0

& =27.55/ Ef FEF, +G0.0

], |FEF, |, [+50.0]

Element End Forces [F)yg:
F Fy i1 [EER

=]+ & + |[FEF
“g_d" 1Flrem=| . FEF, k]l + I[FEF]

Fi F F| |FEF,

067 <017 4033 4017 [+103.12/ Ef 60.0
=017 +006 017 -0.06 0 A +50L0
#033 017 +0.67 +0.17|| 275571 | | +60.0
+0.17 006 +0.17 +0.06 0 +50.0

= El

Fy = [+(0.67 % 103.12) - (0.33 x 27.55)] - [60.0] = zero
Fam[=(0.17 % 103.12) 4 {0.17 % 27.55)) + [50.0] = + 37.15 kN
Fy =+ {033 = 103.12) = (067 = 27.53)] + [60.0] = + T3.537 kMm« ™
Fy=[+{0.17 x 103.12) - (0.17 = 27.55)] + [50.0] = + 62.85 kN

Consider element BC:
4EF  dw).5E] GEI G151
—_—= = LL3ET — = .
L 4.0 N 40¢
apr m . . - .
2EF  2xVSEL oo, 12ED  12x1SEI
L 4.0 s 40
+1.50 =056 +0.75 +0.56
=056 +0.28 =056 =028
Kluc= EI
(£l +0.75 056 +1.50 +0.56
+0.56 028 +0.56 +0.28

=0.56E7

= (L2RES
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.3 Page No. 7

Displacement Vector |&]: Fixed-End Forces Vector [FEF|:
F&1 [=27.55/E1 [FEF, ]  [-13.33]

&, 0 y FEF, +20.0

& =487/ Ef 1 FEF, +13.33

[Filee L 0 ] | FEF, | +20.0 |

Element End Forces |Flpc: )
F Fa : FEF,

F FEF,
. F =1 S =1&IA + |[FEF
“B_é{' [Flvem K, FEF, (KA + |

Fi Fs £ | |FEF,
+1.50 =056 +0.75 +0.56][-27.55/ &8 [-13.33
| -056 #0288 -056 -0.28 0 " +20.0

075 -0.56 +1.50 +0.56|| +487/E | [+13.33
+0.56 -028 +0.56 +028 o | [+200

Fy=[={1.5 5 2755y + (0.75 = 4.87)] = [13.33] = = 510 kNm F ™
Fy = [+{0.56 x 27.55) = (0.56 x 4. 87)] + [20.0] = + 32. 70 kN ‘r
Fy=[=(0.75 = 27.55)+ (1.5 = 4.87)) + [13.533] = cro

Fy=|- (056 = 27.55) + (0,56 = 4.87)] + [20.0] =+ 7.30 kN 1

Consider element BD:

2.0F ' 2.0E

AN gy SEI_ G208

e arr 1ren g

2XDOEL o oy 12EL_ 12%20E1
0 L 6.0

=033ET

=0.11ES

+1.33 =033 +0.67 +0.33
£ =033 +001 =033 -011i
T 4067 033 +1.33 +0.33

+0.33 -0 +0.3F 40001
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.3 Page No, 8

Displacement Vector |£]: Fixed-End Forces Vector |[FEF):

é [=27.55/ Ef] ] [ FEF, |
8, FEF,

&, FEF,

% o ; FEF,

Element End Forces |Flgp:
: FEF,
o > F . |, | FEFR
I =
1P F| | FEF,
F, FEF,
£1.33 -033 4067 +0.33)[-27.55/£07 [+120
033 +0L11 033 -1 0 .| 80
+0.67 -033 +1.33 +0.33 0 -12.0
+033 011 +0.33 +0.11] 0 -8.0

=|k]I& + |FEF]

Fy= [-(1.33 = 27.55)] # [12.0) = - 2464 kNm ¥,
Fy = [+({0.33 x 27.55)] = [8.0] = + 1.09 kN —
Fy == (067 = 27.55)] - [12.0] = - 3046 kNm ¥
Fi=[-i(0.33 x 27.55)] - [8.0]= - 1TO9 kN *+

Heactions:
Support A:
Va=(Fidan=37.15kN 4

Support C:
Ve=(Fue=+730kN 1

Support D:

¥p = (Fidan + (Fiac = (62.85 + 32.70) = 95.55 kN 4
-”l:l = {-""-‘l}nlp = |00 kN -

Mu=(Fi)up == 3046 kNm F™




Examplesin structural analysis 592

Solution
Topic: Dircet Stiffness Method

Problem Number: 7.3 Page No. 9

axial load A to O - miminaal

Axial Foree Diagram

95,55 kN compiression

ITISKN
'““'h—-q___ LU KN
| =

A

ILBEKN L___

Shear Feree Diagram

7557 klkm

Deflected Shape
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.4 Page No, 1

120kNm —

Assume axially rigid members

=10 A= A=0

Ky
oy
A== === =TT
s

-
i
]

i

1

L

i
X

Calobal Axes

=10 4=4=0 =+ 0LS0ES

L 80
o [em A
L 'L il “ L =T

[ 4(2.0E0)] N [ 4{1_5;51';] =+ 3.0E1

~ ﬂ] _ [2{105:}

8.0

'5:;';] ; (6(1.5E1)
T

A = | 22 L =+ LOEF
pe-x | & ;
Gilobal Anes

30
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.4

Ai=10 A= A=

L 3.

- : 12E1 IlE‘I]
: Kp=|—| +|==
z Y [ I ] [ I

T

i .
'1} - = [EE{]{—]Z{;":’F}] =+ 1.11 Ef

Chlohal Axes

L33 050 -0.67
Structural stiffness matrix = |[K] = £f| 0,30 30 10
=067 1.0 LI

[xT

I&]

The invert of a matrix is given by [K]™" =

where: * = i
[K°] is the co-factor matrix for [K] 133 050 -0.67
IK] s the determinant of [K]  and El 030 3.0 1.0
[KE]T is the transpose of the co-factor matrix —ﬁ.ﬁ'.'l' Lo |.*] I

Co-factor Matrix: [£5]
(Note: the transpose of a svmmetric matrix is the same as the original matrix)
=060 LI =-(1.0= 'I.ﬂ]-l.f:-'.l" =+2 3360
o= kS == (0.5 % L1 - (- 0.67 = LONES = 1236
ke = kS, =+ {(0.5 % 1.0) - (- 0.67 x 3.0)) EI* = + 2.5E1°
K o=+ {233 1L11) = (- 0.67 =~ 0.67) Ef 1 =+ 2, 4E0°
K= RS == (233 2 10) = (= 0.67 x 050} E1F == 2.67E1°
Ky omow (233 0 3,00 = (0.5 2 0.5 EF7 =+ 6.T4E0°

Determinant of [K]:

Det [K] = £1F £+ (2332 233) - (0.5 % — 1.23) + (-0.6T % 250 =+ 3. 14 EI?
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.4 Page No, 3

0742 -0392 0.796
Inverted stiffness matrix = [K]™ = —| -0392 0682 -0.850
| 0796 -0.850 2.146

Structural Load Vector: [P): wli2 e kN whiin?
Fixed-cend forees for member BC

FEF; == (12.0 = 8.0°)12.0 = - 64,0 kNm

FEF; = + 64.0 kNm 80 m

FEF;=+{12.00= 8.002.0 =+ 48,0 kN
FEF; =+ 48.0 kN

45,0 kN 50 KN

Equivalemt nedal loads for BC B $ e% e
o0 kS 0 Lsm

Applied nodal load at B = 50,0 kN —

Equivalent Nodlal Loads
‘;} i netle | g

Gilobal Axes

Structural Load Vector [P] =

Structural Displacements [A]:
4 -0.392 079 || +64.0

L] = &1 1P| 4| == 0682 -0.850 || -64.0
4| - —0.850 2.146 | |+50.0
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.4 Page No. 4

radians D

1 112.38
4,= -ﬁ[[a.mx 64.0) + (0.392 64.0) +(0.796% 50.0) | = + -

JTETR
= [ -(039264.0) ~(0.68264.0) ~(0.850 50.0) ] = -~ radians ")

L (0.796 64.0) + (0.850% 64.0) + (2,146 50.0)] = + 2283
E[[' x64.0) + (0850 64.0) + (2,146 x .]] +— m—

N
|
1}—- .

Cilobal Axes

Structural Defections

Element Stiffness Matrices [k]:

6Ef 2E GEF]
d—_—
L i
_GEL12E
2 I
4E! 6E!
i — o —
L I
GE! 12E1

+ +
g

2

L
Element End Forces [F]ryum:

FER,
FEF,
FEF,
FEF,

| Flrew = = [lﬁ."ﬂ + |FEF]
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Topic: Dircet Stiffness Method
Problem Number: 7.4 Page No. 5

[ 4Er GEl
F— ———
Fz]
12Ef

K114 + [FEF] =

Consider element ARR:

4Er A= Ef
—_— = = | 33ET -
L 30 Lk
g 1. : G E
2ET - 2x Ef = 0.67ET 12.f.f - ]...K.JE.-’ = 044E]
L 3.0 L 3.0

SE o 8B 06781
30

133 067 4067 4067

| 067 +044 -067 044
Ko =Bl 067 067 +133 +0.67
067 044 4067 +0.44

Displacement Vector | &): Fixed-End Forces Vector |FEF]|:
I FEF, ]
FEF;

+112387 £f FEF;

| -212.64/ ET | & | FEF; |
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Topic: Dircet Stiffoness Method
Problem Number: 7.4 Page No. 6

Element End Forces [Flyu:
B K] [FER

F | | FER
F || FEF,
F, FEF,
+1.33 067 +0.67 +067 0 0

Fy - EI 067 +0.44 -0.67 -0.44 i] N 0
+0.67 067 +1.33 +067 || +112.38/Ef 0

+0.6T -0.44 4067 +044 || -212.64/Ef 0

Fa
Fy

[Flvaa = = |k][& + |FEF]

Fy = [+ (067 x 112.38) = (0.67 » 212.64)] + [0] = = 67.17 kNm ¥™
Fy=[- (067 % 11238) # (044 % 212640) + [0]=+ 182TkN -
Fy=[+(1.33 x 112.38) - (0.67 x 212.64)] + [0] = + TOKNm
Fy=[+(0.67 x 112.38) = (0.44 x 212.64)] + [0] == 182TkN —»

Consider element BC:
4EF 4= 2050 6L Gx20f
—_— = | )ET — =
L 20 i &0
e . . e E
£= 2x 2080 = 0.5Ef 12.:.! - 12}:_.;}!-.! = 0.05E)
L 50 £ 3.0
#1000 =019 +0.50 +0.19
=019 #0005 0,19 -0.05
[Kluc = ET ’
+0.50 0,19 +1.0 +0,19

+0.019 =005 +0,19  +0.05

=0 1%Ef

Displacement Vector |&]: Fixed-End Forces Vector [FEF]:

(112,38 ET ] [ FEF, (=640

L

] EF, +48.0
B C

=111.247 1 ) &y +64.0

| +48.0 |
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Solution
Topic: Dircet Stiffness Method
Problem Number: 7.4

Element End Forces [ Flpc:
. Fi FEF,
3 FEF,
k| 7| FER
" FEF,
+1.0 =019 +050 +009( ] +112.387 £ 64,0
. -0.19 005 -0.19 -0.05 0 N +18.0
+0.50 =019 +1.0 40,19 | =111.247Ef +64.0
#0019 <005 4009 +0.05 0 +48.0

[Flrow = = [k][d] + [FEF]

Fy

Fi=[+{1.0x 11238) = (0.5 = 111.24)] = [64.0] = = T.24 kNm ¥
Fr=[= (019 x 112.38) # (0.19 % 111.24))+ [18.0] = + 47.78 kN
Fy=[+{0.50 = 112.38) = (1.0 = 111,24)] + [64.0] = + .95 kNm 7%
Fy=[+{0.19x 1 12.38) = (0.19 = 111.24)]+ [48.0] = + 48.22 kN

Consider element CI:
4Ef  4x1.5Ef 6EI  Gx1.5Ef
— = E.HEI _
L 30 i 3
2E7 _ 2« 1.5EF = LOES 12!;.! - 12:-:I..::H
) £ 30
+2.0 =10 +1.0
-0 +0.67 -0.67
[Klen = EI N
+1.,0 =10 +1.0

+1.0 047 +0.67

= |.0Ef

=0.67LS

Displacement Vector [&]: Fixed-End Forces Vector [FEF]:

[-111.24/ E1] ' _ [FEF, |

212,64/ EI FEF,

FEF,

| FEF, |_
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.4 Page No, 8

Element End Forces [Flep:

FEF,
FEF,

+
FEF,
£ | |FEF,

=[k]I&] + [FEF]

w20 =10 #L0 +L.07[-111.24/E
=10 +0.67 ~L0 -0.67||=212.64/El
+1.0 =10 20 +L0 0
+1.0 =067 1.0 +I16TI_ 0

Fi=[=(20= 11 L2+ (1.0 = 212.64)] + [0] = - 284 kNm ¥
Fo=[+{1.0x111.24) = {067 = 21264)] + [0] == 3123 kN —»
Fy=[=(1.0x 11120+ (1.0 = 212.64)] # [0] =+ 101.4 kNm 4
Fi=[-(1.0= 11 1.24)+ (067 x 212.64)] + [0] =+ 31.23kN =+

Reactions:

Support Az

Vi=(Fdac =4T48KkN £ Hi=(Fa= 1827 kN <+
May= (Fidan =617 kNm g~

Support D:
Vo =(Fihe =4822 k8 1 Moo= (Fm=3123 kN +—
Mo ={F)n= 1004 KNm /™
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.4

601

Page No, 9

F1.23 kN = compression

Axial Foree Diagram

ATARKN
compeessian

4778 kN

[ 3123k

323N

IRITRN | B

_____Jc:'

ARITKN

Shear Foree Diagram

TE2TEN | [ A 1004 Kisen

I|.=

k=

II.

=
%
|7

L=
'l

]

S0 kNm*

Ii

KJ.‘)& L?'-ln

Eending Moment Diagram
* (the valwe given @1 the nodes is the
= average from the two clements)
G6LITENm

B T T T T L L

Deflected Shape
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.5 Page No. 1

240LN

N o |5 Cilohal Axes

4.0m

a0 . ..
L Assume axially rigid members

1'
-

Cilohal Axes

L 6.0
Ak [ﬂ
L & L J

L L lne
—4{2'“‘“}}[@] =+ 23360

- E] . [3{3.05;}] Iy
AR

6.0 4.0

Crlobal Aves - K): L] "[ﬂ] L [6—}?‘:] == 038ES
2 W Y
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.5 Page No, 2

Ai=10 A= A=
H|_‘|="u

=[] ={5er] =-osmer
Ik - 4.0°

Ll
/ xm[_]if’] ——['“f] -+ 0.19EF
' e 4,

1.33 067 LI}
Structural stiffness matrix = |K] = Ef| 067 233 -0.38

0 -038 019

The invert of a matrix is given by [K]"' =

¥ - 4
where: 133 0.67 o
[KS] s the co-factor matrix for [K] Ef| 067 233 <038
[K] s the determinant of [K]  and 0 —038 019
[E]" is the transpose of the co-factor matrix

Co-factor Matrix: K%

(Note: the transpose of a symmetric matrix is the same as the original matrix)
Ay =+ {(2.33 % 0,19) - (038 x 0.38)}ES* = + 0.30E1°

Ky = k5 == ({067 x 0.19) = (=038 = 0} E17 = = 0.13E0 T

K = kY =+ {(0.67 x -0.38) - (0 x 2330 EI* = - 0.25E)

K, o=+ (1332 0,19) - (001 EF =+ 025K

B = kS == {(1.33 % —0.38) — (0 = 0.6T)}E Y = + 0.50£1

Sy =+ {(1.33 x 2.33) - (0.67 x 0.67T)}EI * = + 2.65ET

Determinant of [K]:

Det [K]=EM {+ (133 < 0.3) = (0.67 < 013+ 0)} =+ 0.31 £
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.5 Page No, 3

[ 0068 -0.419 -0.506
Inverted stiffness matrix = K] = l 0419 0806  1.613
70806 1613 8548

Structural Load Vector: [F|:

Fixed-end forces for member AB

FEF; = - (24,0 = 2.0 x 4.0°06.0°
= — 2133 kNm

FEF; = 4 (24.0 = 2.07 = 4.0)/%6.0°
=+ 10,67 kMm

FEF; = [~ (24.0 x 4.0) = 21.33 + 10.67)/6.0 = + 17.78 kN
FEF,; = {24.& = 17.78)=+ 622 KN

17,78 kN 6,22 kN

AM

L33 kNm 16T Kiom

Equivalent nodal loads for AB

Fixed-end forces for member BC

B B
—e (2 TED KN i

(w12

}Iﬂ.ﬁ'.' LMm

FEF, = + (5.0 x 4.0'V12 = + 10,67 kNm
FEF;=— (80 = 4.0)2.0=- 160 kN

"EF; = = (8.0 % 407012 = - 10,67 kNm
EFy =~ (80 % 40020 =— 160 kN

o7 knm

HI L

1601 KN soascitn
C

Equivalent nodal loads for BC

Note: Towal equivalent nodal (P) load at B = (<1067 = 10.67) = = 21.34 kNm
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.5 Page No. 4

2133 ENm 2LM KNm

node X

Fe s

Glikal A ihal
izl Asgs nde 3 Cilohal Axes node 3

ol
Equivalent Nodal Loads

Structural Load Vectar [F] =

Structural Displacements [A]:
[ 0968 -0.419 -0.806][+21.33

[4]= 1K1 |¥] | —0.41% 0806 1613 || =21.34
T -0806 1613 8548 || +16.0

[[{lﬂﬁh"l 33)+(0.419 21.34) - (0.806 2 16.0) | = + 6'_“ mliuns)

4= [ (0419 21.33) - (0806 21.34) + (1.613%16.0) | = -== rad.amj

- E[—{ﬂ.&ﬂ{mil,i}}—[l.ﬁlﬂxll.34}+{3.5¢3k 16.0)] = +

160 L x]
o —
Ef Er

weee ol |

Structural Deflections
Cillobal Axes
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Solution
Topie: Direct Stiffness Method
Problem Number: 7.5

606

Page No. 5

Element Stiffness Matrices [£]:

Element End Forces | Flyu
"FEF,
FEF,

= |k]l4] + [FEF
FEF, k]14] + [FEF]

[Flvew =

I&]]4 + [FEF] =

Consider element ARB:

_ 4=(2.0£1)
6.0 ; 6.0°

= | 33E] - M

_ 2=(2.081)  OLTE! thl-.ﬂﬂ}
6.0 o 6.0
+1.33 033 +0.67
-0.33 #0101 -0.33
+0.67 -033 4133
+033 011 +0.33

=0.33E]

=0.11Ef
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.5 Page No. 6

Displacement Vector |&]: Fixed-End Forces Vector [FEF|:
& (41669 £l [FEF, | [=21.33]

s Ay

&, FEF, +17.78
A B

& -0.33/ EI 3, 5 FEF, +10.67

8, 0 FEF, |,, | +6.22 ]

Sl B Y L . L
Element End Forces [F]yu:
FEF,
FEF,
FEF,
| F, FEF,
+1.33 =033 40067 +0.33 ]| +16.69/ EF =21.33

[Flyoa = = K]l + [FEF]

n =033 4001 =033 =0.01 1] . +17.78
Tl e067 =033 +133 4033 033/ +£10.67
#0.33 001 4033 <0 0 +6,22

Fy=[+(1.33 = 16.69) - (0.67 = 0.33})] — [21.33] = zero

Fy=[= {033 = 16.69) + (0,33 = 0.33)] + [17.78] =+ 1238 kN f
Fy = [+ {067 = 16.69) = (1.33 = 0.33)] + [10.67] = + 2141 kNm
Fy= [+(033 = 16.69) = (033 = 033)] + [6.22] = + 11.62 kN

Consider element BC:
GEI  6xEl
I 4.0
12BN 12= Kl
Ao

= 038ES

=0.19E7

+0.50  +0.38
=038 -0.19
+1.0  +0.38
+0.38  +0.19
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Solution
Topic: Dircet Stiffness Method
Problem Number: 7.5 Page No., 7

Displacement Yector | 8]: Fixed-End Forees Vector |FEF]|: |

[ —0.33/ K1 " [FEF, | [+10.67]
+85 15/ El =160

=10.67

e L ] L 160 |
Element End Forces [ Flg:

K

Fy FEF,

F o K. 5 = 14118 + |FEF)

I 'Il.ul"" .F' FEF‘ 1 "'5] | J

F,| |FEF,

1.0 038 4050 4038 [ 033/ B FI0LGT
-038 40019 038 -0.19 || #8515/ K N =160
+0.50 038 +1.0 +0.38 0 =167
+038 =019 +0.38 +0.19 0 =160

Fyo|=(1.00= 0.33) = (0.38 x 85.15)] + [10.67] = = 2201 kNm ¥
Fo= [+ (0,38 » 0.33) + (0,19 = £5.15)] = [16.0] = zer0

Fy=[- {05 = 0.33) - (0.38 = 85.15)] - [10.67] = — 4319 kNm g™
Fy=[- (038 = 0.33) - (0.19 = 85.15)] - [16.0] = - 3Z0KN  +

Reactions:
Support A:
= (Fa = 1238k b M= (Fe = zer0

Support C:
Ve=(Fom= 1162 T o= (Fne=320 N+
Me = (Fiae = 4319 kNm ¥
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Solution

Topic: Dircet Stiffness Method
Problem Number: 7.5 Page No, 8

Asial Feroe Diagram £
=
8L

1235 kN 1238 KN = 5
T 1 =
A I

1162 RN

Shear Force Diagram

2171 kMm*

_'__..r-]"".'"lil-i
It

A maEE==
24,76 klwm
Hending Moment [Hagram

* ik vabue givem ot the nodes is the
average lrom the two dlemonts).

4309 ksm

e E e m e

Deflected Shape

a
]
]
[l
]
I
I
I
¥

1
i
]

P

P

i
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Solution
Topic: Dircet Stiffness Method
Problem Number: 7.6

sl
s

T
4,

¥
'
|

e A —F

. .l
ilbm 4 Slm 4

80 m | 30m Global Axes
e A -

Assume axially rigid members

dj = 1.0 .-'.1-_' =4= 0

T ] .
-[—"'["M”] =+ 0.5E]
" 8.0

[2(2.0£1)
B0

] =4+ 05E7
'41&';1 N gl ]

L L S L [ SO
[a(2.0e0)] [a(L5E0)]

Los0 [ 3.0

201580

X,

=+ J0EJ

o
Libobal Axes s 2Ef 1

L L ST

i| =+ LOEJS
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Solution
Topic: Dircet Stiffness Method
Problem Number: 7.6

=10 dy=d=0

L Lo 30
.I-p'-,'J'-I _ Ca(1.5E

L 3.0

] =+ LOE}

L

(ilobal Aves

20 030 0]
Structural stiffness matnx = K] = Ef{0.50 3.0 10
0 L0 20

T

The invert of a matrix is given by K] = |ﬂl

where: 20 00 0
[K] s the co=factor matrix for [£] Ef0in 30 L0
IK] s the determinant of [K]  and o Lo zfn
[K1" is the transpose of the co-factor matrix .

Co-factor Maltrix: |n‘h"|

(Note: the transpose of a svimmetric matnx is the same as the original matrix)
Ky = 030 % 200 = (1.0 % LOYEFT =+ 5.0E17

k= kS == {(0.522.0) - (0 x L0V EI == 1LOEI?

K= kE =+ (0.5 % 1.0) = (00 3.0)JEN = + 05081

Ky =+ 120 x 2.0) - (0)} EI* = + 4.0E1°

£, = kS == {(2.0% 1.0) - (0x 0.5)} £/ = - 20517

RSy =+ (2.0 3.00 = (0.5 = 050 BN = + 5,758

Determinant of [K]:
Dt [K] = ET° {4 (2.0 = 300 = (0.5 = L0)+ 093 =+ 9.5 £7°
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Solution
Topic: Dircet Stiffness Method
Problem Number: 7.6 Page No, 3

T0526 -0.005 0053
Inverted stiffiness matrix = |F.'|" = L -0.105 0421 -0.211
’ L 0053 0200 0605

Structural Load Vector: |F|:

Fixed-end forces for member AR

FEF, == (25.0 = 3.0 = 5.0°)8.0°
== 1030 kNm

FEF; =+ {25.0 = 3.07 = 5.0y/8.0°
=+ |7.58 kMm

FEFy = [= (25.0 x 5.0) = 29.30 + 17.58)/8.0 = + 17.09 kN
FEF,; = I:'_"S.ﬂ = 1709 =+ 791 k™

1709 kN

Equivalent nodal loads for AR A M 8

29.30 kNm 1738 kNm

Fixed-end forces for member CD - ) -
FEF, = = (120 = 3.0°/12.0 B

=— 90 kMNm Cg i
FEF; =+ {120 = ﬁ.ﬂ’JFIE.ﬂ : wii2

=490 kNm % - s

FEF; = +{12.0 x 3.002.0 = + 18.0kN
FEF; =+ (12.0 x 3.02.0 = + 18.0kN

180 KN 180 kN

Equivalem nodal loads for CLy E
Bl kMm Gk kNm

Mote: Total equivalent nodal () load a8 C = (-17.58 + 9.0) = - £.58 kNm
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Solution
Topic: Dircet Stiffoness Method

Problem Number: 7.6 Page No. 4

nesde 3 ke 4 1030 k¥m

v

i

- _

Gilabal Anes Gilobal Anes
Egquivalent Nedal Loads

+29.30
Structural Load Vector [P] = | 838

0.0

Structural Displacements [A]:

A 0526 -0.105 0053 ][+29.30
A=K 1P] |4 |=-—|-0105 0421 -0211|| -&38
Al " ooss -0211 0605 || 90

4y ﬁ[[ﬂ.ﬂﬁx3‘?.30]-—{0.I05=\:3.53]—{D.Elﬂx'}.ﬂ]] - +"1‘_f* radians )
e %[—I{ﬂ.lIJS:-:2'?.31]'_]—{ﬂ.al-?.lxﬂ.iﬂ]+{0.2I1x9.1}l]] - -% radians "}

| i 208
- E[qn.umzmnp{u.zl 1%8.58) - (0.605x9.0) | = - radians )

a
dq " Structural Deflections
Cilohal Axes
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.6

Element Stiffness Matrices [K]:

[ 4EL k1 281
; i 2 L
ty 4 2 % 2
[ \ k=1 .
A Fi +£ = +£

Fy

GET GE]
+

JE i

Element End Forces [ Flrom:
A FEF,

T F |, | FER,

F, FEF,
F, FEF,
[ 4EL 6L 281

L

GES +I2.EJ' GES

i i@ i
V2B GEL AES
) oL
12EF  GEf

e

Wil
o i

= [&114 + [FEF]

[k]l& + IFEF] =

Consider element AR:
. ax(E s .
ll_M:M:]IDEI ﬁ: 6’*’-.&;
4.0 i 407
i ¥ % £
2B gsopr  L2ELLDREL g op
L 4.0

=038ES

-0.38 +0.50 +0.38
#0019 -038 019
-038  +1.0 +0.38
=019 +03E +019
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.6 Page No. 6

Displacement Vector |&]: Fixed-End Forces Vector [FEF|:
a] [ o ] - [FER]  [0]

&, FEF,

8, +15.84/ EI FEF,

6, FEF,

Element End Forces |Flyg:
B FEE
a7 Fhroa= | 2 |+ | 7o | = 114 + (FER)
FEF,
FEF,
+10 -038 +0.50 +0.38 0
- EF 038 019 —03F% 019 ]
Fy 14050 -038 410 <038 | +15.840 5
A +0.38 -0.19 +0.3%8 +0.19 0

Fy=+{0.5 % 15.84) - [0] = + 7.92 kNm %
Fi==(038x1584) + [0]==602kN —»
Fy=+{1.0x% 15.84)+ [0] = + 1584 kNm
Fi=+{038x 1584) + [0] =+ 602 kN 4

Consider element BC:
4E1 _ Ax(20E1)

6E1 _ 6x(2081)
2.0 i 8.0

= LDEF = [L19ET

2w(2.0E7) - 0SET 126 123(2.0E0
80 I 8.0¢
+1.0 =019 +0.50 +0.19
=019 005 =019 =005
+0.50 =019 «1.0 4019
#0019 =005 0,19 +0.05

= LOSES
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.6 Page No. 7

Displacement Vector |£]: Fixed-End Forces Vector |[FEF):

(415847 E1' [FEF, | [=29.30]

FEF, +17.09

=4, 79/ Ef i FEF, +17.58

] I ) |FEF, |.. | +7.91 |
Element End Forces |Flpc:
Fa Fa K FEF,

|/ FEF, |
“Tﬁ_d“ [Flrawa = F FEF, =|4]|8 + [FEF]|

Fs ¥y F, FEF,
+1.0 =019 +0.50 +0.19] [+15.847 Ef -29.30
- Ef 0,19 005 -0.19 -0.05 1] " +17.0%
0,50 0,09 +1.0 +0,19 || -4.797 £ +17.58
+#0,19 005 +0.19 +0.03 0 +7.91

Fy = [+ (1.0 % 15.84) - (0.5 x 4.79)] - [29.30] = — 15.86 kNm ¥\
Fi=[=(0.19 x 15.89) + (0.19 x 4.79)] + [17.09] =+ 150 kN |
Fy = [+{0.5 % 15.84) - (1.0 % 4.79)] + [17.58] = + 20.71 kNm %
Fu=[+(0.19 x 15.84)  (0.19 % 4.79)] + [791] =+ 10.0kN 1

Consider element CI:
4EL _ 4x(15E0) ca0m  SEL ﬁx[l.f:.EJ':I -l
30 ' 300

1 2x(15E7) 12E7 _ 12%(1.5ET)

DES

= |.OE]
30 I a0

+2.0 =L.0 +1.0
=10 +0.67 =10
+10 =10 +20 +10
+1.0 =067 +1.0 <067

= 0.67ES

&l = Ef
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Solution
Topic: Dircet Stiffoness Method
Problem Number: 7.6 Page No, 8

Displacement Vector |£]: Fixed-End Forces Vector |[FEF):

[—4.79/ Ef] [ FER, ] =50
FEF,

=208/ Ef FEF,

] FEF,

Element End Forces |Flep:
Fo e FEE,

B |FER|
le ply (P |2l e | =148+ FER

Fi F, FEF,
+20 =10 +1.0  +1.0|[-479/EF -5.0
10 +0.67 -10 -067 0 L |#so
+10 -0 420 +1.0 [|-2.08/EF +2.0
+10 =067 +1.0 +0.67 0 #13.0

Fy = [ (2.0 % 4.79) = (1.0 % 2.08)] - [9.0] = - 20.66 kKNm ¥
Fy=[+(1.0 x 4.79) + (1.0x 2.08)] + [18.0] = + 2487 kN /7%
Fa=[=(1.0=4.79) - (2.0 x 2.08)] + [%.0] = zero

Fo=|-(1.0x= 479 - (1.0 = 2.08)] + [18.0] =+ 11.13 kN f

Reactions:

Support A:

¥y = (Falae = 150 kN'T Hy= (Fyjap =602 kN —=
My =(F)an =792 KNm ~

Support C:
Ve = (Fdue + (F)en = (10.0 + 24.37) = 34.87TkN 4

Support D:
Fo=(Fidep= 1113 kN 1' Hy= (Fi}an = 602 kN +—
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Solution
Topic: Dircet Stiffness Method
Problem Number: 7.6 Page No, 9

6,02 kN compression

Axial Forge DNagram

COmpession

METEN
15,0 kN \
i

100 k¥ 100 kY 113 kN

Shear Foree Dingram

2068 kKNm*

R fnrﬂ\lm\ -
— RCTTITET 1 5 el
=h “U\\”\M’JILJU’# O s

=
= i s
[ .76 kNm
|-

Bending Moment Diagram
* (ihe vabue given ol the nodes is the
average from the two dlements ).

C

DeNected Shape




8.

Plastic Analysis

8.1 Introduction

The Plastic Moment of Resistance (M) of individual member sections can be derived
as indicated in Section 2.3 of Chapter 2. The value of M, is the maximum value of
moment which can be applied to a cross-section before a plastic hinge develops. Consider
structural collapse in which either individual members may fail or the entire structure
may fail as a whole due to the development of plastic hinges.

According to the theory of plasticity, a structure is deemed to have reached the limit of
its load carrying capacity when it forms sufficient hinges to convert it into a mechanism
with consequent collapse. This is normally one hinge more than the number of degrees-
of-indeterminacy (Ip) in the structure as indicated in Figure 8.1.

TLCLLTTTTCCTENT T
e T Tmeea ___._.---—" xT‘\

BER BRI A A S 11 1A SRS IR A S NARNARNARERE N BRRER]

T - ]

Figure 8.1

Ignoring horizontal forces:

Number of degrees-of-indeterminacy
fo=[2m+r)—-2n]=0

Minimum number of hinges required
(fp+1)=1

lgnoring horizontal forces:

MNumber of degrees-of-indeterminacy
fo=[2m+r)-2n]=1

Minimum number of hinges required
fot+1)=2

Tgnoring horizontal forces:

Number of degrees-of-indeterminacy
fn=[(2m +F)—2n]=2

Minimum number of hinges required
(fp+1)=3

Mumber of degrees-of-indeterminacy
T =[(3m +r)y—-3n]=2

Minimum number of hinges required
{flp+1)=3
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8.1.1 Partial Collapse

It is possible for part of a structure to collapse whilst the rest remains stable. In this
instance full collapse does not occur and the number of hinges required to cause partial
collapse is less than the (Ip+1.0). This is illustrated in the multi-span beam shown in
Figure 8.2. Ignoring horizontal forces Ip=[(2m+r)—2n]=[(2x4)+5—(2x5)]=3

b !

A T T T LT TR LT
u,

-l—i-u—

%
%
=
T

Figure 8.2

For any given design load applied to a redundant structure, more than one collapse
mechanism may be possible. The correct mechanism is the one which requires the least
amount of ‘work done’ for it's inception.

8.1.2 Conditions for Full Collapse

There are three conditions which must be satisfied to ensure full collapse of a structure
and the identification of the true collapse load, they are:

(i) the mechanism condition in which there must be sufficient plastic hinges to develop
a mechanism, (i.e. number of plastic hinges >[Ip+1]),

(if) the equilibrium condition in which the bending moments for any collapse
mechanism must be in equilibrium with the applied collapse loads,

(iii) the yield condition in which the magnitude of the bending moment anywhere on
the structure cannot exceed the plastic moment of resistance of the member in which it
occurs.

Provided that these three conditions can be satisfied then the true collapse load can be
identified.
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If only the mechanism and equilibrium conditions are satisfied then an upper-bound
(unsafe) solution is obtained in which the collapse load determined is either greater than
or equal to the true value.

If only the yield and equilibrium conditions are satisfied then a lower-bound (safe)
solution is obtained in which the collapse load determined is either less than or equal to
the true value.

Since the bending moment cannot exceed the Mp value for a given cross-section it is
evident that when hinges develop they will occur at the positions of maximum bending
moment, i.e. at fixed supports, rigid-joints, under point loads and within the region of
distributed loads.

The analysis of beams and frames involves determining:

(i) the collapse loads,

(ii) the number of hinges required to induce collapse,

(iii) the possible hinge positions,

(iv) the independent collapse mechanisms and their associated M, values,

(v) the possible combinations of independent mechanisms to obtain the highest
required M, value,

(vi) checking the validity of the calculated value with respect to mechanism,
equilibrium and yield conditions.

There are two methods of analysis which are frequently used to determine the values of
plastic moment of resistance for sections required for a structure to collapse at specified
factored loads; they are the Static Method and the Kinematic Method. These are
illustrated with respect to continuous beams in Sections 8.2 to 8.4. and with respect to
frames in Sections 8.5 to 8.12.

8.2 Static Method for Continuous Beams

In the static method of analysis the ‘Free Bending Moment’ diagrams for the structure
are drawn and the ‘Fixed Bending Moment’ diagrams are then added algebraically. The
magnitude and ‘sense’ +ve or —ve of the moments must be such that sufficient plastic
hinges occur to cause the collapse of the whole or a part of the structure.

In addition, for collapse to occur, adjacent plastic hinges must be
alternatively ‘opening’ and “closing’. For uniform beams the plastic
moment of resistance of each hinge will be the same i.e. M.

8.2.1 Example 8.1: Encastre Beam

An encastre beam is 8.0 m long and supports an unfactored load of 40 kN/m as shown
in Figure 8.3. Assuming that the yield stress p,=460 N/mm? and a load factor A=1.7,
determine the required plastic moment of resistance and plastic section modulus.
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My 40.0 kKN/m My

Figure 8.3

Solution:
The collapse load=(40.0%1.7)=68.0 kN/m

The number of hinges required to induce collapse=(Ip+1)=3 (see Figure
8.1)

The possible hinge positions are at the supports A and B and within the
region of a distributed load since these are the positions where the
maximum bending moments occur. Superimpose the fixed and free
bending moment diagrams:

e fall
! §'f"" M - “"%H + A\

"

hinee positi
Ay o A, linge position
o [T g A i
Awl? I H“”_‘_LIJ [ e :l |10
-] h """"-I--.::.;.--a--".""-'-
Fised Bending Moment Dixgram Free Bending Moment Diagram

Final Bending Moment Diagram

Figure 8.4

The beam has two redundancies (ignoring horizontal components of reaction)
therefore a minimum of three hinges must develop to create a mechanism. Since the
beam is uniform, at failure all values of the bending moment at the hinge positions must
be equal to the plastic moment of resistance and cannot be exceeded anywhere:
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My=My=Ms=M, and (M + M) = (M + M) = 20, = 205
The required plastic moment of resistance M, = % = % =272.0 kMNm

The plastic section modulus Sy = My/py, = (272.0 = 10°)/460 = 591.3 = 10° mm’

It is evident from the above that all three conditions in Section 8.1.2 are satisfied and
consequently the M, value calculated for the required collapse load is true to achieve a
load factor of 1.7

8.2.2 Example 8.2: Propped Cantilever 1

A propped cantilever is 6.0 m long and supports a collapse load of 24 kN as shown in
Figure 8.5. Determine the required plastic moment of resistance M,.

M, 24.0 kN lE

AN HC
Vad | Ve
Figure 8.5

Solution:
The collapse load=24.0 kN

The number of hinges required to induce collapse=(Ip+1)=2 (see Figure
8.1)

The possible hinge positions are at the support A and under the point load
since these are the positions where the maximum bending moments occur.

The support reactions for the free bending diagram are: V2=8.0 kN and
Vc=16.0 kN

The maximum free bending moment at Myee ¢,=(8.0%4.0)=32.0 KNm

The bending moment at B due to the fixed moment= —[M;%(2.0x6.0)]
=—0.333M; kNm
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™ 5 . ;
A § = C + A C
himge position ! : hinge posiion i
My =&  {L3I3N, e . I6OKN
« [T '“.'"rrrr:.-rr;.i-i-u. ....... c A B [
T TITTTTTITTTIIT T
320 kNm ] =ll|ﬂ[u1:l|,f’
Fined Bending Moment Diagram Free Bending Monent Diagram
My
03330,
A LRI e, BTl C
[T F20EMNm
aii

Final Bending Moment Diagram
Figure 8.6

The beam has one redundancy (ignoring horizontal components of reaction) therefore a
minimum of two hinges must develop to create a mechanism. Since the beam is uniform,
at failure all values of the bending moment at the hinge positions must be equal to the
plastic moment of resistance and cannot be exceeded anywhere:

My=M=M, and (My + 0.333M,) = (M, + 0.333M,) = 1.333M, = 32.0
The required plastic moment of resistance M, = (32.0/1.333) = 24.0 kNm

As in Example 8.1 all three conditions in Section 8.1.2 are satisfied and consequently the
true value of M, has been calculated for the given collapse load.

8.2.3 Example 8.3: Propped Cantilever 2

A propped cantilever is L m long and supports a collapse load of w kN/m as shown in
Figure 8.7. Determine the position of the plastic hinges and the required plastic moment
of resistance M,.

My, w kiN/m

Figure 8.7
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Solution:
The collapse load=w kN/m

The number of hinges required to induce collapse=(Ip+1)=2 (see Figure
8.1)

The possible hinge positions are at the support A and within the region of
a distributed load since these are the positions where the maximum
bending moments occur. In this case the maximum moment under the
distributed load does not occur at mid-span since the bending moment
diagram is not symmetrical. Consider the final bending moment diagram:

B

LAEENA]

Figure 8.8

The maximum bending moment (i.e. Mp) occurs at a distance ‘x’ from the roller support
and can be determined as follows;

Since the moment is a maximum at position ‘x’ the shear force at ‘x’ is
equal to zero.

M, w kN/m a w kN/m

+ve) EMy =0 L ve)EM=0
- M, +w(l-x)2-M,=0 P M, —-wx2=0
0.5wL? — wilx + 0.5wx" = 2M, =0 M= 0.5

M, =025wL’ — 0.5wLx + 025wy

Equate the M, values to determine x:
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0.5wx" = 0.25wL’ ~ 0.5wlx + 0.25wx" 5 02550+ 0.50x - 0.25L = 0
—bifb —dge -OS5L% J{u,ﬁf,f +(4x0.25%0.2517 )
cm u =+ 0.414L m
2a (2:0.25)
M, = 05w = [0.5 = w x (0.4142L) ] 5 M, = 0.0858wL’

This is a standard value, i.e. for a propped cantilever the plastic hinge in the span occurs
at a distance x=0.414L from the simply supported end and the value of the plastic
moment M,=0.0858wL*

8.3 Kinematic Method for Continuous Beams

In this method, a displacement is imposed upon each possible collapse mechanism and an
equation between external work done and internal work absorbed in forming the hinges is
developed. The collapse mechanism involving the greatest plastic moment, M,, is the
critical one.

Consider the previous Example 8.1 of an encastre beam with a uniformly
distributed load. The hinge positions were identified as occurring at A, B
and the mid-span point (since the beam and loading are symmetrical).
Assuming rigid links between the hinges, the collapse mechanism of the
beam when the hinges develop can be drawn as shown in Figure 8.9(c).
The deformed shape is drawn grossly magnified to enable the relationship
between the rotations at the hinges and the displacements of the loads to
be easily identified.

A virtual work equation can be developed by equating the external work
done by the applied loads to the internal work done by the formation of the
hinges where:

Internal work done during the formation of a hinge=(momentxrotation)
External work done by a load during displacement=(loadxdisplacement)
(In the case of distributed loads the average displacement is used).

The sign convention adopted is:

Tension on the Bottom of the beam induces a “positive’ rotation (i.e. +ve
bending)

Tension on the Top of the beam induces a ‘negative’ rotation (i.e. —ve
bending)
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Note: the development of both —ve and +ve hinges involves +ve internal
work

{Aw) = 68,0 KN/m

]

\ B (a)

b

()

Figure 8.9

From the deformed shape in Figure 8.9:

._ L L
5= =8==08 . p=6
For small values of 6 and B 2 2

The load deflects zero at the supports and 6 at the centre

L
4

1
-5 =
Average displacement of the load 2

a

The Internal Work Done in developing the hinges is found from the
product of the moment induced (i.e. M) and the amount of rotation (e.g.
0) for each hinge.

Internal Work Done = Moment x Rotation for each hinge position
=M, 0+ M0+ )+ M0 = 4M,0
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The External Work Done by the applied load system is found from the product of the
load and the displacement for each load.

External Work Done = (Load » Displacement) = [{ﬁs.l}x 5.0) x%ﬂ] = 108%.0 &

Internal Work Done = External Work Done
4N 0= 1088.08
Ay =272.0 kNm (as before)

Consider the previous Example 8.2 of propped cantilever with a single point load. The
hinge positions were identified as occurring at support A, and under the point load at B.
Assuming rigid links between the hinges, the collapse mechanism of the beam when the
hinges develop can be drawn as shown in Figure 8.10(c).

(Aw) = 24.0kN
B

A ‘_} [ {a)
¥, 4.0m J 2.0m %Il—
) - "
™ l B
A= = C b}
Fa

40m 2.0m

i)

Note: no intermal work is
done al support O since thene
Is mo plasiic hinge roquired.
i, the beam is free o rotate,

Figure 8.10
From the deformed shape in Figure 8.10:

From the deformed shape in Figure 8.10:
For small valuesof @ and §  5=4.00=2.08 s p=2.08
Displacement of the load = & = 4.08

Internal Work Done = External Work Done
M0+ M0+ H=(24.0x 9)

4M, =96.00

M, = 24.0 kNm (as before)
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Consider the previous Example 8.3 of a propped cantilever with a uniformly
distributed load. The hinge positions were identified as occurring at support A, and at a
point load 0.4142L from the simple support. Assuming rigid links between the hinges, the
deformed shape of the beam when the hinges develop can be drawn as shown in Figure
8.11(c).

(a}

(b}
. 03861 m i 04148 m
- | |
A —: --------------------------- B ()
¢! o B \"
+(8+ Note: no internal work is
+_||.|'|:I 1;}" done at suppHsrt It sinee thene
is no plastic hinge required,

i.¢. the beam is free 1o rotate.
Figure 8.11
From the deformed shape in Figure 8.11:
For small values of 6 and/p 6=0.586L0=0.414Lp :. p=1.4156

The load deflects zero at the supports and 6 at a distance 0.414L from
support B.

_ 1l _ 0.586L

) = 8 =0.293L8
Average displacement of the load 2

Internal Work Done=External Work Done
Mp6+M(0+p)=(wxL)x0.293L6

3.415M,0=0.293wL6

M,=0.0858wL? (as before)
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8.3.1 Example 8.4: Continuous Beam

A non-uniform, three-span beam is fixed at support A, simply supported on rollers at D, F
and G and carries unfactored loads as shown in Figure 8.12. Determine the minimum M,
value required to ensure a minimum load factor equal to 1.7 for any span.

SOKN  25KN 40 kN
M, l l I 12 KN/m—
AND_B C E{ F
N o,
Fa
| 20m J‘ 20m {m
Figure 8.12

There are a number of possible elementary beam mechanisms and it is
necessary to ensure all possibilities have been considered. It is convenient
in multi-span beams to consider each span separately and identify the
collapse mechanism involving the greatest plastic moment My; this is the
critical one and results in partial collapse.

The number of elementary independent mechanisms can be determined
from evaluating (the number of possible hinge positions—the degree-of-
indeterminacy).

Ignorng hoerizontal foress:
HMumber of deprecsof=indeterminaey: = [(2e+0) - 2u)
=[Ex3+i-(2x4)=3
PMumber of passible hinge positiens =T (otA B C D E Fand between F and G

Number of independent mechanisms =(7—3)=4

(Note: In framed structures combinations of independent mechanisms
must also be considered see Section 8.5).

A=1.7

Factored loads: (1.7 % 50)= 85.0 kN (L.7x25)=d25kN (1.7 x 40) = 68.0 kN
(1.7 % 12) = 20.4 kN
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Consider span ABCD:

In this span there are four possible hinge positions, however only three are
required to induce collapse in the beam. There are two independent
collapse mechanisms to consider, they are:

(i) hinges developing at A (moment=2M,), B (moment=2M,) and D
(moment=Mp)

(i1) hinges developing at A (moment=2M), C (moment=2M,) and D
(moment=Mp)

Static Method:
The free bendng moment at B=119.0 kNm

The free bendng moment at C=68.0 KNm.

SN 425KN ESEN  425KN
Lin Wi PR
VBN nl. [ B i !
- " 2M, gs M,
Py . P A X
| 20m 20m  [10m)| H | 20m | 20m 10m)
& - - i it A .
200 e = i
- i hd B
\ | 120kN H
> o |
N VA e | .
Zase (i) 200 + 1604, = 1190 Case(ii) 2.0+ 1.20, = 68.0
M, = 33.06 kNm i M, =2125KNm

In this span the critical value of Mp=33.06 kNm with hinges developing at
A, B andD.

Kinematic Method:
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BILM  423KN

] For small values of & and &
Y F =200=308 o Fe0670
&y=1.0f=0670

u (s

"
! 20m ! 2.0my Hl‘l.ﬂm\l

Internal Work Done = External Waork Done

2.0M0 + 2OMAO+ B+ M= (850 = &)+ (425 = &)
2OALE + 334M0 + 0.6TM0= (850 = 2.08) + (425 = 0.678)
G.0M 0= 198.368 S M = 33,06 KNm (as before)

H3KN  J2.5KkN

-iM
w3 T D=0

: For small values of & and /&

= (0 &= 200

) s Fy=a08=100 - fF=4.08
L 20m 2i0m |:|.l:I m
A% e

Internal Work Donc = External Work Daonc

20MLP+ ZOMLO+ B+ M3 = (B5.0 = &) +{42.5 = &)

200,64 10.0M,8+ 4.0M,0= (85,0 x 208 + (42.5 = 4.08)

16,008 = 340,08 5o ML= 2125 kNm (as before)
The eritical value for this span is M, = 33.06 as before.

Consider span DEF:
In this span only three hinges are required to induce collapse in the beam.

Hinges develop at D (moment=My), E (moment=M,) and F (moment=M)

Statie Method: Kinematic Method:

My Ay 'R

-,

et e s s s e

.
i | 3.0m | 1ivm .
H \; X %

| ! For emall values of & and il

-“if'k-"m P =300=108 o g=300
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Static method:
M+ M, =510
M,=255kNm

Kinemeaiic Method:

Internal Work Done = External Work Done
M0+ MAE+ B+ M= (68.0 = &)
B.0ME = 2048

M,=255kNm

Consider span FG:
In this span only two hinges are required to induce collapse in the beam.

Hinges develop at F (moment=M), and between F and G
(moment=1.5My)

20.4 kN/m

Span FG is effectively a propped cantilever and consequently the position of the hinge
under the uniformly distributed load must be calculated. (Note: it is different from
Example 8.3 since the plastic moment at each hinge position is not the same).

. My 204 KN/m— 15M, i 1.5M, 20.4 kN/m

F o P T O T L i

- [
Ve [ (6.0-x) | Ve

+ve JEM; =0 L 4ve) EMg=0

M, +20.4(6.0 - x)/2 - 1.5M, =0 P 1L5M, - 204572 =0

367.2 - 122.4x + 10.2%° - 2.5M, =0 P M, =6.8¢

M, = 146.88 - 48.96x + 4.08%°
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Equate the M, values to determine x:

6.8 = 146.88 - 48.96x + 4.08¢ L2720 4 48.96x - 14688 =0

bayp —dac  -48.96:,[(48.96)" +(4%2.72x146.58)
=

x= =+ 2619m

2a (2%2.72)
M, = 6.8¢" = (6.8 % 2.619%) = 46,64 KNm . Span FG is the eritical span
The reader should confirm the value of M, using the Kinematic Method.
Span: ABCD DEF FG
Minimum required value of A, ] 33.06 kNm 255 kNm 46.64 kNm
for a load factor of 1.7
Actual load factor if an M, (1.7 = 46.64)33.06 (1.7 = 46.64025.5
value of 46.64 KNm is used 24 3. 1.7
Actual M, provided 93.28 kNm 46.64 KNm 63.96 kNm

8.4 Problems: Plastic Analysis—Continuous Beams

A series of continuous beams are indicated in which the relative M, values and the
applied collapse loadings are given in Problems 8.1 to 8.5. Determine the required value
of M, to ensure a minimum load factor A=1.7.

204 kN 154 kN
@;\ B i C i D E @
M M

| 20m l‘ 20m 2.0m \L 20m _
4.0 m 4.00m

w

Problem 8.1

Problem 8.2
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A kN 154 kN 04kN
B IC l |1 E F l G

; 1.5M, = M, =
| 20m | Z0m
I

104 kN'm

|
K

_[ Gl m ] Glm

Problem 8.3

207 kN 10 KN

ﬁﬁ B LM, C e D 204, E SEF M, G

| 20m | 4.0m om | X0m | 2om |

c 13 ¥ % ¥

| .0 m J b m J 4.0 m
Problem 8.4

204 kN H0E KN lsu.:. kM 154 kN
& A M, B C {%‘ o 15y, E k@\g L5, F
| .00 m | 2om | 2om | 40 m J
: - L
E0m Gm | 20m

Problem 8.5

8.5 Solutions: Plastic Analysis—Continuous Beams
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Solution
Topic: Plastic Analysis = Continuous Beams
Problem Number: 8.1 = Kinematic Method

+.0m

A=17
Factored loads: Beam ABC = (1.7 = 200 =34 kN, Beam CDE=(1.7= 15)=235kN

Kinematic Method:
Span ABC

JOKN

§.\ B 1 .{:
|

=

I 20rm J 20m
[ A0

b

«(ite gt p"'ir"- A,

m | 2om |

F=2F=20 =8
Internal Waork = External Weork
MBS + MAOLH + M) = (34 = 28)
4M,0= 686

Span CDE
P 25,5 kN

2.0m

F=2F=20 . pB=8
Internal Wark = External Waork
M+ ML+ + M = (255 = 260
AN 0= 5104
& M= 1275 kNm
Critical value of M, = 17.0 kNm
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Solution
Tapic: Plastic Analysis = Continuous Beams
Problem Number: 8.1 = Static Method Page No. 2

Static Method:

Span ARC === |||| | || Il __LL’JJT
l 17.0kX 1T KN

¥ 70 200y = 3400 KMm

[

ml : Free Bending Moment Diingram

a
#
=
\
|
[
*

WML

My,

——

i
“.'D kNm Fixed Wending Moment Dizzram

Combined Bending Momesl Diagram

(M, + My) = 20, = 34,0 kNm
o M, =17.0 kNm

Span CDE

: ? T | il
“T@ 1‘ E§ 12,75 kN || - | |||“fl T|:'<=.'x
!
|

T 0m 0m (1275 = 2.0y = 25,5 kXm

4.0 m 1 Free Bemnding Moment [Magram

M,

pey r | B

A, Fived Bending Moment Diagram

Combined Bending Moment Dagram

(M + MY = 2Mp = 25.5 KNm
A M, =12.75 kNm
As before the critical value of My = 17.0 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: .2 = Kinematic Method Page No. 1

E
: -
]
. My 3 A oo
| 20m | 20m 20m
T_ - 3 o ]
E”

L
40m |
=

A= L7
Factored loads: Beam ABC = (1.7 = 20) =34 kN, Beam CDE={1.7= 13)=235kN

Kinematic Method:
Span ABC
KN

-
g Ui

20m 20m

d=2F=20 ;- =0
Internal Work = External Waork
MAE -+ + MM = (34 = 28
3M, 0= 688
M, = 26T KNm

ALY (i T

0m | 20m

Se a2 o e
Internal Work = External Waork
M+ MAOEH = (255 %28
M 0= 35108
S M= 170 KNm
Critical value of M, = 22.67 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: 82 = Static Method Page No. 2

" Static Method:

Span ABC
u kN

(17.000 200 = 3H0KNm

A
3%‘ 20m 20m B Free Bending Momeng Dingram
L

S.0m

EITA—— TS
EITA ,n-rmrn"l'llrlpmlh”ﬂ | | —“—”
— S, e

3 : - ) , ,
3.0 kNm “1“-.UJLI|,'-"'H Fixed rending Momem [iagram
A,

Combined Hending Momen DMagram

(M, + 0.5M,) = 1.5M, = 34.0 kNm o My =122.67 kNm

Span CDE
25IEN

gy TP,

20m | 20m
—— (12,78 = 200 = 255 kim
44 m

Free Bemding Mansent Diagram

o 050,
LT | —
Sij JI.- TIIE= '.‘.".f‘lr-l:?\'m

Comhined Dending Mamsent Dizgram Fived Rending Momgent Diagram

(M, + 0.5M;) = 1.5M, = 25.5
2 My= 17.0 kNm

As before the eritical value of M, = 2267 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: §.3 = Kinematic Method Page No. 1

IARN 154kN

10 KNim
_| |1 ll’! 1 V]

1T = 151,
| 20m | 20m
|I .0l m ) B m )
] . #
A= L7
Factored loads =(1.7 = 10} = 17.0 kN/m {1.7=x 15)=255kN
=(1.7=20)=34.0 kN (1.7 30)=510KkN

Kinematic Method:

Span AB

MNote: Span AR iz effectively a propped cantilever and the beinding mament diagrum
is asymmetric, The hinge between A and B does not develop at the mid-span point
and should be evaluated in a manner similar to that indicated in Section 8.2.3, The
reader should carmy-out this calculation to show that the hinge develops at a position
equal to 2.582 m from the free suppont at A as shown below, {see page 3 of this
solution].

L3M, a1l B
w kMN'm - -|

3R m | 204,

il m

17.0 k%'m | Mo antermal 17.0 kNim -

B Y work dose

A | B LA
&u:uuuuuuuuummuuuuuuu A WD DU Py
3 | s ! : # i .

2ARIm 3418 m
- a0
A0 m e R (A T
2582m | 348m

d= 3418 F= 25820 o F= 07358

Internal Work = External Work
[2.0MG (6 + @+ (LIMD] = [(17 = 6.0) 2 (0.5 )] = (102 = 0.5 = 238260
464300 = 131 6828

M, = 2836 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: §.3 = Kinematic Method

Span BCDE
SI0KN  255EKN 30K 255EN

ot s

i B [ 1] E

20m | X0m 0m |
6,0m

= | 2om| 20m | 20m |

W o =050 H=20=0

Internal Waork
LM, (6 + LM, (8 + 00 + M, () = 425068

External Work
(510x By +(255 =« H)=(51.0 = 2Hh+ (255 = 2fH = |20.58
4.25M, 0= 127.58
2 My = 3000 kNm

SIOKN  ISSKN SLOKN  ZE5KN

20m I 2ilkm

G0 m

Internal Waork
LEM, (0 + LSM, (00 + M, () = 8.0M,0

External Work
(500 &Y+ (255 x &) = (510 x 26 + (255 x 4h = 204.08
B.OML0 = 2040
A M, =155 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: 83 = Static Mcethod Page No. 3

Span EFG o intgmnal
work dese

. e
I R
20m

|
[ o {0+
| i

Pt
X0m ) 20m

G=2f=2 - =8

Internal Work = External Work
ML+ + Mo S = (34 = 26
M= 680 & My =2267 kNm

The critical value of M, = 30.0 kNm
Static Method:

Span AB

17.0 kMm ——
0 kNm 1 LY

A

A
| G0
4

] ! : il L)
xﬁﬁ”mmwmm“w oy R 12
4 X 00— x)m | 2 | F1r8
|' .

17.0 k¥im _|

e JEMy =0 P s JEMy=0
(17.06°V2 = 2M, = 0 D Mt LM, - 17.0(6.0 - xYi2 =0
85X -2M,=0 o M,=425¢ 1 M,=2429(6.0 - x)0

Equate the Af, values to determine x:
4250 = 24290360 = 12x + 57} o LB21XT + 290480 - 8744 =0

by —dae | —29.048/29.148° + (4 1.821x87.44)
2a [lx 1.82 l:l
M, =425 = (4.25 = 2.582%)

=+2582m

- M, =28.33 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: 83 = Static Mcethod Page No. 4

" Span BCDE

ol e ¢TI,

| (42.5 = 200 = B5.0 KNm
2.0m 2
T = S0 m B Free Bending Moment [Hagram

L3N,

_ I
T ‘/ﬂ]!ﬁl]k‘km e —
qum ” ]_!JJJ/ Fised Bending Momeni Diagram

o

|.3.w,

T

Combined Bending Momend Diagram

(1.5M, + 1.33M,) = 85.0 kNm
2.83M, = 85.0 kNm
S My = 300 ENm

SLOKN  25EKN

o | TQIIPR,,

potlm o 2Am ,L (34,0 % 20) = 68.0 KNm

i Free Bending Momentl Diagram

, 1.5, . LITM,
- /I] A
\JHH_JH”-JH””V mmu\m ] : ssad

1500, Fired Berding MMonsont Diagram

Combined Bending Meomsent Diagram

CLSAML # LATAMG) = 68.0 KNm
2670, = 68.0 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: 83 = Static Method Page No. 5

- ~~Tw“u~u”ll,{‘|wf”“’?«?=

{170= 2.00= 340 kNm

Free Bemding Moment Diagrans

0.50, ) m T” ”T [ -| |['I"r1~

Al ||.-..\_ L = t E:

=] NI 3.0 kN
I“"‘“I-I\.]..-lLu“' d. " Fived Bemiding Momsent Dizgram
M,

Myr

Combined Bending Moment Diagram

(M, + 0.5M) =255 = M, =2267kNm

As before the eritical value of M, = 300 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: §.4 = Kinematic Method Page No. 1

J0A KN 154kN A KM/m

D 20M, E F M,

20m | 20m | 20m
.3

6.0m

A= L7
Factored loads: (1.7 = 10) = 170N (1.7 =20) =340 kN
(1.7 15)=255kN (1.7 =30y =51.0kN

Kinematic Method:

Span ABC
Note: The bending moment diagram on span ABC is asymmetric and in this case the
hinge between A and C does not necessarily develop under the point load.

The position should be evaluated in a manner similar o that indicated in
Section §.2.3. The reader should carmy-out this caleulation to show that the hinge
develops at a position equal 1o 2,333 m from the suppon at A as shown below, (see
page 3 of this solution).

1AM, M C
I5Mpat A JOKN o tme—
B C

| 233 m I J66T m -
&0 m ST S e
| z3sim | et |

o= 3667 0= 23338 o Ge 06358 &= 2.08

Internal Work = [1.5M, (&) + L.3M, (8+ @ + {(L5M 5] = 49108
External Work = [({34 = &3]+ [(17 = 6,00 = (0,52 &)]
= [(34 x 28] + [(102.0) x (0.5x 2.3338)] = 186.980

4.91M,0 = 186,980
M, = 38.08 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: §.4 = Kinematic Method

Span CDEF
SI0KN  255EKN 30K 255EN
I §

L

i«
A
=

] E
‘-i-'d_ﬂ.ﬂ
(@
N | 2om| 20m | 20m |
. i . \

20m | 20m 0m |
G.0m

& =df=28 o fe050 &elfsg
Internal Work
LAMG (8 200, (800 M, (0 = [L3M, (8 + 208, (1560 + M, (0.50]
= JOMLE
Extemal Waork
(S10x &Y+(255 » &)= [(501.0 = 280+ (25.5 = 20 = [( 1026 + (25.500]
= 127,58
5.0M8 = 127.50
SoMy= 155 KNm

SIOKN  IRSKN SLOKN  255KM

P
ML S YITTA

| 20m| 20m | 20m |
&=200 H=2f=40 . g=20

Internal Work
LSM (00 + 200, (040 + M, (0 = [130, (0 + 20M, (3.0 + M, (2.040]

— ‘;I.Sﬂfpﬁ'
External Work
(510 = &)+ (255 = &)= [(51.0 = 260+ (25,5 = 48] = [( 10260 + (102]

= 204 08
9.5M8 = 204,08

oMy = 2147 kiNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: §.4 = Kinematic Method Page No. 3

Span FG
Mote: Span FG is cffectively a propped cantilever and the bending moment diagram
is asymmeiric. The hinge between F and G develops at a position 0.4142L from the
simply supported end as indicated in Section 8.2.3.

ar KMm
G
M, | [ETE=I .
P
. |

—— MO kNm

MHOkN G v F G
ool LI
l E \", TR i ke
L63Tm ) A
Aivm A T y

| assm | 1esTm |

&= L6STH= 23430 o fF= L4140

Internal Work = External Work
[ M, (6 + M, (81 ] = [(34.0 = 4.0) = (0.5% &)
[, (8 = ML (2AL4EN] = (136 = 0.5 = 234360
JAl4MLB = 159320
M, = 46,67 KNm

Static Method:
Span ABC
HOEN

158, [

il R

i g

[}
Em | 1AM,
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: 8.4 = Static Method Page No. 4

+ve_JEMy= 0
— L5M, + (34 = 2.0) + (17.06°)2— 1.50M, =0
650+ 8.5 - 3.00M,=0 & M, =22.667 +2.833¢°

ve )EM:=0
L5AL, — IT.006.0 — x)2 + 1L.5M, =0 oMy = 2833060 - x)°

Equate the M, values to determine x:

22,667+ 2,833 = 2.833(36.0 - 12¢ +x7) So33.990x - T9321 =0
£=2333m

M, =2.833(6.0 - x)° = 2.833(6.0 - 2.333)°
2 M, = 38.09 kNm

Span CDEF

SIOEM  2REKM

:_;% nl 1-‘.1 Fhl i T-\ML\ H”UJWT

Xilm 2l m | 20m
% — 3

! 28 % 200 = $5.0 KNm
I Glim
¥

Frae I-Frn-lmg Muomen "IHLLF".H-TI

L5M, L33, P 1330,

h ~+| AT

Q> sausm. & ° -
200, % | et | Fivied Bending Monsent Disgram

Combined Bending Monsent Dizgran

(2.00, + 1.33M,) = 85.0 kNm
3.33M, = 85.0 kNm

4 M, =255 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: 8.4 = Static Method Page No. 5

SIOEN  253KN
n

L d s b |
{_iﬁ:‘ﬁm | 20m :r.nmﬁg_i wmmuumulﬂ [LIL{T?_;;IM\

340 = 20 = 650 kKNm
Free Bemnding Momen Diagram

6.0 m |

L3,
: LITAL,

N AT T

T 1] L

Fixned Bending Momeni Diagram

Combingd Bending Moment Diagrany

(2008, + 11T = 68.0 KNm
3070, = 68.0 kNm

5 M, = 21,47 kNm
Span FG

MOkNm

< >

| 40 =
| { x) ! X LA,

|— .0 kNm

"'l

+ve JEMy =0 : +ve ) EMs =0
(34.06Y2 - My— M, =0 5 M, - 340040~ 2=0
17.05° = 20M,=0 5 M= 170080 - 2

M, =85+ =
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: 8.4 = Static Method Page No. 6

Equate the M, values to determine x:
B3 = 1T.016.0 - By +x7) SRS - 136+ 272=0

s L . 6+ 2 _ a479

. bayb? —dac 13624136 - (4x8.5x272) T
2a {2x8.5)

M, = 8.5 = (8.5 » 2.343)

M, = 46.67 kNm

As before the eritical value of M, = 46,67 kNm

Note: Span FG s the same as the standard propped cantilever in Example 8.3 in
which the hinge develops at a pm:n'l 0.414L fram the simply supported end
and the M, value equals 0.0858wl, ie.

Distance of hinge from support F = [4.0 = 04 14£] = [4.0 = (0414 = 4.0)] = 2344 m
oMy = (00858 x 34.0 % 4.07) = 46,67 kNm
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Solution
Topic: Plastic Analysis = Continuous Beams
Problem Number: 8.5 = Kinematic Method Page No. 1

i
|
A=17

Factored loads: (1.7 % 15) = 25.5 kN (1.7 % 20) = 34.0 kN
(1.7 % 30) = S1.O KN

Kinematic Method:

Span ABC

Note: The bending moment diagram on span ABC is asymmetric and in this case the
hinge between A and C docs not necessarily develop under the point load and its
position should be evaluated in & manner similar 1o that indicated in Section 8.2.3.
The reader should carry-out this caleulation to show that the hinge develops at a
position equal to 3,725 m from the support at A as shown below, (see page 2 of this

lution).
solution} SLOKN 184,01 €

4.0 k¥m -
ﬁ.il'.'lk"m

3T m 427 m
¥ ¥ n.?_\_
00 m FLOAGL TS e gy
| 37w | 42%m

& =42750=37250 . f=08718; &=200

Internal Work =[ 20M, {8+ @ + (1LSM D] = 5.05M,8
External Work = [(31 = &)] + [(34 = 8.0 = (0.5 = &)]

=[(51 = 1.74280] + [(272.0) = (0.5 » 3.7256)] = 595,448
5.05M0 = 595440

M,=117.91 kNm
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: 85 = Kinematic Method Page No. 2

| 20m| 40m |
&=4f=20 - f=030

Internal Waork = External Weork
LAM, (0 + LSML (040 + LML (A = (510 = K) = (51.0 = 26)
4.5M 8= 1020
& M, =22,67 kNm
Span EF
JEEKN

Internal Work = External Weork
LAM, (= (255 = B)= (255« 20y = 51.00
& My =340 kNm

The eritical value of M, = 117.91 kNm
Static Method:

Span ABC

FOENm
il LELA

1] 11

Xm | 2
ke ! L IM,
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Solution
Taopic: Plastic Analysis = Continuous Beams
Problem Number: 8.5 = Static Method

(34.06)2 - 2M, = 0 2M, - 34.0(8.0 - x)12— (51.0 % 2.0) + 1.5M, =0
17.04% - 20, = 0 M, = 4.857(8.0 - x) - 29.143
M, =85x i

Equate the M, values to determine x:
8507 = 4B57(64.0 - 1o+ x7) - 29,143 2306450 = TT. T2 + 339.991=0

—bafbt —dar | —TLIIZE 07127 + (4% 3.643%339.991)
x= = =+3.725m
Za (2%3.643)

M, =85+ = (8.5 = 3.7259

= My =117.94 kNm

Span CDE
S10kN

Q™.

{3400 2.0) = 68.0 kNm

Friee Bendimg Monsent Dixgrang
1.5A1, : L5M,

Fixed Bending Moment Diagram

Combined Bending Momens Diagram

(136, + 1AM = 68.0 KNm
oo My = 2267 KNm

H“Inw M

L3M, = PL=(255= 2.0)= 3 L.OKNm
o M= 340 RNm
Critical value of M, = 117.94 kiNm

8.6 Rigid-Jointed Frames

In the case of beams identification of the critical spans (i.e. in terms of M, or }) can
usually be solved quite readily by using either the static or the kinematic method and
considering simple beam mechanisms. In the case of frames other types of mechanisms,
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such as sway, joint and gable mechanisms are also considered. Whilst both techniques
can be used the static method often proves laborious when applied to rigid frames,
particularly for complex load conditions. It can be easier than the kinematic method in
the case of determinate or singly redundant frames. Both methods are illustrated in this

section and in the solutions to the given problems.

As mentioned previously the kinematic solution gives a lower bound to
the true solution whilst the static solution gives an upper bound.

i.f-‘- Mp kinematic = d'wp true = iwp slatie
M, iinematic = M, suic for the true solution.

Two basic types of independent mechanism are shown in Figure 8.13:

(i) beam mechanisms

Sway
mechanism

beam
mechanism

(ii) sway mechanism

Figure 8.13

Each of these collapse mechanisms can occur independently of each other. It is also
possible for a critical collapse mechanism to develop which is a combination of the
independent ones such as indicated in Figure 8.14.

-

= -

e

b - I
e N f F
o H ‘
beam N combined |,
mechanizm mechanizm mechanism

Figure 8.14

It is necessary to consider all possible combinations to identify the critical collapse
mode. The M, value is determined for each independent mechanism and then combined
mechanisms are evaluated to establish a maximum value of M, (i.e. minimum ). The
purpose of combining mechanisms is to eliminate sufficient hinges which exist in the
independent mechanisms, leaving only the minimum number required in the resulting

combination to induce collapse.

It is necessary when carrying out a kinematic solution, to draw the
bending moment diagram to ensure that at no point the M, value
determined, is exceeded.
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8.6.1 Example 8.5: Frame 1

An asymmetric uniform, frame is pinned at supports A and G and is subjected to a
system of factored loads as shown in Figure 8.15. Assuming the Ayericarioag=1.7 and
Anorizontal loads=1.4 determine the required plastic moment of resistance M, of the section.

200 kM

gl ; 5 N

s Ji€ g E

gl : B ' o

Wy H N .

et H 5L KM

y 'ﬁr"' s A F E Sj —_—
¥, : £| Indicates positive bending
! =\ e where tension occurs
i inside the frame
L 40m 40m Gl |
i
Figure 8.15
-"’-l.ulldrm-cl':. L7, -’:-hmmlﬂb-ﬂt- 1.4

Factored loads: (1.4 = 15)= 21O KN (1.7 = 20) = 340 KN

MNumber of degrees-of-indeterminacy f=[3m+H)=-3In]=[3=3)+4)-(F=d)]=1
MNumber of possible hinge positions  p=5 (B, C.D.Eand F)

Number of independent mechanisms ={p-Ip)=(5-1)=4

(i.e. 3 beam mechanisms and 1 sway mechanism)

Kinematic Method:
Consider each independent mechanism separately.

Mechanism (i): Beam ABC
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Note:

Internal work is done at all hinge positions,

Mo internal work is done at support A,

The signs of the rotations indicate tension inside or
! outside the frame.

a=1.58

Internal Work Done = External Work Done

M, (20+ &)= (21.0 = 1.50)

IM.O=3150

M, = 10.5 kNm

d=4.00

Internal Work Done = External Work Done
A T M (04 20+ By = (340 x 46)

| A 0= 13608

- M, = 34.0 KNm

Mechanism (i1i) Beam EFG

KN &=3.08
_— ___l R Mote: no internal work is done at support G.

: i
-

1‘&.: Internal Waork Done = External Work Done
: = M, (04 2= (21.0 = 38)
“&, 31 KN IMO=63.00

M =210 kNm

& d=308=608 - f=050
I &=150 and & =3.00=1.58
'[‘ﬁ Note: no imternal work is done at supports A and G.

[

s

e

Internal Work Done = External Work Done
M@+ 050 =(21.0= 1.5+ (210 = 156
L3M &= 63.00

M, = 42.0 kKNm

L

off

Combinations:
Consider the independent mechanisms, their associated work equations and M, values
as shown in Figure 8.16:
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| P
1
PR

=f

(1) ()

Internal Work Done = External Work Done
() 3ME=3158 . M,=105kNm
(i) M= 13608 . M, =34.0kNm
(i) IMGE=63.08 o0 M= 210 kNm
(iv) 1.5M8=63.08 - M, =420 kNm

Figure 8.16

It is evident from inspection of the collapse mechanisms that the hinges located at C
and E can be eliminated since in some cases the rotation is negative whilst in others it is
positive. The minimum number of hinges to induce total collapse is one more than the
number of redundancies, i.e. (Ip+1)=2 and therefore the independent mechanisms should
be combined to try and achieve this and at the same time maximize the associated M,
value. It is unlikely that mechanism (i) will be included in the failure mechanism since its
associated M, value is relatively small compared to the others. It is necessary to
investigate several possibilities and confirm the resulting solution by checking that the
bending moments do not exceed the plastic moment of resistance at any section.

Combination 1: Mechanism (v)=[(ii)+(iv)]

When combining these mechanisms the hinge at C will be eliminated and
the resulting M, value can be determined by adding the work equations. It
is necessary to allow for the removal of the hinge at C in the internal work
done since in each equation an (M,0) term has been included, but the
hinge no longer exists. A total of 2M, must therefore be subtracted from
the resulting internal work, i.e.

Internal Work Done = External Work Done

Mechanism (ii) 40, 0= 136.08
Mechanism (iv) L5M,.0= 63.08
less 2.0M, for eliminated hinge = 2.0M.8

ISME=199.00 M, =56.86 kNm
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It is possible that this is the true collapse mechanism, however this would have to be
confirmed as indicated above by satisfying conditions (ii) and (iii) in Section 8.1.2.

An alternative solution is also possible where the hinges at C and E are
eliminated, this can be a achieved if mechanism (v) is combined with
mechanism (iii).

In mechanism (v) p=0.56 (see the sway calculation above) and hence the
total rotation at joint E=—(8+p)=—1.560. If this hinge is to be eliminated
then the combinations of mechanisms (iii) and (v) must be in the
proportions of 1.5:1.0. (Note: when developing mechanism (v) the
proportions were 1:1).

The total value of the internal work for the eliminated
hinge=(2x1.5Mp)=3.0M,, i.e.

Internal Work Done = External Work Done

Mechanism 1.5 = (iii) 4.5M,0=094.50
Mechanism (v) 35M0=199.080
less 3.0M, for eliminated hinge - 3.0M.0
5.0M,0=293.5¢9 M, = 58.70 kNm
C E

Mechanism (vi)

Collapse Mechanism

The +ve rotation indicates tension inside the frame at point D and the —ve rotation
indicates tension outside the frame at point F.
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This is marginally higher than the previous value and since there does not
appear to be any other obvious collapse mechanism, this result should be
checked as follows:

JAkN
C D4~ E -
- I y r
£ .
g 58.7 kNm
4 — B =
£ =
b p 58.7 kNm e
|- v L F > 2IKN L
LA
rk¥x 58.7 kNm
& E
J 4.0m 4.0m r’:‘:
¢ He
B
Va
Figure 8.17

Congider the equilibrium of the frame between F and G:

+\'c.‘) EMp=0 =587 -(Hg=3.0)=0 Hg=—1957T kN =—

Consider the equilibrium of the frame on the right-hand side at [

tve JEMy =0 +58.7 = (210 % 3.0) + (19.57 % 6.0) = (Vg % 4.0) = 0
Vem+2828kN |

Consider the complete structure:
+ve fEF =0 ¥, -340+2828=0 vo=+572kN |
tye—eEF =0 H,+210+210-19.57=0 Hy==2243 kN =—

Bending momentat B My =+ (2243 = 1.5} = + 33.65 kMm = M,
Bending moment at © My =+ (2243 = 3.0) = (21.0 = 1.5) = + 35.79 kNm = AL,
Bending momentat E Mg == (1957 = 6,00 + (21.0 = 3.0) = - 542 kNm = M,
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54,42 kNm

C  35.79KkNm D dﬂﬂﬂﬂﬂ =
I 54,42 kNm
I5.79 kNm = MH.“HH.“““ W —
5 , 58.7 kNm
3365 kNm [= .'"fp]
X F == 5.7 kNm
—
(= .‘f";l

Collapse Bending Moment Diagram

Figure 8.18
The three conditions indicated in Section 8.1.2 have been satisfied: i.e.

Mechanism condition: minimum number of hinges required=(lp+1)=2
hinges,

Equilibrium condition: the internal moments are in equilibrium with the
collapse loads,

Yield condition: the bending moment does not exceed M, anywhere in the
frame.

Mp kinematic— I\/Ip static— I\/Ip true

It is often convenient to carry-out the calculation of combinations using a table as shown
in Table 8.1; eliminated hinges are indicated by EH in the Table.

Independent and Combined Mechanisms for Example 8.5

Hinge | () | Gi) | Gii) | @v) |(v)=(i)+Giv)|(vi)=(v)+L.5(ii)

Position
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B(Mp) | +2.00 - - - - -
C(Myp) -0 —0 - +0 EH EH (2.0M,0)
(2.0M,0)
D (My) - +2.00 - - +2.00 +2.00
E (Mp) - —0 +0 | —0.50 -1.56 EH (3.0M,0)
F (Mp) - - —2.00 - - —-3.00
External | 31.56 |136.00| 63.00 | 63.00 199.06 293.56
Work
Internal |3.0M0|4.0M,0|3.0M6(1.5Mp0| 5.5M,0 10.0M,6
Work
Eliminated| — - - - 2.0M,0 5.0M,0
hinges
Combined | - - - - 3.5Mp0 5.0M,0
Mp6
Mp (kNm)| 105 | 34.0 | 21.0 | 420 56.86 58.70
Table 8.1

Static Method:

This frame can also be analysed readily using the static method since it only has one
degree-of-indeterminacy. When using this method the frame can be considered as the
superposition of two frames; one statically determinate and one involving only the
assumed redundant reaction as shown in Figure 8.19. Applying the three equations of
equilibrium to the two force systems results in the support reactions indicated.
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.L“ kM
"""""" o E!
|
] B
F: — —
13,06 LN i 3 OIS, :
4.0m | 4.0m {j# | [;E He
Frame (i) G, Frame (ii) 03750,
Figure 8.19

The final value of the reactions and bending moments = [Frame (i) + Frame (i1)]; ¢.z.
Hy=-42.0 + Hy ¥y = 13.06 - 0.375Hy Vg =2094 +0375H;
My = [ M trame iy + M trasme ] €1C.

Equations can be developed for each of the five possible hinge positions in terms of the
two frames as follows:

M =+(42.0 x 1.3) = (L.3HG) =+ 63.0 - 1.5H;
Equation
1)

Me=+(42.0x3.0) = (21.0 % 1.5) = (3.0H) = + 94,5 - 3.0/;
Equation
)

Mo =+ (420 x 3.0) + (13.06 x 4.0) — (21.0 x 1.5) - (3.0 x Hg) — (4.0 x 0.375Hz)
=4 146.74 — 4.5H, Equation
3)

Mz =+ (21.0 % 3.0) — (6.0Hg) =+ 63.0 — 6.0H;
Equation
(4)
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My =-3.0H;
Equation

(%)

As indicated previously, only two hinges are required to induce total collapse. A collapse
mechanism involving two hinge positions can be assumed and the associated equations
will each have two unknown values, i.e. Hg and M, and can be solved simultaneously.

The value of the bending moment at all other hinge positions can then be
checked to ensure that they do not exceed the calculated M, value. If any
one does exceed the value then the assumed mechanism was incorrect and
others can be checked until the true one is identified.

Assume a mechanism inducing hinges at D and E as in (v) above.

+M,

=== ey

A

tension inside  +ve
tension outside —ve

+146.74 = 4.5Hs =+ M,
Equation

(6)

+63.0 - 6.0Hs = - M,
Equation

(")

Add equations (6) and (7):



Examplesin structural analysis 664

+209.74 - 10.5H; =0 S Hg=19.98 kN

and M, =56.83 kNm
Check the value of the moments at all other possible hinge positions.

Mp=+63.0-1.5H;=+63.0-(1.5=19.98)=+33.03 kNm = M
Me=+945-3.0H=+94.5 - (3.0 % 19.98) =+ 3456 kNm = M;
My ==3.0fH;=-(3.0 x 19.98) = - 59.94 kNm > M,

Since the bending moment at F is greater than M, this mechanism does not satisfy the
‘yield condition’ and produces an unsafe solution.

The reader should repeat the above calculation assuming hinges develop at
positions D and F and confirm that the true solution is when M,=58.7
kNm as determined previously using the kinematic method.

8.7 Problems: Plastic Analysis—Rigid-Jointed Frames 1

A series of rigid-jointed frames are indicated in Problems 8.6 to 8.9 in which the relative
M, values and the applied collapse loads are given. In each case determine the required
M, value, the value of the support reactions and sketch the bending moment diagram.

60 kN

Problem 8.6
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]
. 40 kT\l
B M C DI
E
a pr
B A
™S 40m | 4.0 m |

Problem 8.7
12 kN/m

Hip T

| 40m L 20m [ 2.0m |
A

7 A A

Problem 8.8
Problem 8.8



Problem 8.9
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E
=

20 kN =
E
=
i
1.5M,
#2.0m | 2.0m [ -
A A cl'—"
.q:
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8.8 Solutions: Plastic Analysis—Rigid-Jointed Frames 1

Solution
Topic: Plastic Analyvsis — Rigid Jointed Frames 1
Problem Number: 8.6 = Kinematic Method

MNumber of degrees-of-indeterminacy  Jp = [(3m +¢) - 30] = |
MNumber of possible hinge positions p=2

MNumber of independent mechanisms =(p=dp)=(2-1)=1
{i.e. | beam mechanism)

o Avistemat jaim 1
Under the poird load a4 O

lersion o this side indicatcs
v hending moments

-p p $=2350=2358 ..0=p

Internal Work Done = External Work Done
(MG (8h + My (8 + ] = (60 = &
M0+ 280 = (60 = 2.5
IMd= 1500
o My = 50,0 kNm

(MNote: no internal work is required at sepport D since it 15 pinned and the beam is
free to rotate at this peint.}
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.6 = Kinematic Method Page No. 2

The value of M, obtained (50,00 KNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value at any location.

The rotation at B induces tension on the
outside of (ke frame and hence a —ve
bending moment.

Uncler the point load at C there is tension
imside the frame and consequently the
bending moment is +ve al this point,

Consider the equilibrivm of the right-hand side of the frame at a section under the
point load at C.

N H'J‘l.?il
L]

Ve ) EMe =0 50.0-(25% Fp) =0
. - Vp=+200kN
o—n Consider the complete structure:

1Y

™y
3 [_‘I"f D.L,fl, """“TEF_V:'} Fy =6+ 2000 =10
'."

" a0,0 kNm L K=+ 400 KN T

25m
Consider the cquilibrium of the left-hand side of the frame at B.

00 kNm 1"
. +1|'1:"-) EMy=0 3500+(2.0=40.0)— (4.0 = H)=0
SoH =+ 305 RN_._

Consider the complete struciuns:
tve—=F =0 +325+Hp=0 -
A Hp==325kN

veee 25 KNm

= = LAY = (60 = 334
40O EN \“*'x,[l]_,l,!.'u“‘""ll |t : [15 L‘.\'u:

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.6 = Static Mcthod Page No. 3

Assume the honzontal component of reaction at suppert D to be the redundant

reaction.
B kM s

(1) Seatically determinate foree system (1) Force system due 10 redundant reaction

Consider system (1)
Apply the three equations of static equilibrium to the force system:
e LR =0 Fia=60+ Fr=10 Fiat Fp=060 kK
tyre—=LF, =0 S =0
+w‘:_) EMy=0 (60 x45) = (Fhx20)=0 o Pla= 4 3857 kN
hence S FY =+ 2143 KN
Consbder system (11)
Apply the three equations of statie equilibrium to the foree system:
+ve fEF,, =0 Fia+ Fu=10 Fy==Fn
tve—e= EF =0 [+ Hp=0 Ho% == Hy
WeDIM =0 (Hloxd0)-(Fpx70)=0 o V=4 0571 H
hence Loy ==0.5T71 Hy
C n Mo
05700,

AT KN {20 n::__;_..’} m  23m L 0571y ’ .E.Dn:; 2im 2 28m |

M =(21.43 = 200 + (fp = 4.0) - (L5371 = 2.0) = 4286 + 2860,
Me= (2143 = 4.5) + (Hp = 4.0) = (0571 Hp = 4.5) = 96,44 + 1438,

Assume the collapse mechanism as indicated previpusly, i plastic hinges
developing at B (= M%) and under the point load at C (+ M)

Ma: =M, = 42,86 + 286 Equation (1)

Mo + M, =96.44 + 143H, Equation (2)

Adding equations (1) and (2) gives:

0= 1393 + 4.20H, S Hp==324TKN  and M = 500 kNm as before
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.7 = Kinematic Method Page No. 1

m-ﬁ 4.0m
|

Number of degrees-of-indeterminacy  fiy = [(3nr + 7)< 3n] =1
MNumber of possible hinge positions p=3

Mumber of independent mechanisms ={p=Ip)={3-1)=2
(ie. | beam mechanism and 1 sway mechanism)

C I
At intemal joing B
Undder thee paving boad 1 C
At fised suppon A

. . . fensian on this side indicates
possible hinge positions " +ve bending moments

Mechanism I: Beam BCD

S=d4f=48 . @=f

Internal Work Done = External Waork Done
[M (0 + M (0 3] = (40 = &)
MG+ 260 = (40 = 46
M= 1608
Co My = 50,33 kNm

(Mote: no internal work is required at support [ since it is & roller and the beam is
free to rotate at this point. Wo external work is done by the 10 kN force since ihere is
no horizontal displacement of joint B)
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.7 = Kinematic Method Page No. 2

Mechanism 1z Sway

a0k §w 50
[Intermnal Work Done = External Work Done
(MG (i + M (D] = (10 = &

M2 = {10 = 56h

ML= 504

M,=250kNm

(Note: no external work is done by the 40 kN force since there is no vertical
displacement at C).

Mechanism I11: Combined Beam & Sway

In this mechanism the two independent mechanisms | and 11 occur simulaneously o
produce a collapse mechanism in which plastic hinges develop at A, and at C under

the point load on beam BCD, The hinge at B is ¢liminated; note the —ve rotation in
Mechamism | and the +ve ratation in Mechanism 11 at B which cancel each ather out.

1'!;| A0kN tl; I- = Sﬂ
E:.*;‘j Mo L. §21=40=48 . 0=j
ip
ol Internal Work Done = External Waork Daone
(M 080+ M, (8 ] = [(10 = &)+ (40 = &)
M3 = [(10 = Sy + (40 = 48]
IMG=2100
My =T0.0 kNm

The same result could have been achieved by adding, dircetly, the work cquations
for mechanisms [ and Il and subtracting for the internal work which no longer occurs
at joint B; i.e. M@ in each equation.

Adding equations for Mechanizms (1 + 1)
IMyd= 1608
M= 500
=m0 (allowing for the hinge eliminated at joing B)
M= 2108
2 M= 7000 kNm
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Solution

Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.7 = Kinematic Method Page No. 3

Mechanism [z Beam BCD A, = 5033 KNm
Mechanism 1I: Sway My =250 kNm
Mechanism [1l: [ & I Combined Ay = T0.0 kNm

The maximum value of Af, obtained (70.0 kiNm) should be checked by ensuring that
the bending moment in the frame does not exceed this value at any location.

The rotation at A induces tension on the
outside of (ke frame and hence a —ve
bending moment.

Under the point load a1 C there is tension

inside the frame and consequently the
bending moment is +ve at this point.

Caonsider the right-hand side of the frame 2t a section under the point load at C.

N tve JEMc=0 0.0 - (4.0 % Fp) = 0
\ "‘”"“1 o Va=175kN ¢}

A

v [ [ - . Conzider the complete structure:
+vel B =0  Fyi-d0+175=0

TO0 KN
s vy=125k8 |

L
. he—=EF=0 -Hy+100=0
s Hy = 100KN =—

| 4.0m

Bending momentat B Mp=-T0+ (5.0 = 10.0) == 20.0 klNm = A,

e e 8 e e e e 10 kMm
] iiiitees (LAY = (40~ 834
g1 11 RS-

T00 KNen

]

=
=
-
=
=

T

Collapse Bemding Mament [Nagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.7 = Static Mcthod Page No. 4

Assume the vertical component of reaction at support I to be the redundant reaction.

'I[I]\ﬁ 40 k‘.C*

(1) Seatically determinate foree system (1) Force system due 10 redundant reaction

Consider system (1)

Apply the three equations of static equilibrium to the force system:
+'H.‘TIF,,=D Fiu—dl=0 Fia=+40kN
e —=EF =0+ 10=0 Hy==10kN
+w}'ﬂ-.ﬂ. =0 =ML F (0= 50)+ {40 =40)=0 M=+ 20 kN

Consider system (11)

Apply the three equations of static equilibrium to the force system:
v I\L’-',, =0 P+ Fp=0

tye—=EF, =)

'h'\e;) EMym 0 =My ={Fpx8.0)=0

10k 0Nl

=
=
b

E
=
20 kNm r{l].

10m | 40w S 40w 40m
- ol

kN Ta

My = =210+ 8Fy == 210+ &F,

My = (10 = 5.00 = 210 = §F, = - 160 + 8J,

Me=0+(Fpx4.0)=+4F,

Assume the collapse mechanism as indicated previously, ie. plasiic hinges
developing at A (= M%) and under the point load at C (+ Af)

M - M, =-210+8F, Exquation (1)

Mo+ My =+ 4Ty Equation (2)

Adding equations (1) and (2) gives:

0==210+12¥;, s FPp=+175kN and M, =T0.0 kNm as before
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.8 = Kinematic Method Page No. 1

- 12 KN/m

¥ | ¥
| 4,0m Jl{ 20m 20m 1

X

Number of degrees-of-indeterminacy  Jp = [(3m +F) = 3n] =2
Number of possible hinge positions  p=3

Number of independent mechanisms ={p-—fo)=(-2)=1
(1. 2 beam mechanizms and 1 sway mechanism)

&

Al Tised support A

Undiar tbe distribantcd loax]
Al infemal joing

Under the poing load 2 1

possihly hinge positions
bension on this side indicabes

T bamiling manments
Mechanism [: Beam AB

12 kMim

. §=20=28 .0=p
”’[“ [Mote: the total UDL undergoes an

" average displacement equal to (0.5 = &)

¥ o - %
Internal Work Done = External Work Done
[ (£ + M (G + @+ MW = [(12 = )= (0.5 = 5
MAE+20+ B =(48= &)
M= 488
S =12 KNm
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 1
Problem Number: 8.8 = Kinematic Method Page No. 2

Mechanism 11z Beam CDE

12 EMim—

Sm20=28

Internal Work Done = External Work Done
[MG () + M (0% ] = (36 = 5)

My (6 28 = (T2 =

IM =728

Mechanism 11I: Sway
12 KMim -

5l =40 =4f

l N=2fi=2p

li j_ et s
¥ Y
+
Internal Work Done = External Work Done
[ (6 + M, () + M) = [(12 = ) = (0.5 = Fy)] + (36 = &)
MO+ 3+ Q= (960 + T2
IML 0= 1688
S My =56 kNm
Mechanizm IV: Combined Beam CD and Sway
12 KN —
Mechanisms 11 and 11 can be combined
to eliminate a hinge at C.

This results in a collapse mechanism with
hinges at joints A and B and under the
point lead st D on member CDE as
shown,
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 1
Problem Number: 8.8 = Kinematic Method

Adding work equations for Mechanisms (11 + 110}
IM0=720
M= 1688
= 2M, 0 {allowing for the hinge eliminated at joint C)
AM 0= 2400
soMy = 60,0 KNm

Mechanism I: Beam AB M= 120 kNm
Mechanism 11: Beam CDE M, = 24.0 KNm
Mechanism II:  Sway M, = 56,0 kKNm
Mechanism IV: 1l & Ul Combined M = 60,0 KNm

The maximum value of M, obained (60.0 kNm) should be checked by ensuring that
the bending mement in the frame does not exceed this value at any location.,

The rotation at A induces tension on
the autside of the frame and hence a
=ve bending moment.

The rotation at B induces tension on
the insfde of the frame and hence a
+ve bending moment.

Under the point load there is tension
on the anderside of beam CDE and
consequently the bending moment is
+ve at this point.

&0 kNm
4.0m J_ 2ihm }_ 3.“‘HI;(

Consider the right-hand side of the frame at a section under the point load at Dn

3B RN . ve) TMp=0  60.0-(20x ¥ =0
& o Ve=300kN {

Consider the complete structure:
+'-'c|'EF,='EI Fa=(12x4)-36+30.0=0
& W= 540 kN

Bending moment at C Mg = [= (36 = 2.0) + (30 = 4.00] = + 48.0 kNm = M
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Solution

Rigid Jointed Frames 1
Probleny Mumber: &8 = Kinematic Method

Topic: Plastic Analysis

Comsider the right-hard side of the frame at a section a joint B.

“ve _JEMy =0
a0+ [36 % 200 - (300 = 40) - {40 = 5 = 0

digp )

S He=1 30N -

Consider the complete struclurs:
e =—e F i =1

H,+30=0 L =-30kN —

Check Bending moment at A

Mo == (12 % 4.0 = 200 — (36 = 6,00+ 430 = 803+ (3.0 = 4.00] = - 60U Kkm
= M as indicated in the collapse mechanism.

TIIIIME

ISl

£ N

Collapse Bending Mopient Diagram
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Solution

Topic: Plastic Analysis — Rigid Jointed Frames 1

Problem Number: 89 =

Kincmatic Method Page No. 1

1.5M,

Xom | 20
Mm | T0m

Al internal joim 13

Mumber of degrees-of-indeterminacy:
Ip= [(3m+r)=73n]=1

Mumber of possible hinge positions:
p=4

Mumber of independent mechanisms:
={p-lp)=(4-1)=3

{i.e. 2 beams and 1 sway mechanism)

Under ihe paini load sl ©
At internal joind 13
Undler the point load a I: : tension on this side indicates

+ye bemideng momens

messible hinge positions

Mechanism I Beam BCD

¥

d=20=20 s B=g

[Mate: the plastic hinges develop in the weakest member
at a joint, ie at B the moment equals M, and at [ the
moment equals 1.5 WG]

Internal Work Done = External Work Done
(M (8 + L3M, (84 D+ LIMIE] = (10 % 4)
M8+ 360+ 1560 = (10 = 2ah
5.5ML0= 208
2 M= 3.64 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.9 = Kinematic Method Page No. 2

Mechanism [1: Beam DEF

fm20m2f o 0w

[Internal Work Done = External Work Done
[1.50M, (Eh + 205, (0F+ @] = (20 = &)
MELSE+ 4y = (20 = 26
S50 0= 408
JoMy= 7,27 KNm

&=40=47
&=201=20

Imternal Work Done = External Work Done
[M, () + LSMLA] = (20 = §3)
M6+ 1.50)=(20 = 26)
LM =400
2 My = 16,0 kNm

Mechanizm IV: Combined Beam DEF and Sway
: Mechanisms 11 and 11 ean be combined 1o climinate
a hinge a1 .
This resulis in a collapse mechanism with hinges at
Jjoint B and at E on member DEF as shown,

Amdfm2 o =28
&= =40

Internal Work Done = External Work Done
[M, () + 20M{)] = (20 x 5)
MG+ 48 = (20 = 46y
SMLE=E08
o My = 16,0 kNm
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 1
Problem Number: §9 = Kinematic Method

Adding work equations for Mechanisms (11 + 111}

5.5MyE= 408

ZE5ME= 408

=3aM.8 [allowing for the hinge eliminated at joint D i.e. (2 = L3A5))

SM,0= 808
= My=16.0 kNm

Mechanism I Beam BCD M, = 3.64 kNm
Mechanism 11 Beam DEF My =727 kNm
Mechanism III: - Sway My = 160 kNm
Mechanism IV: Il & Il Combined M, = 160 kNm

The maximum value of M, obtained (16,0 kNm) and should be checked by ensuring
that the bending moment in the frame does not exceed this valwe at any location.
Assume the combined mechanism is the failure mode.

A,

A 20kN The rotation at B induces tension on the
16 kNM et fefe-frand side of column AB and on the fep of
10 kN W beam BCD and hence a 4ve bending moment.

- !
i D

Jzom | 20m |

At E there is tension on the lefi-Fand side of
the frame and hence a +ve bending moment.

+ch EMa=0 + 160 = (4.0x H,)=0
S Hy=40KN —

Consider the complete structurne:
tve—=EF, =0 M -20+40=0
S He= 160 RN —*
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 1
Problem Number: 8.9 = Kinematic Method

Congider the complete strscture:
e JEML =0 (10 =200 - 20 = 6.0+ (16 = 30— (4.0 = Fp) =0

o Vp=+TOKN |
el EF=0  F\=100+70=0 L Va=+30kN

Consider the right-hand side of the frame at & seetion at joint D,

TARN Bending moment at D Afp =+ (M * 4.0) = (20  2.0)=0
My = [(16.0 % 4.0) - 40.0]
=+ 24,0 KNm = 1.5M,

[Note: the bending moment at D iz compared 1o the
minimum M, value at the joint, ie. 1508, In this case sinee
Mp = 1,3M, there is also a plastic hinge at joint [2.]

Considcr\thn: lefi-hand side of the frame at a section wnder the point load at C on
member BCD,

Bending moment at C:

M = [+ (4.0 % 4.0) — (3.0 = 2.0]
=+ 16.0-60
=+ 10,0 kNm = 1.5M,

mk‘-}:_l'!"”___:TE

16 ke IS
= S MENm D

10 K™m

Collapse Bending Moment Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 1
Problem Number: 8.9 = Static Mcthod Page No. 1

Assume the honzontal component of reaction at support F to be the redundant
reaction.

(1) Seatically determinate foree system (11} Force system due to redundant reaction

Consider svstem (1)
Apply the three equations of statie equilibrium to the foree system:

tve fER =0 Fi-10+ V=0
Vi o+ Pyma IDKN
dre—w TF, =0, -20=0
H =+ 20 kN

e JEMA =0 +(10 % 2.0) - (20 x 6.0) - (V5 * 4.0) = 0

Fym=25kN
s P =+35kN
Consbder svstem (1)
Apply the three equations of static equilibrium to the force system:

+ve fER =0 P+ =0
Py P
v —EF =0 M +M=0
H" == 1
tve JEM, =0 - (4.0 F ") +(3.0 % H)=0
by + 28
x's P‘I_\ == 3”.
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 1
Problem Number: 8.9 = Static Method Page No. 2

k11

2l e 2.0 m
3

.

4.0 m

]
b

20
Mg = 4 (20 = 4.0) = (4.0 = )= + B0 = 41
Mg = +(20 % 4.0) = (35 = 2.0) = (Hy * 4.0) + (2Hy x2.0) =+ 10
Mp=—=(20 = 2,00+ (i = 4,00 =— 40+ 411
Mg =0+ (Hy = 2.0) =+ 2H;

Assume the collapse mechanism as indicated previowsly, ¢, plastic hinges
developing at B (+ M) and under the 20 KN point load at E (+ 2ZM).

Mgz + M=+ 80 =48 Equation (1)
Mg +2M,=+2H Equation (2}

Subtracting equation (2) from [2 = equatien {1)] gives:
0=+ 160 - 108 oo Hp=+ 160 kN and My =160 kNm as before

Check bending moment at C;
Mp=+10=M, asbefore,

Check T:n:l:u:l.ir:q.:-r moment at [x;
Mp==-d0+ 48 = [- 40+ (4.0 = 16.0)] =+ 240 kNm = 1.5M,  as before.

* Note: the plastic hinge which develops under the 20 kN point load at E on member
DEF corresponds with a value of 244, for that member,

8.9 Example 8.6: Joint Mechanism

In framed structures where there are more than two members meeting at a joint there is
the possibility of a joint mechanism developing within a collapse mechanism. Consider
the frame shown in Figure 8.20 with the collapse loads indicated. At joint C individual
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hinges can develop in members CBA, CDE and CFG giving three possible hinge
positions at the joint in addition to positions B, D F and G.

30 kN 20 kN

| 1.5m

1.5m

|2 I

Figure 8.20

Factored loads: as given

Number of degrees-of-indeterminacy fo=[(3mE+r)=3In]=[3=3)+5)-(3=4)]=2
Mumber of possible hinge positions  p=7 (B, C,. Co. O, In Fand G)

Mumber of independent mechanisms ={p=-Ilpy=(7T=-2)=5

(i.e. 3 beam mechanisms, 1 sway mechanism and 1 joint mechanism).

Kinematic Method:
Consider each independent mechanism separately.

Mechanism (i): Beam ABC

&=2,00

Mote: no internal work is done at support A

Internal Work Done = External Work Done
M, 28+ &) ={(300x 2.06)

M 0=60.00

M, = 20.0 kNm
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The hinge at joint C is assumed to develop in member ABC at C;.

Mechanism (ii): Beam CDE
30kN 20k

‘l‘ 124 -0 a= 108
= cn &®E i ]
vosrgp MNate: no internal work is done at support E

Internal Work Done = External Waork Done

L]
L M, (20+ ) = (20.0  1.06)
; IM,0=20.08
' M, = 6.67 kNm
i The hinge at joint C is assumed to develop in
= member CDE at Cs.
Mechanism (iii); Beam CFG
0N KN
: 4
- S - S A E L
Internal Work Done = External Wark Done
LAl M, (84 20+ B =(150 % 1.50)
~& 4M,8=2250
M, =563 kNm
G The hinge at joint C is assumed 10 develop in

member CFG at C;.

Mechanism (iv): Sway
InkM 20 kM

= = d=1.50

Intermal Work Done = External Work Done
.""—“N M (6+ @) =(15.0% 1.56)
: ZMEr= 2250
i My =1125kNm
; The hinge at jeint C is assumed to develop in
member CFG at Cs.

Mechanism (ii): Joint

The joint at C can rotate either in a clockwise direction or an anti-
clockwise direction.

(a) (b)

Intemnal Work Done = M, {8+ &+ §y =300 External Work Done = zero
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The independent mechanisms can be entered into a table as before and the
possible combinations investigated.

In this example 1p=2 and consequently a minimum of three hinges is
required to induce total collapse.

Since mechanisms (i) and (iv) have a significantly higher associated M,
value these have been selected to combine with the joint mechanism to
produce a possible combination:

Mechanism (vi): the addition of mechanisms (i)+(iv)+(v)(a)

Independent and Combined Mechanisms for Example 8.6

Hinge 0] (i) (iii) (iv) (V) [(vi)=(i)+(iv)+(v)(a)
Position

B (Mp) | +2.00 - - - |(a)|(b) +2.00
C:(Mp) | -6 —~ - — |+6]|-0| EH (2.0M,0)
C, (Mp) -9 - |-0|+0 -9

Cs (M) —~ -0 +0 |-0|+0| EH (2.0M,0)
D (Mp) - +2.00 - - - -

F (M) — — | +200| -6 - -

G (M,) - —~ -0 —~ —~ -9
External | 60.00 | 20.00 | 22.50 | 22.50 - 82.50
Work

Internal  {3.0M,0|3.0M,0|4.0Mp8|2.0M,6|3.0M,6 8.0M,0

Work
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Eliminated | — - - - - 4.0M,0
hinges
Combined - - - - - 4,0Mp0
M6
Mp (kNm) | 20.0 | 6.67 | 563 | 11.25 - 20.63
Table 8.2
IO kN 20kN J0kx 20 kN
B E A B.,.l-, ] ) E
Y 3 i}
E ? !“!,'hm } zumm‘md#\’i

F ¥ 15kN -

Mechanism (vi) '-E
063 kNm  —
Collapse Mechanism 4 g G —4
"
| 20m | 20m liom [lom |
Figure 8.21

Consider the equilibrium of the frame on the left-hand side at B:
+ve JEMG =0 20,63+ (Vy x 20)=0 L Va=+1032kN
Consider the equilibrium of the frame on the right-hand side at Cs:
+'-'c;} IMe=0 = 2063 + (200 = L0} - (Fe = 2.00=10 o Fe=-032 kN J.
Consider the complete structure:
sve L EF, =0 +10.32 - 30.0 - 20.0 - 0.32 + V= 0 o Ve=+ 400 kNt
ye —= EF, =0 Hg=150=0 o Heg=+ 150 kN —*

Bending moment at ©; My =+ (10,32 = 4,00 — (30,0 = 2.0} =— 18,72 kNm = M,
Bending moment at Cs Mg =+ (150 = 3.0) = (150 x 1.5) - 20063 =+ 187 kNm = Af,
Bending moment at D Mp == (032 % 1.0) = - 032 kNm = M,

Bending moment at F My =+ (15.00% 1.5) = 20063 =+ 137 kNm = M,
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Collapse Bending Moment Diagram %I‘

G E 2063 kNm

Figure 8.22

The three conditions indicated in Section 8.1.2 have been satisfied: e,

Mechanism condition:  minimum number of hinges required = {f; + 1) =3 hinges,
Equilibrium condition:  the internal moments are in equilibrium with the collapse loads,
Yield condition: the bending moment does not exceed M, anywhere in the frame,

ﬂfpu..._-.||.;“Mp-nu: = Mp-l'!l’

8.10 Problems: Plastic Analysis—Rigid-Jointed Frames 2

A series of rigid-jointed frames are indicated in Problems 8.10 to 8.15 in which the
relative M, values and the applied collapse loads are given. In each case determine the
required M, value, the value of the support reactions and sketch the bending moment
diagram.
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] 4.0 m ' 2.0m J 20m |
13

40 kN 50 kN

I

4.0m

Problem 8.11
20 kN 25 kN
10 kN
32— — e
-
(10 kN E
1 S
E e
ol 10 kN
e J i
=

| 20m | 20m Jlom 3om N

LY Y 13 i~
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Problem 8.12

J0OKN +

4.0m

Problem 8.13
70 kN S0 kN
30 KkN
£
S
L=
Problem 8.14
e
€
= IM,
=

L

| 10.0 m | 100 m

Problem 8.15
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8.11 Solutions: Plastic Analysis—Rigid-Jointed Frames 2

Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: §10 = Kinematic Method

Mumbser of degrees-of-indeterminacy  fiy = [(3m +r)=3n] =3
MNumber of possible hinge positions  p=6

Mumber of independent mechanisms =g =T = (6-3)=3
{i.e. 2 beam mechanisms and | joint mechanism}

(1]

At imternal poirt 13
Ungler the point Joads at C and E.

Maoler theee possible AL e suppost F.
hinge positions at

joint B
A B I'E F..
m [ L

passible hinge pasilions tension on this side indicates
tve bemiling momsents

Mechanism 1 Column BCD

F=208-208 - f=8

Internal Work Done = External Work Done
[M (0 + M (8 @A) = (15 = d)
M0+ 2Ry = (15 = 2.06R
IML0= 300
S = W KNm
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 2
Problem Number: $.10 = Kinematic Method Page No. 2

Mechanism 1z Beam BEF

F=200=208 - =0

Sty

Internal Work Done = External Work Done
[M, (@) + M, (8+ [+ M, (] = (20 % &)
M+ 20 %= (20 = 204
AM 0= 400
SoM, =100 kNm

Mechanism 111z Joint rotation at B

Internal Work Done = AL (@3 + @4+ o) = 300
External Work Done = rero

Combined Mechanism:

The independent mechanisms are combined 10 determine the maximum M value
required to induce collapse with the minimum number of hinges, (e e+ 1.

In this case the [pllowing combination has been evaluated

Mechanism 1V = Mechanism | + Mechanism 1 4 Mechanism [1(a) eliminating
hinges at By and B, (see Table for the combinations).

Adding equations for Mechanisms [1 + 11 + [1i{a)]

3M, 6= 308

M= 408

IMyd= 0

- 2M0 {allewing for the hinge eliminated at joint B:)

— 2 {allowing for the hinge climinated at joint By)

G, = T00 oMy = 1167 KNm




Plasticanalysis 693

Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 810 = Kinematic Method Page No. 3

Independent Mechamisms | Combined Mech
1 1] 1] v
(a] i ih)
[ITRALS] i e —iF
. (M) + =i |+ EH (2L
B, (My) = + il EH (24,5
. L Mb - it
E. (M) =30 = 20
F. (M) = =it
B (Mpd
External work done T | A0 0ir 0,08
Internal work dene T TN kLT 1041
Eliminated hinges AN
Combined internal wark done ﬁl,!._&
M ikNmi g | o 11.67

Hinge Position

Check collapse mechanism 1V with hinges at B, C. E and F, {i.c. 4 hinges)

The value of Af, obtained (11.67 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed the relevant A, value at any location,

Collapse Mechanism
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: .10 = Kinematic Method Page No. 4

('f\
e | 657 kMM
u

RN

L 11.67 kNm
rFiskE  Fao
Fi

11,67 kNm
A B
- € 1,

T =
7 12 "
A 1167 kxm ¥
X 4.0 .!‘ 2.0 mu \_1.“1“ l

Consider the equilibrivm of the column BCD and a1 C,

+~.¢J EMe =0
ENLAT (20 = Hyy =10

_ o Hy==584 kN
1167 Kxm

Consider the equilibrivm of the beam AB at a section al B,

|'l|l..‘.-jI x.‘--ﬂu =0

b - L #1LAT 0 =0

%= 1157 kN & Vy=—292 kN
e} 40m

I

A
¥

Consider the equilibrivm of the beam BEF at E.

0k —
1167 kim +»¢J.‘:.‘U_=I}
E E116T+ 1167 - (20 Fy=0

1167 kNm s Fe=+ 1167 kN
\

!

t
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 810 = Kinematic Methaod Page No. 5

Consider the vertical and horzontal equilibrium of the complete structure,

+w1’£.’-'.,—0 Fat Fp+ Vp=20=0
=192+ Vv 1167 =204 S Fp e+ 1125 RN

tve—=LF, =0 Hpt+Mi+15=0
- 5Bd+ i+ 15=0 M= =906 kN

LIS KN
84 hﬁ
1]

20kM
1167 KNm
2

| i E Fg
3 L

LG kN

1
o
242 H"-T 4.0m L 20m d 20m 1067 kN

Clieek the value of the bending moment a1 all ather possible hinge positions.
Muy =+ (15 = 20) = (584 = 400 =+ 6.64 kNm = M,
Mgy == (200= 2,0) - 11,67 + (1167 = 4.0) = - 5.0 kNm = M,

qq |ulL||| iz

1167 kN 1167 kNm

A

1167 kNm
('ndhrhr Bemding Mement [Nagram

t

-—
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 2
Problem Number: .11 = Kinematic Method Page No. 1

A L H
TTTERE 20m 20m TR X0m | 20m
& x

|
#

£

Mumber of degrees-of-indeterminacy  fy=[(3m +¢) - 3u] =6
MNumber of possible hinge positions  p= |0

MNumber of independent mechanisms =g =dp) = (10 = 6)=4
(i.e. 2 beam mechanisms, 1 sway mechanism and 1 joint mechanism)

4 12 4

B C g3 F G
Note: thies Adintomal joints B, [
posabls hinge andi GG,
possitions af joint 2. ) | iagder the paint loads

A Ej2Cand F, H

A fooed suppons A E . e
and 11, lension on this side indicatles

+vg bending moment
possible hinge positions Ve g m 5
Mechanizsm I: Beam BCD
4 kM
2 l -

T s

C

7 5=208=208 =0

Internal Work Done = Extersal Work Done
[M, () + M, (8+ 5+ My(H)] = (40 * &)
M+ 20+ = (40 = 2.0
M= 808

s My =200 KNm
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 2
Problem Number: 11 = Kinematic Method Page No. 2

Mechanism 1 Beam DFG

F=200=208 . fi=48 -
)
Internal Work Done = External Work Dane

[M (80 + M (0 D+ M (D] = (50 % &)

MAE+ 28+ = (30 = 208

AM, 8= 1008 o M, =250 KNm

Mechanizsm 11z Sway
40kN

1

F=400=408=40F - f=y=0
Internal Work Done = External Work Done
[Mu(@+ 0+ B+ fF+ y+ D] =(35 % &)
M6 = (35 = 4.08)

6M,0= 1400 5 M,=233 kNm

Mechanism IV: Joint rotation at D

Internal Work [one = M, (4 @+ &) = M
External Work Daone = zero
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 2
Problem Number: .11 = Kinematic Method Page No. 3

Combined Mechanisms:

The independent mechanisms are combined 1o determine the maximum Af, value
required to induce collapse with the minimum number of hinges, (i.e. fp+ 1)

In this case the following combinations have been evaluated:

Mechanism Vo= Mechanizm [ # Mechanism [V{a)
Mechanism V1 = Mechanism v + Mechanism 111
Mechanism VI = Mechanism VI + Mechanizm |

Hinge Independent Mechanisems Combined Mechanisms

Position Ll 11l v v Wi Vil
A LA = = i = i}

134 MRh - =i EH 28 ih

LA Mb 1
1. (161 : — i -7 -4

13+ (L - ENi2aLen EElg38080 EM 2N eh

(LN ETA] . + - i ERT (208 ERL 288

L. M) =l - {1

F. [ Mg) ' - -

Ci, LM [ — i -2 -2

[INEES] i) [

External B | G 2404
wark done

Internal
wark dane : i AL 1308 1ML

Eliminated .
himgss 2 AN aMLe

Combined
intermal SAL LA LA
wark done

M (kNm) | 200 250 3, 200 26,7 9.1

Cheek collapse mechanism VI with hinges st A, C, Dy, E, F, G and H (i.e. 7 hinges)
The value of AL obtained (29,1 kKNm) should be cheeked by ensuring that the
bending moment in the frame does not exceed the relevant A, value at any location,

G

Collapse Mechanism
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 2
Problem Number: 11 = Kinematic Method

200 km

—
ISkN

+\.1.'“]'LHL- =0 =201 -29.1 - (40 = F)+ (2= Fy)=10 Vo= 2H, +29.1

+1.-c‘} EMp=0+20.0 - 291 — (40 = 200 - (4.0 = £+ (4 = F =0
— VJ; = H,\ + Iﬂ'.ﬂ‘
5 2H, + 290 = Hy +20.0 Hy==91kN and F,=+10.9 kN

Consider the equilibrivm of the rght-hand side of the frame at section under the
point load at F.

+ve JEM =0
#29.1 =291 = (4.0 % Hy) — (2 % F) = 0
o VFy==2Hy
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2

Problem Number: 811 = Kinematic Method Page No. 5

Consider the equjlibrium of the right-hand side of the frame at section at joint G.
15EN +u¢) A =10

=290 =200 - (4.0 = =0

S Hy==1455kN -
26,1 kKNm

j,er-_j_H” o V"n+29.l kN T

Consider the vertical and horizontal equilibrium of the complete structure,
tve ER, =0 Vit Vet F-d0-50=0

109+ V4200 -90=0 S Ve =+ 50,0 kN T
dyp=—e=LF =0 M+ Hy+ Hy+35=10

—01+ M- 1455435=0

LN

o Hy==1135kN -—

=
-

0.1 kim 0,1 KN 290 k¥m

a1kt A 13N e 14,8540 =
L] im 20m  Mim
# 4 La L

[RUAY ¥ O

TRIAN

Cheek the value of the bending moment at all other possible hinge positions,
Mg==291+(0.1 x4.0)=+T3IkNm =z M,

My =+291 - (1135 = 4.0)=- 164 kNm = M,

Mog = = (500= 20) + 29,0 + (29,1 = 4.0) = (14.55 = 4.0) = = 127 kNm = M,

N 7 km
Al

» PP R, s>

f il KNm

T3 kNm

— A
29,1 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 812 = Kinematic Method Page No. 1

!

i
"

Mm | 20m Nom|  30m
rd r | A

Mumber of degrees-of-indeterminacy  Jfp = [(3m +F) = 3n] =35
MNumber of possible hinge positions p= 11

Mumber of independent mechanisms s(p=fp)=(ll=-5)=6
(i.e. 4 beam mechanisms, 1| sway mechanism and 1 joint mechanism)

| 2]

C n Ef3 G H
Modes three ./’f A ingernal joints C,
B peasible hinge EandH
pesitions a8 goint E vinder the poist loads
al B, 13, G oand J,
E2 + A AL Ted supgpeas
= Fohinman K
pssible hinge posilivs : o a3 i
tensiom oo this side indicates
+a berling mononls

Mechanism I: Beam ABC

d= 1,50~ 1.5 L =0

Imternal Work Done = External Work Done
(M, (@) + My (0% ) + M B] = (10 % &)
MIO+20+0) = (10 1.58
M= 158
co My =375 kNm
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 2
Problem Number: $.12 = Kinematic Method Page No. 2

Mechanism 1z Beam CDE

Internal Work Donce = External Work Done
[ME(6h = AL {0+ B+ M GR] = (20 = &)
M+ 20+ 0= (20 = 2.06H
AL 0= 40

SoM, =100 kNm

Mechanizm 1I: Beam EGH

|

i= 108 = 3.0 s A=0338 \
¢ A~ p=03 “o+ )
Internal Work Done = External Work Done

[ MG (60 + ML {0+ M+ ML U] =(25 = &)

MG+ 13368+ 0,336 = (25 = 1,06

26TM = 258

1
1
1
1
1
1
¥
¥
1
1
1
1
¥
¥

S My =937 kNm

Mechanizm IV: Beam HIK

F=1.00=308 . f=0330

Internal Work Done = External Work Done ; ={=fF)
[2Mp (0 + 20 (0 + B+ M D] = (10 = &) .
MA20+ 2670 - 03380 = (10 = 1.0
5.0 M0= 108

G M= 2.0 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8,12 = Kinematic Method Page No. 3

Mechanism ¥: Sway

-

=l

.

e e =

k EEE

& =300=308=40y . p=6 and p=0.750
&= 150 &= 1.0y=0.750

Internal Work Done = External Work Done

[M, (8+ 8+ @+ 3 +2AL0A] = [(10 % &)+ (10 % &) + (10 = &)
MA20+ 0+ 0350+ 156 = [10 * (1.50+ 3.00 + 0.750)]
5.23M 0= 3258 SoM = 1 KNm

Mechanism ¥1: Joint rotation at E

Internal Work Done = A, (8+ 8+ &) = 3008
External Wark Done = zero

Combined Mechanisms:

The independent mechanisms are combined 1o determine the maximum Af, value
required to induce collapse witl the minimum number of hinges, (e, fn+ 1.

In this case the following combinations have been evaluated:

Mechanism VI = Mechanism Il + Mechanism ¥ + Mechanism Vi{a)

Mechanism VI = Mechanism VI + Mechanism 11




Examplesin structural analysis 704

Solution
Topic: Plastic Analysis = Rigid Jointed Frames 2
Problem Number: 8.12 = Kinematic Method Page No. 4

Independent Mechanisms

Hinge

Pasitions

1] w v

Ad MR = =
[ENETD]

I, {Meb = EH i 2 0%
T (Mg ; \ 200

Ly (Mg -2t
L (Mph « 8| EHizM®
Eo (Ml + 8 + ERq2ueah | EH2A,
G, (M) 1338

H. (Mg =0.7382 =075 = 1088
1, [2hig)
B, (24 ‘ 0TS FOTEE | e 0TsE
External
wrark: Aane 50 5250 Y25 117.56

Internal
wach doms 2HTARE SI5M 1225058 | 1492008

4,0 BAfH

B25AL0 | RorME

3,78 10,0 937 2.0 10.0 11.21 1317

Check collapse mechanism VI with hinges at A, D, E,, G, Hand K (i.e. 6 hinges)
The value of Af, obtained (13,17 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed the relevant A, value at any location.

Collapse Mechanism
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: .12 = Kinematic Methaod

HLN SN

1 1307 KNm 1 ) .
Dy ¥ey A P ]-"””‘“‘_ )
'\I..r L \..I.F " _.rlln.\;

1307 kNm 1317 kNm

1

Nober ey valos

1307 kNm of the marmenl
F b gquats YAf

o
uh i \ J
. %& 26,34 kim by

! A

2.0m L 20m 1.0m _{ J.0m Fx

Consider the equilibrivm of the left-hand side of the frame at D and at joint ;.

WEN g r e
o | Ed
.

20kN

kM

-

20m | Xom |
Fa
e JEMp=0 — 13,17 1307 - (10 = 1L.5) - (3.0 Hx) + (2% Fa)=0
Va= L5H, + 20,67
-I-H:J EMp =0 4+ 1507 = 1307 = (200 200 = (10 = 1L5) = (3.0 = f)+ (4= F)=0
- Fy=0.75H, + 13.75
o LSH, 2067 = 0.75H, + 13.75 H,==923kN and V,=+683 kN |

Consider the equilibrium of the right-hand Lan

side of the frame ol G.
)
1507 kNm

+ve ) EM; =0
1307 = 26,34 = (10 = 300 = (4.0 = My =30 = Fgh=0 2654k Nm
30m
S Fe== 1330 - 1439
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2

Problem Number: £.12 = Kinematic Methad Page No. 6

Consider the equilibriuvm of the right-hand side of the franie a1 section at joimt H.
o+

"
A 13,07 ke +1.-|:‘-) My =

S Hg==1T38kN =
20m J Fio= = L3300 = 1439 = [- (- 1.33 = | 7.38) - 14.39]

S Py =+ RT3 RN

l o — 1307 = 26,34 — (10 = 300 — (4.0 = H)=0

Consider the vertical and horizontal equilibrivm of the complete structure,

+w1':-.‘.|f-',--[} Fat Ve ¥y =20-25=0
685+ 1+ 873 45=0

dyp—=XF =0 My M B 10+ 10+ 10=0
-923+ M- 1738 +30=0 S Hp==330kN  -—

:nl.:».'Jr l:shr{
2
; [H

L Vy=+2944 kNt

= 10k

N o [ 5
otk 34 L.‘\:mr“

1 ITJRHN“EH
lom,  F0m BIIAN

Cheek the value of the bending moment at all other possible hinge positions.
Mg == 1317+ (923 = 1.5) =+ .68 kNm < A,
Mo == 1307 = (10 = 15} +(9.23 = 3.00 = - 048 kNm = M,
Mey =+ (3.3% = 3.0) =+ HLIT KNm = Af
My == (25 % 1.0)+ 2634 = (1738 -1-.0}+ (£.73 = 400+ (10 = 3.0)
= 3,20 kNm = 44,
My=+2634 - (17.38 = 1.0} =+ 8.96 kNm < 2A4,

1217 kN
\.“u’ Nm - :
OABENm . ooaees | K ] 1307 KNm
i =-.__|_||| 1 [ =
f ¢ |3L|§u;m N-‘“h{l.l ITLNm{ =
) FIL1T kN

068 kNm |

F Collapse Bemding Moment Diagram
. B0 KNm | £
13.17 kNm :

6.4 WNm £
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.13 = Kinematic Method Page No. 1

3.

| A

Mumber of degrocs-of-indeterminacy  fuy = [(3m +#) - 3n]=2
MNumber of possible hinge positions  p =6

MNumber of independent mechanizms sp=l={6-2)=4
(i.c. 2 beam mechanisms, 1 sway mechanism and 1 joint mechanism)

! [ }

C 71 E] F G
4
Moe: three poasihile A migreul poests [ and [)

hin'ﬁr"‘"“" LL Underihe poir boads al
il - .

s CandF.,

I"

. . . tension an this side indicales
possible hinge positions SOSESESS g bending momsnls
Mechanism [: Beam BCD

1200kN
] 1 -
Mysmmscscsmsspeennmee e
B ci .
$=300=308 = fi=0

HEHE . Internal Work Done = External Work Done
(ML (= M, (04 B+ M, (8] = (120 % &
MAO+26+ 6= (120 = 3.08)
A0 = 3604

S My = 900 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8,13 = Kinematic Method Page No. 2

RELN
Mechanism Iz Beam DFG

F=300=308 -~ f=0

Internal Work Done = Extermal Work Dane
[ (& M (0 3 ] = (85 = )
M e 280 = (85 = 38)
JAL 0= 2358
Co M= B850 KNm

Mechanism H1: Sway

W

M
T f

F=400=408 - f=0

Internal Work Done = External Work Done
M (8 + M) = (30 = 8,)
MAO+ )= (30 = 406
M= 1200
s M= 60 kNm

Mechanizm IV: Joint roiation ai I)

Internal Work Done = [ M, (6 + A, (60 + M, (0] = 3040

External Work Done = #ero
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Solution
Topic: Plastic Analysis — Rigid Joainted Frames 2
Problem Number: 8.13 = Kinematic Method Fage No. 3

Combined Mechanism:

The independent mechanisms are combined 1o determine the maximuom Af, value
required to induce collapse with the minimum number of hinges, (i.e. fn+ 1)

In this ¢case the following combination has been evaluated:

Mechanism V= Mechanizm [ + Mechanism Il + Mechanizm I + Mechanism 1V{a)

Combined

Independent Mechanisms Mechanism

Hinge Positions
n m w v

B (Mg} + @ EH (200,64
C. (Mgl * 1
Dy (MG ¢ -2
[3s { M) EH (2150
131, (M) EH (2180
F. ([ Lfs} . =20
External work dome 7358

Internal work dene 12000
Eliminated hinges AT
Combined internal
wiirk ﬂ_ﬂﬂ! ﬁ””
My (kNm) .0 5.0 G0 12250

Check collapse mechanism V with hinges at C, Dy and F (i.e, 3 hinges)
The value of M, obtained (1225 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed the relevant M value at any location,

Collapse Mechanism
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Solution
Topic: Plastic Analysis - Rigid Jointed Frames 2
Problem Number: 8.13 = Kinematic Method Page No. 4

! !
MNaler ihe valse Moler U valse
of the momesa of the momen

here equals A, here equaks M,

A ", E
r}* I.P
Lim | 3

50m | Jdm 50m

o A X

o

Consider the equilibrium of the lefi-hand side of ike frame at € and at joing D,

y 120kx
I;."i.l kN 1225 kNm

o LD
L

122.5 ki

A zom | iom 1

tve JEMc=0 — 1225 - (4.0 x H)+ (3 x ) =0
Fa= 133H, + 40.83
+ve JEMp= 0 + 1225 - (120 % 3.0) - (4.0 = Hy) + (6 = Fr) = 0
¥y = 0.67H, + 39.58

-—
o L33A #4083 = 0.6TH, + 39.58 Hy= = 1L39 KN and V), = + 38,32 kN 1'

Consider the equilibrium of the right-land 85 kN

side of the frame at F. I
r

e
' F |-"
h'\u_:) EM=0 ! 122,5 kNm
1225 — (30 % Fg) =0 |
L Vg=+4083 kN } -
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2

Problem Number: 813 = Kinematic Methaod Page No. 5

Consider the vertical and horcontal equilibriom of the complete structure
+ve § EF, =0 Pyt b+ Vg=120=85=0

3832+ V. +40.83 205 =0 s Wp=+12585 kN |
tve—eEF, =0 Hy,+ He+30=0

= |.B%+ ffy+ 30=0 S = =181 kN -—

1200k%

IRNIRN
3R X 12585 kKN

X0m |
f £

30m

Check the value of the bending moment at all other possible hinge positions.
Mg = +(1.89 = 4.0)= = 7.56 kNm = M,

Mpa =+ (2801 = 40p =+ 11244 kNm = M,
Mpp = = (85 = 3.0) + (40.33 = 6.0) = = 1002 kNm = 40,

o IZZ5KENm

| |||\\”|L)/mm”:f‘ |” “ UL-IU’”M

132.5 kM

1225 kNm

Collapse Beading Mament Diagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.14 = Kinematic Method Page No. 1

TOkN

kN l

C

4.0 m | Xom |
A\ r r
- Tl

Mumber of degrees-of-indeterminacy  fp = [(3m +#) - 3n] =4
Number of possible hinge positions  p=§

Number of independent mechanisms Sip=lp)=s(8-4)=4
(i.e. 2 beam mechanisms, 1| sway mechanism and 1 joint mechanism)

| 1z |

C LN E
Note: thice
I..-';1:I|r|"|‘|]|;::Il.ﬂ_mlnh.II-_ possible hinge
et I}
Undier the point E e Tl
losds ot C and F, y
A fved suppon A

lemsion on this side indicates

pessibde hings positions mrmsmimemve bending moments

Mechanism I: Beam BCD

F=40=408 - p=0

(M, (8) + 20, (8+ B+ 20, () = (70 * &)
M0+ 40+26)= (70 * 4.06)
A, 6= 2808

2 M, = 40.0 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 8.14 = Kinematic Method Page No. 2

Mechanism [z Beam DFG

F=200=408 . =050

Internal Waork Dane = Extemal Work Done
[N (68 & M (0 )+ MG O3] = (50 = 8)
MAE+ 158+ 058 = (50 = 208
30MLE= 1008

(it}

G M= 33,33 kiNm

Mechanism H1: Sway
. TO kN
Ll

30 kN _;1.
i

&= 6.00=4008-40F - fi=150

Internal Work Done = External Work Done
(ML) + MO+ MASE + M, (9] = (30 % &)
MU+ 8+ 1,560 1,56 = (30 = 6.00)
S.0ME= 18008
. My = 36,0 kNm

Mechanizm IV: Joint roiation ai I)

Internal Work Done = 284, (&) + AL, (4 @y = 4A4,0

External Work Done = zero




Examplesin structural analysis 714

Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 814 = Kinematic Method Page No. 3

Combined Mechanisms:

The independent mechanisms are combined fo determine the maximum Af value
required to induce collapse with the minimum number of hinges, (i.c. i+ 1)

In this case ibe following combinations have been evaluated:

Mechanism Vo= Mechanizm |+ Mechanism [+ Mechanism [V{b)

Mechanism V1 = Mechanism ¥V + Mechanism [l

Independent Mechanisms Combined Mechanisms

Hinge
Fositions n 111 mw v i

A, L) = =i
[ . ER 3064 ENL i Lk
[T - 1 1
Iy, (20 05h = EH ¢4 8004 [RIFRRTAET

[FT RIS - - i
I3, { Mpd + =250 + 258
F, (Alp) - - 150
LERTA — LS4 -2
External
¥
wiork done 4500 N
Iaternal
(T} LAt
work done L, 1901
Eliminated
hinges (AT BAL 0
Combined
internzl IU.U,F [ELTE
wark dong
M (kNm)p 44L0 3353 30 46,0 43,08

Check collapse mechanism ¥ with hinges at A, C, Dy, Dy, and G (i.c. § hinges).
The value of Af, obtained (46,0 kKNm) should be checked by ensuring that the
bending moment in the frame does not exceed the relevant A, value at any location.

—

Collapse Mechanism




Plasticanalysis 715

Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 814 = Kinematic Method

R a60kNm 1N

b 3
i

c:"=|‘r DN F

A6 kKhm
U2 KN

Mader the value of
the momsni heee
juials I.HP

46,0 kX o

I,
¥y

Consider the equilibrivm of the right-hand side of the frane at jeing G and a Dy

;a0 kNm

lig

'lw;?L'lfc-FD = 46,0 = (4.0 = fiy) =0 Sy =—11L5 kN ==

e EMpe =0 —46.0+ (50 % 2.0) - (4.0 % Hy) — (6.0 = 1) =0

Vo= (54.0 - 4.0H,)/6.0 = [54.0 - (- 4.0  11.5))6.0 o Va=+1667kN

Consider the equilibrivm of the frame af joint [y,
46,0 LMm

+ve) EMy = 0
~46.0 - (4.0 x Hy) =0

Consider the horizontal equilibrivm of the complete strecture.

tye—=XF =0 Hyv M+ Hy+30=0
Hy=115=115+30=0 S Hy=2=TOKN =
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2

Problem Number: 814 = Kinematic Methaod Page No. 6

Consider the equilibrium of the lefi-hand side of the frame al a section under the
point load at C.
tve) EMg=

— 36,0 - 92.0 - (6.0 % H)+ (40 % Py =0

93.0kNm —138.0 - (60 % 7.0)+ 4V, =0
- Vym+ 240 kN |

TN

4600 kNm

4.0'm
L

Consider the vertical equilibrium of the complete struciure,
fer=0 Vit H+¥y-70-50=0
240+ Vo + 1667 120=0
'-'IILKL

v
s Vp=+719.33kN |

460 kNm T6AT RN I

TnkN oty i
T eI % | 2@ 40m
A
Iia*m:«: ’ ! ’ '

Check the value of the bending moment at all ather possible inge positions,

Mp= =460+ (7.0 = 6.00 =~ JOKNm = M,
My = = 46.0 = (70 % 4.0) + (7.0 = 6.0) + (24.0  §.0) = ~ 92.0 kNm = 2¥,

M ==(11.5 = 400+ (1667 = 4.0) = - 20.68 kNm = M,

A0 kNm -

= jl %mm

020 kNm =

=)
']

E

[ I e

Cellapse Beading Mament [Hagram
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: $.15 = Kinematic Method Fage No. 1

A
TEE

.l!’ 10 m 1 10,0 m

MNumbsr of degrees-of-indeterminacy iy = [(3m +r)=3n] = 4
Number of possible hinge positions p=§

Mumber of independent mechanisms == dp) = (B -4y~ 4
{i.e. | beam mechanism, 2 sway mechanisms and 1 joint mechanism)

i

] [§
A inkcrnal joinls
B, D 1 and F.
Ulmdier the poini load ai abe: throe
M Tiowedd suppori A '] pirssbl h.";;}l
s paralicers al

it

Temszom on this side indicates
possible hinge positions v bending moments

Mechanism I: Beam BCD

S=1000= 1008 - fG=8

HE [T} Internal Work Done = External Work Done
[2M, (6) + 3M, (8+) + 2M, (D] = (80 = )
M, () + 3M, (6+8) + 2M, (B)] = (80 = 10.08)
100,68 = B0

2 M, = 800 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 815 = Kinematic Method Page No. 2

Mechanism 1z Sway of Top Storey

s A0 kN
HT

e -5

S=1008=407 - fg=250

Internal Work Done = External Work Done

[2M, (6)+ 2M, () + 20, () + 20, (/3] = (40 = &)

[2MG (00 + 20 (0 + 2MG (2580 + 20 (2.560] = (40 = 10,085

140080 = 4004 oM = 2857 kNm

Mechanizm HI: Sway of Battom Storey

-]

[
m
=

T
L
=

A
fssd
S=600-408 - fi=150

Internal Work Done = External Work Done

[2M5, [0+ AL (h+ M, (m+ 2, (] = (30 % )

[2MG (0 + A (8 + 2A8 (1500 + 2L (1. 500) = (30 = 6,00

SOMLEr= 1800 2 My = 2000 KNm

Mechanizm IV: Joint rotation ai E

Internal Work Doane
2N (6D M () + 2N () = SN0

External Work Dane = 2¢io
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2
Problem Number: 815 = Kinematic Method Page No. 3

Combined Mechanisms:

The independent mechanisms are combined fo determine the maximum Af, value
required to induce collapse with the minimum number of hinges, (i.c. i+ 1)

In this case ihe following combination has been evaluated:

Mechanism ¥ = Mechanisms [I + 11 + 111 + 1V(b)]

Combined

Independent Mechanisms Mechanism

Hinge
Positions

m (L ¥

A 125 - i
13, {20050 -20
. (B ) ; Y
[EYETA) - {03 [ by I {10Lr, oy
By, (2Mp) = L EH (4ieh
Is 4 Afph | o= -
Er (24} =250 SLER | =8 40 EN i 10,64
F. i el + Lt
External
work done
Internal
work dong
Elimimaed
himges
Combined
internal 14M.8
work dome
My (kNm) =0 2857 2000 QEAT

RO L0047 1808 13804

e | e | e 3EML0

M0

Cleeck collapse mechanism V with hinges at A, B, C. E; and F (i.e. 5 hinges).
The value of M, obtained (98.57 kNm) should be checked by ensuring that the
bending moment in the frame does not execed the relevant M, value at any location.

B [E]

1

T N

Collspse Mechanism




197,14 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 2

Problem Number: 815 = Kinematic Method Page No. 5

lﬂxl kM

W s
IJ
Nz ihe value of -
the moment here 295,71 kKRm

equats 2M, \
*odez the value of the
// moment here equats 346,

197,14 kMm
L5

v A
e Iy —%
. l | I0dm s 12.0m

10 e

Consider the equilibrivm of the left-hand side of the frame at joint B and at a section
at the point load at C. )
v B L kN

197.14 kx.E r

w

2T kNm

197, 14 kNm
T
' p 1Ll m -I--

iy "'"i'!-

/ I

-rw} IMy=0  + 19704 + 19714 (100 = H)=0
e JEM-=0 - 29571+ 197,14 — (10.0 = K, + (10,0 = F)=0
Fy o= (98,57 + 1001000 = [98.57 + (10,0 = 39.43))10.0 - Fy =+ 4920 kN t

Sy =4 3043 KN —-

Consider the equilibrium of the right-hand side of the frame at joinis F and E;.
Tl FOIOEN E:L'.L“ AT kMNm E"Jl'ﬁ?}'

AL AT kwm + |
F

e | 1643 KN
H ) 12,0 m

Vig
'H'c;} M =10 + 98,57 (6.0 = fy) =10 vy =+ 1643 kN —

+W.'J' EMi=0  =98.57 - (1643 = 6.0) - (12.0 = Fyd=0 .. Fyy=— 1643 kN I-
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Solution
Topic: Plastic Analysis - Rigid Jointed Frames 2
Problem Number: 8.15 = Kinematic Method Page No. 6

Consider the horizontal equilibrivm of the complete structure.,

v —=TF, =0 Hy+ Hy+ Hy - 400 -300=0
30,43 + Hg + 16,43 - T0.0=0 s Ho=+ 1414 kN —

Consider the vertical equilibrium of the complete structure.

tvef IR =0 Kyt o+ 1y -800=0
49.29 + Vo~ 16,43 - 80.0 = 0 & Vo= +4T14 kN —

lﬁl}k.\'

I

197,14 kim

L

. 144 kN
TN | Iom I?.Illﬁ#
-+

Check ihe value of the bending moment at all other pessible hinge positions.
Mp= =300 = 400 = (1643 = 12,00+ {16.43 = 10.0)+ (14.14 = 10.0)

== 1146 kNm = 2M,
My =+ (1414 % 6.0) =+ B4.84 kNm £ 2M,
My =+ (4929 = 20,0) + 197.14 = (39,43 = 6.0) = (50.0 = 10.0) — (40,0 = 4.0)

== | 3.64 kNm = 20,

A
§
; WETI KNm 98,57 km [1,13.64 KNm

e, 9857 kim F
£6.07 kNm FE LI 4587 km

114 KNm

g
= :
= 197,14 kiNm c

Callapse Bending Moment Diagram

8.12 Gable Mechanism

Another type of independent mechanism which is characteristic of pitched roof portal
frames is the Gable Mechanism, as shown in Figure 8.23 with simple beam and sway
mechanisms.
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i i

Gable mechanism

Figure 8.23

In the beam and gable mechanisms the rafter of the frame is sloping and it is necessary
to evaluate the displacement in the direction of the load. i.e. not necessarily perpendicular
to the member as in previous examples. Consider the typical sloping member ABC
shown in Figure 8.24(a) which is subject to a horizontal and a vertical load as indicated.

A ! D

.,f::r..-----...----...:-1---...-----...

a (a)

Figure 8.24

Assume that during the formation of a mechanism the centre-of-rotation of the
member is point A and point C displaces in a perpendicular direction to ABC to point C'.
For small rotations (o) of member ABC, 6c=Laca

The vertical and horizontal displacements of C are given by dc vertica=0c
Cosb=Lapa and ¢ norizontai=0c SiNB=Lcpa as shown in Figure 8.24(b),
where 0 is the angle of the member ABC to the horizontal. The vertical
and horizontal displacements at point B can be determined in a similar
manner.
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These values can then be used in the calculation of external work for the
work equation.

8.13 Instantaneous Centre of Rotation

In more complex frames it is convenient to use the ‘instantaneous centre of rotation
method” when developing a collapse mechanism. The technique is explained below in
relation to a simple rectangular portal frame and subsequently in Example 8.7.

Consider the asymmetric rectangular frame shown in Figure 8.25 in which
there are two independent mechanisms, one beam and one sway. The
frame requires three hinges to cause collapse. Both mechanisms can
combine to produce a collapse mechanism with hinges developing at A, C
and D. In this mechanism there are three rigid-links, AB’'C’, C'D’ and D'E
as shown.

l-II:I kN

BT 2N

&

1.20m | 40m

Figure 8.25

The centre-of-rotation for link AB'C’ is at A and the remote end C moves in a
direction perpendicular to line AC shown. The centre-of-rotation for link D'E is at E and
the remote end D moves in a direction perpendicular to line ED shown.

In the case of link C'D’, the centre-of-rotation must be determined by
considering the direction of movement of each end. C’ moves in a
direction perpendicular to AC and consequently the centre-of-rotation
must line on an extension of this line. Similarly, it must also lie on a line
perpendicular to the movement of D, i.e. on an extension of ED. This
construction is shown in Figure 8.26(a). The position of this centre-of-
rotation is known as the instantaneous centre-of-rotation and occurs at the
instant of collapse.
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Inslantzaneous  cenlre—ol-rotalon

For link C'LY - _‘?
A
3: 5
a0y i
10 kN B J- D!
E

(a)

The work equations can be developed and the required M, value
determined by considering the rotation of the hinges and the displacements
of the loads. Consider the geometry shown in Figure 8.26(b) and equate
the displacements in terms of 0,  and o as follows:

The horizontal displacement DD & =3.05= 6.08 s =200
The rotation at the hinge at D (@+ H=3.08

The vertical displacement CC' & venical = 2.0 =408 . a=2.00
The rotation at the hinge at C (@+a)=3.08

(Note: equating the horizontal displacement of point C will give the same result, i.e.
3¢ horizonta=3.00= 6.00)

The rotation at the hinge at A=0=2.00

Note: no internal work is done at support E

Internal Work Done=External Work Done

M, () + 2.0M, (0+ &) + My (04 ) = (10.0 x &) + (40.0 % S versca)
M, (2.08) + 2.0M, (0+ 2.00) + M, (8+ 2.08) = (10.0 x 6.06) + (40.0 x 4.00)
1M, 0= 220,00 . M, =20.0 kNm

The reader should confirm that this is the critical value by calculating the reactions and
checking that the bending moment on the frame does not exceed the appropriate M, value
for any member. (Note: In the case of member BCD this is equal to 2.0M,=40 kNm).
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8.14 Example 8.7: Pitched Roof Frame

A non-uniform, asymmetric frame is pinned at support A, fixed at support F and is
required to carry collapse loads as indicated in Figure 8.27. Determine the minimum
required value of M,

20 kN
.
H, I £ kM 1
tension on this side indicates +ve
bending moments  =:=:=:=:= -
=
-
Hy 1
| 3.0m ‘L 30m | 30m | 3.0m
. ¥ Ve
| 12.0 m J
Figure 8.27

Factored loads: as given

Mumber of degrees-of-indeterminacy = [(3mr#r)=3n] = [(3=3)+ 5)=(Fxd)] =2
Number of possible hinge positions p=5 {B.C,. D, E and F)

Mumber of independent mechanisms =(p=Ip)={E=-2)=3

{i.e. 2 beam mechanisms, | gable mechanism).

Kinematic Method:
Consider each independent mechanism separately.
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Mechanism (i): Beam ABC

& paerticat = 308
Mote: no intermal work is done at support A

Internal Work Doe = External Work Doie
M, (20+ 8)=(20.0 % 3.06)
LO0ME = 6000

v My =20.0 kNm

Mechanism (ii): Beam CDE
20 kN

ORN = 3.00

Internal Work Done = External Work Done
M (0 + 20+ 6 =(20.0 = 3.08)
4.00ML8= 6008

- M, =150 KNm

Mechanism (n): Gable

0N -
Wy XN

o Bl

The distance OF = 5.0m
& pposizaat = 4.0F= 508 -, G= 12580
ﬁf..'m'l.u:u =40x=600 . o=
ﬁn_“.‘llu.l] - 3-““ = Jnﬂl:?

& 1 verica = 3.00

Internal Work Done = M, (84 a) + M, (8+ 5+ 200005
= M, (2.00) + M, (0+ 1.256) + 2.0M, (1.250) = 6.75M,0

External Work Done = {2000 = & pgpea) + (2000 2 S o pmica) + (2000 = & pcnica)

F (100 =8 g perisearat)
= (20.0 % 3.06) + (20.0 x 6.06) + (20.0 x 3.08) + (10.0 x 5.00)
= 2904
Internal Work = External Work .. 6,730, &= 2008 5o My =42.96 kNm

Combined Mechanism (iv): [2xmechanism (i)]+mechanism (iii) which eliminates a hinge
atC
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o
2.9

The distance OE = 5.0 m

S hoeivema = 4.000= 508 -, G= 1250
S yvenica = 30 =208 - a=308
I‘}-{-_.,,.-ﬂ,ﬂj =600

& pyenica = 3.08

Internal Work Done = M, (#+ a) + M, (84 @ + 2005
= M, (4.06 + ML (0+ 1.258) + 20M, (1.258) = 87500

External Work Done = (2000 % & juemea) + (2000 % F e mica) + (2000 % F poonical)
+(10.0 28 £ posiseanat)
(200 % 9080 + (2000 = G608 + (2000 = 3.0 + (10.0 = 5.08
=4108
Internal Work = External Work o 8.750,0= 4108 s My = 46.86 kNm

The reader should confirm that this is the critical value by calculating the reactions and
checking that the bending moment on the frame does not exceed the appropriate M, value

for any member. (Note: In the case of support F this is equal to 2.0My=93.70 kNm).

Alternatively, adding the virtual work equations:

Intemal Work Done = External Work Done

2 = Mechanism (i) O.0M = 12008
Mechanism (311} 6. 75M 6= 290.08
less 2008, for eliminated hinge = 2000

B.I5M 0= 410.08 S M = 46,86 kNm

The combined mechanism can be evaluated in a Table as shown:

Independent and Combined Mechanisms for Example 8.7

Hinge Position (i) Gi) | (iii) (v) | (v)=2(i)+(iii)

B (My) +2.00 - - — +2.00

C (M) -0 -0 _ +2.00 | EH (2.0M,0)

D (Mp) - | %200 ]| - - -
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E (M,) - -0 +0 | —2.250 ~2.250

F (2Mp) - - | —2.00 - -

External Work 60.00 | 60.00 | 63.00 | 290.00 410.00

Internal Work | 3.0M,0 | 4.0M,0 | 3.0M,0 | 6.75M,0 |  10.75M,0

Eliminated hinges - - - - 2.0M,6
Combined M6 - - - - 8.75M,0
M, (KNm) 20.0 15.0 21.0 42.96 46,86
i

2O kN 200kN

4686 KNm

46,86 kMNm

™y
93.72 kMm _Eh"_ 35,15 kN

F

JI9EN
C
B D
3373 kNm P{
L 46,86 kNm
Y 3

A 46,56 kNm 2338 kNm - ?

4

Collapse Bending Moment Diagram

93,72 kNm — F

Figure 8.28
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8.15 Problems: Plastic Analysis—Rigid-Jointed Frames 3

A series of rigid-jointed frames are indicated in Problems 8.16 to 8.21 in which the
relative M, values and the applied collapse loads are given. In each case determine the
required M, value, the value of the support reactions and sketch the bending moment
diagram.

40 kN

3.0m

4.0 m

2.0m

2.0m 3.0m —

1= il 4
Problem 8.16
4 —_—t
20M, C

= =

L =

-+
—w,

Problem 8.17



730
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12.0m

-

Problem 8.18

l 1.5m | 1.5m | 1.5m 1.5m 5
= * = e

Problem 8.19
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21 kN

A
| 30m | 30m  [l.Om|l.om]

15 kN

] 30my;  30m | 30m | 30m |
e L b

b

Problem 8.21
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8.16 Solutions: Plastic Analysis—Rigid-Jointed Frames 3

Solution
Topic: Plastic Analysis = Rigid Jointed Frames 3
Problem Number: .16 = Kinematic Method Page No. 1

Mumber of degrees-of-indeterminacy  fo = [(3m +r) = 3n] = 3
Number of possible hinge positions  p=35

Number of independent mechanizms ={p-Ip)={5-3)=2
(1.e. 1 beam mechanism and 1 sway mechanism)

Under the poinit load a1 B
At isternal poists C and [

Al lied 15 A and E . A,
Al [lxed suppacts. A & tension on this side indicates +ve
bendimg momenls

passible hinge posiiions E

Mechanism I: Beam ABC

kN Fu20F=2.00 5 fm g

Internal Work Dione = External Work Done
o (M MG (8% 4 M (W] = (40 = &)
St MO+ 28+ @)= (40 = 208
O AME=808
SoMy = 2000 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 816 = Kinematic Method Page No. 2

Mechanism Iz Sway {Use the instantaneous centre of rotation technigue)

A0 kM . 30m -

| o |l] Imstantaneoas centre of rotation for link CD
Sttt
" i Ve :_".'% ot

Fyp=4f=30 . g=0750
5‘.‘.=,ﬂg=3ﬂ soa=0T750
J\H =2 =150

i
Internal Work Done = External Work Done
[M{ex)y + .\-'&,{-I'?+ o) + .'|-.I"p[-l'?‘+ ﬁ:l + ;'I-fp{ﬁ'll_l =40 x F3)+ (10 = &)
M0.756 + L7568+ L3568+ 0756 ) = (40 = 2a) + (10 = 40
SMLO= 808 oM = 180 KNm

Mechanism III: Combined Beam & Sway
40 kN 540 m

o = . ,,ng Instantaneous centre of rotation for link BC
C
e g e -y e T

Sye=2a=30 . a=258
dyp=4f=380 . f=0758

Internal Work Done = External Work Done

[Mexh + ML+ )+ MO+ B+ M) = (40 = Fyc) + (10 = Fyp)

MU258+ 350+ L7508+ L150) = (40 = 2a) + (10 = 405

B.5M 0= 2308 2 My =127.06 kNm
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Solution
Topie: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: .16 — Kinematic Mcthod Pape No. 3

In mechanism | the rotation at joint C = = ff= - 4

In mechanism 11 the rotation at joint C = + (0% o) = +1.758

Adding equations for Mechanisms [(1,.75 = 1)+ 11]

TMLO= 1400

SM 6= 908

= 3500 [allowing for the hinge eliminated at joint B: (2 % 1.7548)]

B.SME = 2308 My = 2706 kNm as before

The value of M, obtained (27.06 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value at any location,

2706 kMm RN

+ Under the point load at B and am
support E there is tension frside the
frame and consequently the bending
maoment is positive at these points.

The retaticns at A and D induce
tension on the enrside of the frame
—+ and hence negative bending momenis.

;20 X0 0w F,y
Consider the equilibrium of the right-hand side of the frame at point D and the left =
hand side at B.

5 A0 kM
J 2706 kném ,L

%

27406 wm"" B -
20m |

+ve JEMy=0
=27.06-27.06 + (2.0 = ¥Fy)=0
27.06 KNm o Py=+27.06kN |
Consider the complete struciure:
e | EF, =0
—400+2706+ Fe=0 . Fp=+1294kN |

+w.:‘:) EMy=0 =27.06=27.06 (4.0 = H)=0 S Hgm o= 1355 KN -—
Consider the complete structure:
== EF, =0 H,+10-13.53=0 S Hy =435I KN —-




Plasticanalysis 735

Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.16 — Kinematic Mcthod Page No. 4

Bending moment at C (eonsider forces to the lefi-hand side) :

M= = 27.06 + (27.06 * 4.0) = (40.0 * 2.0) =+ 1.18 kNm 5 M,

2706 kNm l-l'il kM

LR EY 3

£ B [§
A

2706 kN

2706 kN

I ;
. S 1353

120 kN

2706 kNm
- 129 kNm

118 KNm

27,00 KNm

17406 kN

Collapse Beading Moment Diagram
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Solution
Topie: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: .17 - Kinematic Method Page No. 1

B 204,

Iom d Iom \I. om

g .

Mumber of degrees-of-indeterminacy = [(3m +¢) = 3n]=2
Mumber of possible hinge positions p=4

Mumbser of independent mechanizms = (= tp)=(4—-2)=2
{i.e. 1 beam mechanism and 1 sway mechanism)

Urder the point load ot O
AL imernal foints I3 nnd D
A fined suppon A

lension on this side indicales e

possible hinge posilions bending MomentE =rmimamam

Mechanism I: Beam BCD

Hil+fi)
Internal Work Done = Extermal Work Done
(M, (8) + 2M, (840 + M, () = (40 x 5)
[MLE + M, (8 + 6D + MEN] = (40 = 3.06)
G = 1204
2 My =20.0 kNm
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Solution
Topie: Plastic Analysis = Rigid Jointed Frames 3
Problem Number: 8§17 = Kinematic Method Page No. 2

Mechanism Iz Sway (Use the instantaneous centre of rotation technique)

Instantancous ceniee of rogation for link BCD
HEE

Sy = 400 6.08 S fim 150
5"! =3.0a= 608 SoaE=208
dve =308

Internal Work Done

[, (e + A (€04 ax) + M (604 )
[MA26h + M (360 + ML(2.560]
T.5MLE

External Work Done
(10 =8 ym) # (40 = Fue)
(10 = 6 + (40 = 36
1804

Internal Work = External Work /'
1AM, &= 1808
My =240 kNm

. 30m L X0
- -l

Mechanism III:  Combined Beam & Sway

Irsianizneows cendne of rolation for link C1)

Internal Work Done

[ M, Cex) + 20, {8+ + M, {8+ 3]
[.l.l’p(ﬂ.ﬁf?j +2M (15380 + ML1.3T56h]
487500

External Work Done
I[“] !r}']m}*'{-“] * dych
(10 = 1580 + (40 = 3489
135¢

Internal Work = External Waork
ABT5M 0= 135.00
M, =27.69 kNm S=400=158 . F=03750
ﬂ‘||r|.=3.ﬂﬂ' = 1.5¢ Soa=058 (F\'c=3.ua
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 3
Problem Mumber: §.17 = Kinematic Method

In mechanism [ the rotation at joint B = - &

In mechanism 11 the rotation a1 joint B =+ (@ + & =+ 3,06

Adding equations for Mechanisms [(3.0= 1)+ 1]

1500, 6= 3608

L300 = 1806

— 6,00, [allowing for the hinge eliminated at joint Bz (2 = 36)

19,500 = 3408 S M= 2769 KNm as before

The value of M, obtained (27.69 KNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value atany location.

27469 kNm

5 | Under the point load at C there is
tension  fwside  the frame and
2769 KNm Y consequently the bending moment s

5.4 KNm . . .
positive at this point,
{245 B ) o
1

Fa E § = The rotations at A and D induce
| 30m | 30m  |30m T. tension on the ewside of the frame
4 i E 1 .

and hence negative bending moments,
Consider the equilibrium of the nght-hand side of the frame at joint D and the right-
hand side at C.

JENTSS
-
-

"
E §—=—x

. .‘.\_."E .0 |n_-I'| .

+1-c_>z.1ru =0 2769 -(4.0% H)=0 S =692 kN =-—
+ve JEMe =0  +554-(40% Hg) (3.0 = Ve)=0
+554 - [4.0%(-6.92)] GOxF)=0 - Fp=+27.69kN |

Consider the complete structure:
tvg=—=EIF, =0 Hy+10=692=0 S Hy= =308 kN =+
ive PEF, =0 —40.0427.60+ ¥, =0 ~Hmei23iknf
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Zolution
Topic: Plastie Analyaiz — Rigid Jointed Feames 3
Problen Number: 817 = Kinematic Method

Conaider the cquilibriam of the letft-hend side of the frame at joint B,

Collapae Bending Moment Diazram
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Solution
Topie: Plastic Analysis = Rigid Jointed Frames 3
Problem Number: §.18- Kinematic Method Page No. 1

ELEREIAREELEAE)

LELIRREETRE]

E
R XL s0m ‘éf'h

Mumber of degrees-of-indeterminacy = [(3m + )= 3n]=2
MNumber of possible hinge positions  p=35

Mumbser of independent mechanizms = (p=tp)=(5-2)=3
{i.e. 2 beam mechanisms and 1 sway mechanism)

==

i+

Uniler the point losd ot C

Al internal jolnts [ and D
A fied suppon A

i
i
!
¥ ¥ H I
Unider the distribused load E i
1
!
A % i E!

possible hinge positions tension on this side indicates +ve

Pl T e
Mechanism I: Beam AB S

F=408-400 . f=0

Internal Work Done = External Work Done
[, (il + A, (40 + ML (] = (6.0 = 8.0y = 8.2]
[MLEN + M, (248 + MUE] = (48 = 4062
AME=968

o M = 240 KNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8,18 — Kinematic Mcthod Page No. 2

Mechanism Iz Beam BCD

R O b dwe=800-808 - =0
ot *he gty

Internal Work Done = External Work Done
(M, (8 + My (84 + My ()] = (75 % Sve)
(ML 8+ M, (08 + M 6h] = (75 = 8.06)
AM 6= 6008
o My = 150.0 kNm

Mechanism II1:  Sway

T5EN

F= 12,03 = 8.00
o f=0.670

Internal Work Done = External Work Done
[0y (8 + My (B + ML (3R] = (6 = 8.00 = 872
(ML + M, (6 + M0.6T 5] = (48 = 80042
267TM 8= 19240

2 My= 7191 kNm

Mechanizsm III:  Combined Beam BCD and Sway

In mechanism 11 the rotation at joint B = -&

In mechanism 111 the rotation at joint B = +&

Adding equations for Mechanisms [1 + 1)

4.0M, = 6000

2.67TM, 8= 1920

= 20040 [allowing for the hinge climinated at joint B: (2 = )]

46700 = 7520 o My = 16959 kKNm
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 3
Problem Number: 818 = Kinematic Method

Using the instantaneous centre of rotation technigue.
Sy =12.08= 808 s F=0 670
Sy = 8.0 = 808 L= Instantaneoas centre of rotathon for link CL¥

dy=40z (average displacement)

R0 m . &0 r,léf

Internal Work Done

[M, (a) + M, (8+a) + M, (0+ )]
[+ M, (260 + M 1.6760]
A6TME

External Work Done

[(75 = dye) + (6= By = &y |
[(75 = 86) + (48 =46
7928

Internal Waork = External Work
4.6TM 0= 7028
My=169.50 kNm as before

The value of M, obtained (16959 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value at any location.

TS kN |_|f"'1£? L""‘ m
LA

o

(=]

b

=k

g
z:rl:llrl':

R0 m

¥

H0m #.0m

Under the poim load at C there is tension dmside the frame and consequently the
bending moment is positive at this paint.

The retations at A and D induce tension on the ewrsfde of e frame and hence
negative bending moments.




Plasticanalysis 743

Solution
Topie: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: .18 — Kinematic Mcthod Page No. 4

Consider the equilibrium of the right-hand side of the frame at joint D and the rght-
hand side at C,
b .
: -
168,59 kXm

ﬂ-njx.\a, =0 = 16959 (12.0= i) =0 oM == 1403 KN —-—
#ve JEMc =0 +169.59 - (10.0 % H) - (8.0 % Vi) = 0
+ 169,59 = [10.0 % (= 14.13)] = (8.0 = V) =0
o V= +3887kN
Consider the complete structure:
Fyg==EF, =0 H,+(6.0%8)—1413=0 o iy = = 33.8T KN =
we JZF, =0 -75.0+3887+ V=0 o V=4 36.03kN
THEM L

IEMEY 3
, f——
b

BOm  TiasTem

36,13 kN 4

My == 16959 = (6.0 = B0 = .00 + (8.0 = 33.87) = = 9063 kNm = M,

16252 kNm

063 kNm 1L

Callapse Bending Mament DNagram
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 3
Problem Number: .19 = Kinematic Method Pape No. 1

kN

1.5,

1.&m J Ldm | Lim l_ 1.& m

Number of degrees-of-indeterminacy  fp=[(3m +r)=3n]-2=2

(Note 1: the degree-of-indeterminacy is redueced by one for each pin in the frame)
Number of possible hinge positions  p = 5 (Note 2: no hinge at B since My = zero)
Mumber of independent mechanisms ={p-lp)=(5-3)=13

{12, 2 beam mechanisms and | sway mechanism = no gable mechanism is possible
because of the tie.)

Umder the poinit loads a1 C and E
Al imlgrne] joints [} and F
{see Mot 2 above) L !
Al fixed support G tematon on this side indicates #ve !
bgnding monmsgnits
posaihle hinge positions

Mechanism [: Beam BCD

Sve=150=150 - f=0

&
¢ Internal Work Done = External Work Done
[M, (04 + My (/] = (30 % 8uc)
[M, (68 + ML) = (30 = 1.58)
IMLO=458
o M =150 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8§19 = Kinematic Method Page No. 2

Mechanism 11z Beam DEF

kN

= 150=150 o fi=m8

Intermnal Work Done = External Waork Dong
[Ady (80 M, (85 + M, (D] = (30 = Syg)
[My (6 +M (8 +8y + M (8] = (30 = L.56h
AM =458
oMy = 1125 kNm

Mechanism 1II:  Sway

Internal Work Done = External Work Done
[ M (8 + L3MG (8h] = (10 = &]
23M8= (10 = 4.0
250 0= 406
oM =160 kNm

Mechanism 1II: Combined Beam DEF and Sway

In mechanism 1T the rotation at joint F = - &

In mechanism 111 the rotation at joint F =+ &

Adding equations for Mechanisims [1 + 1)

4.0M, = 456

25M, 0= 404

= 2.0A40 [allowing for the hinge eliminated at joint B: (2 = £)
4.5M0 = 850

o M= 1889 kNm
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 3
Problem Number: §.19 = Kinematic Method Page No. 3

Using the instantaneous centre of rotation technigue,

dyp=150= 158 o pg=¢ Insianiancous centre of rolation for link DE
L5a= 158 La=g
= 4.0 =408

Internal Work Done

[ My {ah + M (43 + 1AM, (8]
[MLLER + M, (280 + 1.5M060)
A5ML0

T &
“+fiey —F

External Work Done
[(30 = Sye)+ (10 = &)
[(30 = 1580+ (10 =4&6h] =+ o+ )
s5a

Internal Work = External Work
4500 = B5G
My=188%kNm  as before

The value of M, obtained (18.89 kNm) should be checked by ensuring that the
bending moment in the franve does not exceed this value at any location,

Under the point load at E there is tension inside the frame and consequently the
bending moment is positive at this point.

The rotations at G and at joint [} induce tension on the eatside of the frame and
hence negative bending moments.
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8,19 — Kinematic Mcthod Page No. 4

Consider the complete structure:
+ve) EMz =0
+ 2830 - (000 400 — (30,0 = 1.5) - (30,0 = 3,00 — (30,0 = 4.5) + (60 = Vph=0
S V= 4694 KN
e 1' EF,=0 + 46,94 = 30.0 =300 = 300+ Fg=0 - Fp=+4306 kN t
e —=EF =0 HM;-100=0 S Hg=+100kN —
JOEN

1889 kim

?—16.‘?1 kM

J 1.5m 1.5m L.5m I.5m

T T *

2834 KN

—

| 4206 k8
Me==2834+ (10.0= 4.0) =+ | L66 kNm 5 M,

Consider the equilibrium of the right-hand side of the frame at a section at joint E.

I 4306 k8

#+ve JEMg =0 )
+1EEG + (10 = 100+ 2833 (10 = 5.0)= (4306 = 1.3)+(1.0= 5)=0
;. The tension in the tie bar Fi=+ 5736 kN lII
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8§19 = Kinematic Method

Consider the bending moment at C.

Me=+ (46,94 % 1.5] (57.36 = 1.0) = 13.05 kNm < M,

1589 kMen

I|'||| Il N
™ :

il
i _u._;_JE.I.IJ-!IJ-.ﬂSk‘.\'ln |smk.~.'.1|“ |
Tk .

|:|-:'|:'
| M
¥

- X g
Tie force = 5736 kN D
1166 kNm

Collapse Bending Moment Dagram

¢ I I8 KNm

MNote: the gable mechanizm is nod possible in this frame sinee it is prevented from
developing by the tie between B and F.
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 820 - Kinematic Method Page No. 1

1 3om 30m  )ompom

MNumber of degrees-of-indeterminacy o= [(3m +r) = 3n] = |
Number of possible hinge positions  p=35

Mumber of independent mechanisms ={p-lf)=(5-1)=4

(1.2, 2 beam mechanisms, 1 sway mechanism and 1 gable mechanism)

B
Unider the point loads g1 C and E

|I:1.‘|'|$||.‘ﬂ on this side indicates +ve
At imtermal joints 1B, D and F . -

I L‘\mllng HHnEnis
A ; I.t
pessibde hinge positions
Mechanism 1: Beam BCD
21 kM

Sve=308-308 . p=0
,

Internal Work Done = External Work Done
[LSAL (6 + ZA0 (63 + MG (0] = (30 % &)
[LSM (0 + 20, (260 + ML (6] = (30 = 3.06)
650 0= 908

SoMy= 13.85 kNm
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: §20 = Kinematic Method

Mechanism 11z Beam DEF
Sy = L0F= 108 . fg=0
Internal Work Done = External Work Done
[M (80 M (O3 + A (] = (12 = &)
[M () + M, (0480 + M (8] = (12 % 1.00)
A= 128

LM, =30kNm
Mechanizsm 1I: Sway

&= 4,00

Internal Work Done =~Exlr:m al Work Done
[5G (80 + M (8] = [(10 = &) + (10 = )]
LML = (20 = 406 = 504

Mechanism 1V: Gable
S =400 =408

L =6

Sup = 6.0a =200
L a=0330

:j!.'.:: =30c=

i

!
1
i
1
"
¥
[
"
¥
¥

2 M, =320 kNm

Instantancous eentne of nolation for link DEF

2N l . ,r’;/ﬂ

ey

Ly
ral v
440+ )

1
iom J|.UI'I1._|.“II,! ~ g
¥

J\'L =1.04

]
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: £.20 = Kinematic Mcthod Pape No. 3

Internal Work Done = [1.3M, (a) + M, (+a) + M, (8+/3]
= [(0.5M, 6+ (1330, 00 + [(2.0M4,6)] = 3.83M,0
External Work Done = [{3“ L 1‘5“\1_'} + {2] X ﬂi"\;u} + { 12 = ﬁﬂ::' + t“} ] C‘?‘“r}l
= [(30 = B+ (21 = 260+ (12 = A+ (10 = 460 = 1248

Internal Work Done = External Work Done
3BIM 0= 1248 oMy = 3238 kKNm

Mechanism Vi Combined Beam BCI), Gable and Sway

Instamianeous centre of rolation for link CHEF 1

Sur = 4.08= 10670
o B=2670

|'.';1.r_' =30 = S.’UI?
o= |LATa

J'l.u. =208
S = 1.08

ﬁnn = 4 0er
= 4.0(1.670)

Internal Work Done
[2M, (0 +a) + M, (048] = [2MA2.678h + M, (3.676)] = 9.0M,0

External Work Done
(10 % Sy) + (30 = Sy + (21 2 Sup)+ (12 % Fop) + (10 % F )]
[(10 = 6.686) + (30 = 3060+ (2] = 200+ (12 = L0+ (10 = 1L6760] = 377.54

Internal Work = External Work
DOM G = 37750 oMy =419 kNm
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Solution
Topie: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: .20 = Kinematic Mcthod Page No. 4

Iin mechanizm V the hinges at B and D have been eliminated.

Add mechanisms as follows:

[(1.33 = 1) + IV] which eliminates the
hinge at D and produces rotations equal
to = (1676, + (26660 and = (1.336) at
B, C and F respectively.

The resulting mechamzm ¢an be combined with [1.67 * Mechamsm 111] to eliminate
the hinge at B. This produces total rotations equal to + (2678 and = (36 at C and F
respectively.

Eliminated himge:

Eliminated hinge:
={LaTh

Adding equations for Mechanisms [{1.33 = 1)+ IV + (1.67 = 111)]

B63MO= 119.70

IBIME= 12400

41EMO= 13360

- 50 M0 [allowing for the hinge eliminated at joing B; 2(1.5Mp = 1.67é0]
= 26TAL7 [{allowing for the hinge eliminated at joint F: 2(M, = 1.33.6)]
GOMD = 37038 o My =419 kNm as before

The value of M obtained (41.9 kNm) should be checked by ensuring that the
bending moment in the frame does not exceed this value at any location.
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: £.20 = Kinematic Mcthod Pape No. 5

Under the point load at C there s tension fnusdde the frame and conscquently the
bending moment is positive at this point.

The rotation at joint F induces tension on the outside of the frame and hence a
negative bending moment.

Consider the equilibrivm of the right-hand side of the frame at joint F.

SRR
F — ]

+ve ) EMe =0
— 419 - (Hy % 4.0)=0
Hg==1048kN =

ALY KNm

Consider the complete structure:

+ve_)EM, =0
- [20 3 (10.0 % 4.0)] + (300  3.0) + (210 % 6.0) + (12.0  7.0) - (8.0  ¥g) = 0

L Fg=+475kN
tve JEF=0  +475-300-210-120+F,=0

L Va=+155kM |

tye—=EF, =0 200- 1048 + M, =0 Sy =+ 952 KN -
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Solution

Taopie: Plastic Analysis — Rigid Jointed Frames 3

Problem Number: .20 - Kinematic Mcthod Page No. 6

4R LN —

Eﬂ I0m) 47,5 kN

My =+ (952 = 4.0) =+ 3808 kKNm = 1.3M,

My==(12% 10} = (1048 = 70+ (10 = 3.0) + (47.5 = 2,0) =+ 39.64 kNm = Af,

Mp =+ (10 % 15)= (1048 = 5.5) + (47,5 = 1.0) =+ 4,86 kNm = M,

{ 308 KNm

I

A Collapie Bending Moment Diagram

This frame can also be readily analysed using the static method of analysis as follows:
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 3
Problem Number: 8.20- Static Method Fage No. 7

Assume the honzontal component of reaction at support G to be the redundant
reaction. 3]k

ERT LT | 1 S0vm LA mpl
iy - L

(1) Statically determinate force system  (11) Force system due to redundant reaction

Consider system (1)

Apply the three equations of static equilibrieum to the force system:

+ve JEF, =0 Fia=30=21=12+Fg=0 Foy + Fig = 63.0 kN

#ve—=ELF, =0 10+ 10+, H'y = <200 kN =—

-l-'\'u;) IM, =0 + 2w (100 = 400 + (3000 = 3.0+ (21.0 = 6.0) + (12,0 = 7.0)
— (8.0 Vi) =0 L W=+ 4T85 KN

hence M=+ 155 kN

Consider system (1)

Apply the three equations of siatic equilibrium to the force sysiem:

e i}.‘F, =0 " g =0 Fe=Fy

tye=—=EF =0 [y -Hg=10 H™ = +Hg

tve JEMy=0 - (= 50)=0 me=0  hence

L H
J0m l!"}m-il'ﬂ m

A7.5 kN Faai
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: §.20 = Static Method Page No. 8

Mg = + (20 =% .00 = (Hz = 4.0) = + 50,0 = 4.0/

Me=+(20%5,5)+(15.5 = 3.00— (10,0 = 1,5) - (H; = 5.5) =+ 1415 - 5.5/
Mop==(12 = LO)+ (10 = 3,00 + (47.5 = 2.0) = (Hg = 7.0) =+ 113.0 = 708
Me=+{10= 153+ (475 = L0y = (fg = 5.5)=+62.5 = 5.5Hy

My=0-(H; = 4.0)=0-4.0M;

Assume the collapse mechanism as indicated previously, e plastic hinges
developing under the point load at C (+ 2.004) at and joint F (- ML

Mg+ 2,00, =+ 141.5 - 5.5H; Equation (1}
Mp: =M, =0-4.0M; Equation (2)

Adding equations {1 and [2 = (2)] gives:

0=1415 - 13.5/; s M=+ 104BKN and M, =41.9 kNm as before
Check the value of the bending moment at other possible hinge positions

My =+ 300 + 4.0/ =+ 300 - (4.0 = 10.48) = 3808 kNm = 1.5 M,

My=+ 1130 = T.0H; =+ 113.0 = (7.0 = 10.48) = 30,64 kNm £ M,
Me=-+625 - 55H; =+ 625 - (3.5 = [0.48) = 4.86 kNm < M,
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 3
Problem Number: §.21 = Kinematic Method Pape No. 1

15 kN

1 I0m ‘L i0m l 0w L 1 [
Number of degrees-of-indeterminacy  fp= [(3m +r)=3n]=1=1
(Note: the degree-of-indeterminaey is reduced by one for each pin in the frame)
Mumber of possible hinge positions p= 5
Number of independent mechanisms =(p=lp)=(5=-1)=4
(i.e. 2 beam mechanisms, 1 sway mechanism and 1 gable mechanizsm)

c

Al fived suppor G
At intermal joinis B asd I H
Unider the poant losds 31 C and 12 : tension on this side ndicates +ve
hending nwmcnls =r=r=omee
possible hinge positions
Mechanism I: Beam BCD
15kN

v dve=300=300 _ =0

]
" Internal Work Done = External Wark Dane
doemy [LIME) + LM G+ M+ M. (8] = (15 % dw)
fokx, B [L3M (60 + 15M, (260 + MLeh] = (15 = 3.06)
- 5.5M6hm 458
" S My =818 kNm

1
T
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 821 = Kinematic Method

Mechanism Iz Beam DEF

Sve=30f=300 . f=0

Internal Work Done = External Work Dong
[MG (80 + M (8 +A] = (15 = Fucd
[+ M, (@] = (15 = 3.00)

300 0= 458 s My =150 kNm

Mechanism 111 Sway

Internal Work Done = External Work Done
(150G 60+ M (A = [(10 = 8) + (10 = &)
35MLA = (20 = 6,08 = 1208 o M, = 3429 kNm

Mechanism 1V: Gable ' e
slaslafsons ocntnd o falalicn fod ||
GO

s 15 kN
. . l I'H:I
N Tl 15KN I
b -

ltilllq = ﬁ.ﬂﬂ" 600
Fp = 6.0a = 6.08
Fye = 308

Fyp = 30 = 3.068
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Solution
Topie: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.21 — Kinematic Mcthod Pape No. 3

Internal Work Dane = [1.5M, (G + + M, (8 +a)]
[(3.0M,8) + (2.0M, 8] = 5.0M,0

External Work Done = [{15 = Sy + (15 = Fupd + (15 = ) # (10 = dyp))
[(15 % 363+ (15 = 66) + (15 * 36 + (10 = 66)] = 2408

Internal Work Done = External Work Done
5.0M,0= 2400 2 M, = 48.0 KNm

Mechanizm Vi Combined Beam DEF and Gable,
Instastapcous centne of rolation for link BCDE

(::PIH L (".ﬂ.l'? = H0H
ﬂ'—u: = 3,0 = 9,08
:'gl..;_' = 3.08
Ju:. = ﬁﬂﬂ

Internal Work Done
(V5 (60 + M (8 +ad] = [LSME2080 + M, (4.060]) = T.0M0

External Work Done
[E00 = Sk + {15 = Syed # (15 = Syp)+ (15 = Fyp)]
[(10 % 6.08) + (15 = 3.08) + (15 * 6.08) + (15 = 9.08)] = 3308

Intermal Wark = Extermal Work
TOM, 0= 3300 &M= 47,14 kNm
(The reader should confirm this answer by adding the work equations),

This value is less than that obtained for the gable mechanism. Assume the pable
mechanism (i, hinges at B and D) to be the entical mechanism and cheek the
bending moments at other possible hinge positions do not exceed the M, values,
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: .21 = Kinematic Method Page No. 4

15kM
15kN l,D

TRORNm (LM}

[

r\;lr(—-- 10m +- 3im 1|.‘ 30m ‘! 30 m J

The rotation at joint B induces tension owmtside the frame and consequently the
bending moment is megative at this point,

The rotation a1 joint D induces tension on the feside of the frame and hence a
positive bending moment.

Consider the equilibrium of the left-hand side of the frame at joint B,

+ve ) EMy = 0
+ 720 (Hy=60)=0 . Hy=+120 kN —=

Consider the complete structure;
tvg=—e EF, =0~ 200+ 120+ Hz=0
S Hg=+80kN —

+'r-:_'} IMr =0 (ie zero moment at e pind
—(3.0= M)+ Mp=0 L =(30=80)+Mz=0
Mg =240 kNm

Consider the complete structure:
+ve ) EMy = 0
~ {10 % 6.0) + (15 x 3.0) + (15 * 6.0) + (15 = 9.0) - (10 x 6.0) + (8§ = 3.0) + 24.0
—(Fg=12.0)=0
s Ve=+165kN |
el LF=0 - 150-150-150+165+¥, =0 o Vo 285 KN
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Solution
Topic: Plastic Analysis — Rigid Jointed Frames 3
Problem Number: 8.21 = Kinematic Method Page Now 5

15 kN
13kN lD

p— | 20EN

Me=+{285= 3.0} - (120 = 755+ (10,0 = 1.5) =+ 10,5 kNm = .50,
Mp==(10% | 5)=24.0 4 (8.0 = 4.5)+ {165 = 3.0) = + 46.5 kNm £ M,

My == 240 kNm = M,

: o | (1] :
2.0 kMm [rriis b
o - L emn —2ati] i

105 k¥ L1 [T
22,0 kNm " 6.5 KNm Ex

Collapse Bending Monient Dingram

This frame can also be readily analvsed using the static method of analysis as follows:
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 3
Problem Number: 8.21 - Static Method Page No. 6

Aszume the horizontal component of reaction at support A to be the redundant

reaction.
13 kN
15 kN

|
v ]
|

30 30 JOm
Ja0ny-204

Fa
30m 1 10em 1 I0m | 30 1 Jm , ¥m | 30m j 3Mim |

L ree
s, F=

(1) Statically determinate force system (11} Force system due to redundant reaction

Consider system (1)

Apply the three equations of statie equilibrivm to the force system: —_
g —= EF, =0 =10 =10+ =0 H'g=+200 kN
4--.-:3'2.'.!,.. =0 =(MHg=30+M;=0 S MG = (2000 =300 = & §0.0 kNm

SveYEML =0 —2 % (1000 = 601+ (150 = 3.00+{15.0 % 6.0)+ (15.0 * 9,03
+{20.0 ¢ 300 + 60.0 - (120 % F5) =0 w=+225kN1
+1.'cT}.'J",,=ﬂ Foo=15=15=15+Fg=0 P+ Fg=450kN
hence P =+22.5kN }
Consider system (11}
Apply the three equations of static equilibrium to the force system:
e = EF =0 Hy - Hg=0 Hg =+,
H'c;) EML=0 +{H%:*30)+MG=0 S Me==3H,
e JEMG=0 M= (Hyx 3.0+ (P x 12.0)=10 Fa=+0.5 Hy
+yvet IF, =0 P+ Frig=10 Fra==F"y
hence o= <051,
15 kN

225 kN 0501,
0m ' J0m 1 0 4 3.|]m'1 30m , 30m 1 Jom | Jm

¥
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Solution
Topic: Plastic Analysis = Rigid Jointed Frames 3
Problem Number: 821 = Static Methaod

My = = (H), % 6.0) = = 6.0H,
M= +(22,5 % 3.0)+ (10 % 15) = (7.5 * Hy) + H0.5H,) = + $2.5 - 6.0H,

My =+ (225 = 0.0+ (10 = 3,00 = (13 = 3.00 = 9, + (6.0 0.5H,)
=+ 1200 - 6.0/,

Me=+(22.5 =900+ (10 % 1,5)— (15 = 6.0) = (15 = 300 - T.50, — (2.0 = 0.5/,
=+ B2.5 - 3.0,

My == 0.0+ {7, = 3.0) =~ 60.0 + 3041,

Assume the collapse mechanism as indicated  previously, e, plastic hinges
developing at joint I3 (= 1.504) at joint [ (+ AL) and

Mz = 1L3M, = 0 = 6.0f1, Equation {1}
My + My = 120 - 6,04, Ecquation (2}

Subtracting equation {1} from equation (2) gives:
-2.5M,=-120 co M= 480 kNm as before  and  Ffy = 12,0 kN

Check the value of the bending moment at other possible hinge positions

Me=+825 - 6.0H, =+ 825 - (60 = 12.0) = + 10.5 KNm < 1.5M,
Me=+825-3.0M,=+825-(3.0 = 12.0)= + 46.5 kNm = M,
Mo =—60.0+ 308, = - 60.0 - (3.0 = 12,0) = - 240 kNm = M,




Appendix 1

Elastic Section Properties of Geometric

yiory:
ZXX
l’XX

IXX

Figures

Cross-sectional area

Distance to centroid

Elastic Section Modulus about the x-x axis
Radius of Gyration about the x-x axis

Second Moment of Area about the x-x axis
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Squ-ur‘f:
A=

y=d2
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= =

T

¥
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l
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Recrangle:

Rectangle: . —

A= hed y= —— ,1:'

b 7. b té (;
6(b* +d°) Y el ed’ ™~ g b

e X

L

66" +4)
Rectangle:
A=bd L bosino + o cosa
2
I m b;.‘[&"s.l‘lr:-:c+;."‘:,w’a}
AN IZ
7 = M[ﬁzsinl a+dd? cost u]
o 6lbsina + dcosa)
bt sint e+ d’ cos’
Py = 4| —-—r-+
12
.'"\_ _14
Hollow Rectangle: N
A= (bl - byehy) y=di2 a4 ¥
(bei® —b,e1?) (bat® ~ byt ) d |
P Y Y el R £
" 12 [
iy
|'.w-‘ — b}
P = —hlt ! w1
124 3
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Trapezoid:
dib+d )

_ P IB - dbb W

60k + by

_dl2b+h)
b+h)

dP(BR  abh, - b
12(2b+ b,

o 3 3
Fou ™ m‘h[h- +4bby + )

Hollow Circle:

Kemi-Circle:

J:n_ﬁh

"~ ~
| y
d 3 33
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Equal Rectangles:
A=Hd-d =2 —
Ha=d g =

)
Blet - ot} Y 7 L |
ly= 2 = o 1 d o, E _1;‘__

ot =dd?
12(cd = e, ) b _-L

o =

Unegual Rectangles:
A= b4 b iy

_ 0.5br% + byt [d - 0.50)
ve A

b ) (b
Iy {[E+brc']+[—]':"- + byl ]}

. i )
ey = = Loy) = =—
¥ M
For = I&
£ y
Triangle:
] po 2
2 3
- -ﬁﬂ"" " M:
I e L 3
= el
A% m’
Triangle:
1= b = 2
A== ==
2 3
bel” . bel?
fo = F S = |_
d
P = _ﬁ.




Appendix 2
Beam Reactions, Bending Moments and
Deflections

Simply Supported Beams
Cantilever Beams
Propped Cantilevers

Fixed-End Beams
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w= Distributed load (kN/m) and B =Total load (kN)

Simply Supported Beams:

w kN

— WkN

Vo=wili2 Va=wili2
Maximum bending moment at centre = wiL’/8
Maximum deflection = (5w 384EN

o= P2 Vo= P2
Maximum bending moment at centre = PL 4
Maximum deflection = (PLYM8ER

¥, = PhiL Vg = Pall

Maximum bending moment at centre = Polb /L
Mid-span deflection = PL[(3all) — (4’11748 E]
{This value will be within 2.5% of the maximum)

Vo= 050 + )L Vo= 050 + a)l
Maximum bending moment at x = IFx*- &°y2b
where  x= [a+ (¥ &/F)] from A

Maximum deflection = W(8L* - 415" + B )3IS4ET
(This is the value at the centre when @ =€)

Vy= 2 Fa=02
Maximum bending moment at centre = VLG
Maximum deflection = WL I60E!

Vo =213 V= W3

Maximum bending moment at x = 0,128
where  x= 042260 from A

Maximum deflection = 0.01304WE 38457
where  x= 04807 from A
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V= WOL=-a)y3L Vo= Wal3l

WM Maximum bending moment at x:
A B 3
b o | f=-a | =E _E{.i
. I . 3 LYo
|I o
where x= o 1= .|— | from A
3L
W kN Fo=W3L=-2a)3L Vp=2Wa3L

-l

Maximum bending moment at e
A B 3
l_. a_ | I}—ﬂ' 4 ___2“&’[1_EJ
) 3 3L

where x = uﬂh-ﬁ from A
3L
Cantilever Beams:

Anti-clochwise support moments considered negative.

’.'I. = II.'.F_..
Maximum {-ve) bending moment My, = - w2
Maximum deflection = wiVBE]

W kNJ’m—-I

Fo=W
Maximum {-ve) bending moment M), = - Wal2

Maximum deflection at B = o’ [I + ;—b]/ilﬁf

4]

Vo=

Maximum {=ve) bending moment M, = =IFa + 52)
Maximum deflection at B = (245N = &

where k=

(Ba® + 1850 + 12ab® + 367 + 126 + 120be + 46%)

P
fy =P
Maximum {—ve) bending moment My, = — Pa
MLﬁ . . o, 3b
I A - Maximum deflection at B = Pa [] + E]/j Er
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RN Va= I
_| Maximum (=ve) bending moment M, = - Wa'3
A B
Maximum deflection st B = Wa' [I + ﬁ]/ SEF
[t '“'

Fo= W
Maximum (-ve) bending moment My, = - 2Wal3

Maximum deflection at B = 111" [I +%]/ﬁl]£f

o

Propped Cantilevers:
Where the support moment (M) is included in an expression for reactions, its value
should be assumed positive.

Fp= 5wl V= 3wl/8
Maximum (=ve) bending moment M, = - w8
Maximum (*+ve) bending moment atx =+ Swl’128
where x = L6254 from A

Maximum deflection at = wL'/185Ef

where y= 0.5785L from A

w kM

Fy = 050 + )L + ML

Fa = W50 + a)fL = My/L

Maximum (—ve) bending moment My;

=— Whih + 26} [2(L* - &* - be) - BH))BL%E

Fa= (P - Fy)
Fa= Pal[(h + 203128
Maximum {=ve) bending moment My
=— PR(LF - bpas?
Maximum (+ve) bending moment at point load:
- E F o E = i
TLr
Maximum deflection at point load position:
_ Pa't’
12E1L

{4]'..—:1]'
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WEN

Fixed-End Beams:

Fo = (W =F)

Va = Wa'[(SE —a))/20L?

Maximum {—ve) bending moment My
_ Wa 3 ]

- m{aﬂ ~15al + 2017

Maximum (+ve) bending moment at x:
= [Fux - Wx - B 3c°)

where x = b-i-a— I-l from B
2L 5L

V_a. = {“" = i""u]
V= Wel[(15L - 4a)) 208"
Maximum {-ve) bending moment A,

Ja 2
= 22T L5
\ 522 4L+3]

Vy=wli2 Ve = wilf2
Maximum (-ve) bending moment My
=—wif12

Maximum {#ve) bending moment at mid-span:
=+ w24

Maximum deflection at point load;

= wL'f384Er

Vo=Pi2 Vp=FPl2

Support bending moments:

J"r:f:\_ == PLIg and JHL] =4 PLIE
Maximum (+ve) bending moment at mid-span:
=+ PLIE

Maximum deflection at mid-span = PLAN92ES

Fa=MWid Fa= 2

Support bending moments:

My=-5IWLM8  and M=+ 5IFLM4E
Maximum (+ve) bending moment at mid-span:
=+ WiL6

Maximum deflection at mid-span = LAWEASAES
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Vo= PB (1 + 2a/L)17

V= Pat (1 + 2B/L)E

Support bending moments:

My=— Pab®il}  and M, =+ Pa'bil?
Maximum (+ve) bending moment at point load:

=+ 2P HiL}
1l
Maximum deflection at pomt x = Lﬁ',
3EIBL - 2a)
where x = - from A
(3L -2a)
Fp= 0.7 Fa=03W

Support bending moments:

My =—-WLND and My =+ LIS
Maximum (+ve) bending moment at point x:
= [FL233

where x is 045L  from A

Maximum deflection at point v = WL382ES
where yis 04750 from A

V:-'I. L_ []F = V:u__}
Vo= Wal[(51 - 2a))101°
Suppart bending moments:

Wa [, »
My=- = (3a® +1062) and

”.ra.-’
My =+ —=3L-3a
=t (5L -3a)

Vy= WI(0L - 150 + 8a))108]
Fa=(W-¥Fy)

Suppert bending moments:

My =~ %{mr} ~15aL+6a’) and

Wa®
l"'f =+ — SL— 4
o ( a)
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WEN—

Fa = 058 + o)L+ (M, = My VL
B Vi = W{0.50 + a)l. = (M, = Mg VL
Support bending moments:

My=- ];:;& { [[L —a) %(L+ :'Iu}]- e*(dL -3:_]-}

My =+ l'.:::-ﬁ' {k{. —rr :-EI:L + 34:':]]— o {4z - 3::}}
Maximum deflection at mid-span when a = ¢

W (1 +28a+4La® —8a*)
JB4ES
Agl EEH __ 12El . 12E
"FAI: o "':\ .i.-l & i"'u + L.J i
I L . Support bending moments:
GES 6ES .
My=+ ?J Mg =+ E—zvﬂ‘
Vo=t 2oL s i’[.—m—-iif'rd

GET GET
M =— 2L 5 My=— 22 g
tor i’

6Ef GEf
Fa=- % &, VH=+I_zﬂﬂ

Support bending moments:

=+ 2o, =+ 2o,

=

: |




Appendix 3
Matrix Algebra

Product of a Matrix and a Vector:

Consider three variables a;, a, and a3 which are related to three other variables ¢4, ¢, and

c3 by the three equations (1), (2) and (3) as indicated:

a, = byey + bpert biacs

ay = bajey + bucr + bacsy

a3 = byjey + byer+ bases

these equations can be represented in matrix form as:

[4]1=[8]x[C]

a, bl,l bl,] bl,.‘-.- &
a | = | by ‘-”3.3 bz.a o
a3 by biy by C3

where by, b1y, by etc. are the coefficients for the square matrix [B].

Equation

1)

Equation

()

Equation

©)
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Clearly for known values of ¢y, ¢, and c3 the values of a;, o, and a3 can be

determined directly. If however, it is required to determine the ‘c’ values
for given ‘a’ values then the relationship must be re-written as:

and the INVERT of matrix [B] must be obtained.

The invert of a matrix can be defined as:

adj B
BI''=
[B] B

where adj B is the adjoint of matrix [B] and is equal to the transpose of the co-factor
matrix [B°] of matrix [B], i.e.

adj [B] = [BT'

The co-factor matrix is given by replacing each element in the matrix by its” co-factor,

i.e.
bil.] bi'." "E[.ﬁ
[B]=|b,;, by by
TJ-.I b:E P;;!-,3-
bbb bbb
(B=(-1)" [b¢ bS, bS | and (BT =|87, B, b

by B bs b by

51 11 33
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h?,.’: b}.,l 'b}.,l "’2,3 IiJ"‘I b.’.‘.!
bl"‘ bJ.J bll ’b."l.i E'?-.I E'."-.!

where: [B]= by bis by bis bsy bys

|B| is the determinant of matrix [B],which can be calculated from:

- 2.2 b?.ﬂ- b!.l b!.'ﬂ- 2.1 bl.!
I8 =+ {bl" ng.t.z by 5 } - {b]'z g bsy b e by, by,
1B =+ byaf( b2z x bss) = (bs2x ba3)} = byaf( by % by3) = (b3 % ba3)}
+ b3 {( b2y 2 bya) = (bay % by2))

Example A.1

Determine the values of ¢y, and ¢, given that:

40.0 2.0 3.0
[A] = [B]=[C] where:  [d] = |:45 0} and [8]= [I 0 4 0]

Solution:

Determine the co-factor matrix [&#] = |:+ 40 - 1'0] (&) = |:+ 40 - 3'0:|

-30 +20 1.0 +2.0
[C1=[B1" x 4] and [B)"= 4B . H e b:‘ [a}
|8 c)  [8|5, ay
The determinant of [£#] |8 = §+{ By baz) = (Baa % Byadd
= {+2.0 % 4.0) — (1.0 % 3.0)}
=450

2]l 2] <[e]- e ellied)

o] _[+08 -06][400
e [-02 +04]]450
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c1={+(0.8x40.0)—(0.6x45.0)}=+5.0

c2={—(0.2x40.0)+(0.4x45.0)}=+10.0

Example A.2
Determine the values of ¢y, ¢, and ¢ given that:

+ - +
14.0 20 3.0 1.0
- + =
[4]= [B]#[C] where: [4]=| 4.0 |and [B]=|1.0 2.0 3.0
-+ - +
6.0 30 1.0 20

Solution:

Determine the co-factor matrix:

Ay =+{(20x2.0)-(1.0=300} =+ 1.0 k== {(1.0x20)- (3.0 x 3.0)} =+ 7.0
ki =+ {(1.0x 1.0} = (3.0 x2.0)§ == 5.0 Ky == {(3.0%2.0)-(1.0x LO)} =-5.0
Ky =+ {(20%20)-GOx L0} =+1.0 ki =~ {(20% 1.0}~ (3.0 3.00} =+7.0
Ky =+ {(3.0 % 3.0) = (2.0 % 1.0)} =+ 7.0 Ky == {(2.0 x 3.0) = (1.0 x 1.0)} == 5.0
kfy =+ {(2.0%2.0)- (3.0 L)} =+ 1.0

£10 470 =50
50 +10 +70 & =

+70 =50 +1.0

(&)= +70 +10 -50

=50 +70 +1.0

+10 =50 +?.I}]

Determinant of [B]:



Appendix 3; Matrix algebra 780

18 = By ez e Bd = (B By = B By s Bysd = (e Baad} + By By = By)
— by = "—':.z“
1B = {+ (2.0 % 1.0) = (3.0 x =7.0) + (1.0 x =5.0)} = +18.0
+1.0 =50 +7.0
Inverted matrix (B = IL £70 410 -50

50 +70 +1.0
Te 410 =50 +70] [14.0
[C)=(BT" % [4] and w]"=% e|=d=|+70 +10 =50|x |40
oy T =50 +70 #1.0 6.0

= {4+ (1.0 % 14.0) = (5.0 x 4.0) + (7.0 x 6.0}/18.0 = + 2.0
3= [+ (7.0 % 14.0) + (1.0 x 4.0) = (5.0 x 6.0}/18.0 = + 4.0
&= {— (5.0 % 14.0) + (7.0 x 4.0) + (1.0 x 6,0}/18.0 = - 2.0

To check the invert determing the product [8][8]7 which should equal the identity matrix
oo 0

[l where[f]=| 0 1.0 0
¢ o Lo



Avrbitrary sway force 388
Aspect ratio 54

Axial rigidity 20

Axial stiffness 475

Axial stress 23

Beam deflection

Beam mechanism (plastic) 556, 564
Bending moment 157, 159
diagrams 163, 170

free 271, 287

557

fixed 271, 282

557

sign convention: beams 163

sign convention: frames 316
Bending stiffness (absolute) 269
Bending stiffness (relative) 270
Bending stress 23, 26

27, 40, 43, 53

Brittle materials 23, 26

Buckling 25, 54

432, 455

critical stress 436, 440

effective buckling length 438, 439
448

intermediate elements 433, 436
444

limiting slenderness 445

mode shapes (pinned columns) 438
Perry-Robertson formula 441

Index



Index

Perry strut formula 445, 448
secondary stresses 434

short elements 433, 435
444

slenderness 432, 433

441, 448

slender elements 433, 436
444

Carry-over moment 270
Castigliano’s 1st Theorem 113, 114
115

Centre-of-gravity 32

Centroid 28, 32, 38

Centroidal axes 28

Coefficient of thermal expansion 27
Collapse (plastic)

full 556

partial 556

Collapse load (plastic) 51
Combined mechanism (plastic) 589, 591
Compact section 54, 56

Compound pin-jointed frames 15
Compound section 42, 452
Connections 8

Co-ordinate systems

global 474, 484

local 481,482

Critical load

Critical stress 436, 440
Cross-sectional area 28, 38

Deflection

beams 183, 208

222

pin-jointed frames 116, 122
222

Degree-of-indeterminacy 8, 11
15,21

782



Degrees-of-freedom 1, 18
21, 477, 483

beam elements 475, 476

481

pin-jointed frames 18
rigid-jointed frames 18

Direct stiffness method 474, 504
Distribution factors 278
Distribution of load 10

Effective buckling length 438, 439
448

Elastic cross-section properties
Elastic limit 23, 444

Elastic moment of resistance 52
Elastic neutral axis 28, 40

Elastic section modulus 28, 43

45, 53, 56

Elasto-plastic moment 52

Element co-ordinate system 474

Index

Element displacement vector 474, 488

Element end-forces vector 474, 489
Element stiffness matrix 474, 476
Encastre beam 272

Equilibrium 1, 3, 9, 11
Equivalent nodal loads 487
Equivalent UDL 189, 191

Euler load/stress 437, 440

444

European column curves 445
Perry factor 445

Perry-strut formula 445
Robertson constant 445, 446

External work done (plastic) 561, 562
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Index 784

Factor of safety 51

First moment of area 33, 54
Fixed supports 15

Fixed-end moment 271, 486
Foundations 7, 8

Fracture 24

Frames

pin-jointed 4, 8

18, 62, 121, 140

rigid-jointed 4, 8

314, 315, 324, 340, 346, 385, 397
plastic analysis 586, 593

615, 654

Free bending moment 271, 557

Gable mechanism 586, 648
Global co-ordinate system 474, 482
484

Hooke’s Law 23, 25, 27

Independent mechanism (plastic) 557, 589
Indeterminacy 3, 8, 21

555

pin-jointed frames 11, 18

rigid-jointed frames 15, 19

Instability (buckling) 455

Instantaneous centre of rotation 649
Internal Work done (plastic) 561, 562



Index 785

Joint mechanism (plastic) 586, 611

K
Kinematic method (plastic analysis) 557, 560

Laced section 450

Lack-of-fit 120

Lateral distribution 9

Limiting elastic moment 52
Limiting slenderness 445

Line diagrams 4

Loading 9

collapse 51

Load distribution 10

Load factor 51

Load path 7

Local co-ordinate system 481, 482
Lower bound solution (plastic) 557, 586

MaCaulay’s Method 183, 191
477

Mathematical modelling 4, 9
Mechanism condition

Method of joint-resolution 62, 65
Method of sections 62, 67
Method of tension coefficients 62, 93
Modelling 4, 9

Modulus of elasticity 25, 27
Modulus of rigidity (shear) 26
Modulus of rupture (bending) 26
Modulus of rupture (torsion) 26
Moment connections 314, 315
Moment distribution 269, 289
arbitrary sway force 388



Index 786

absolute stiffness 270
carry-over moment 270, 282

338

distribution factors 278, 281
338

effect of pinned end 270, 282
relative stiffness 270, 281
out-of-balance moment 282, 284
338

prop force 386, 387

sway force 386

Moment of area (1%) 33, 54
Moment of area (2") 41, 45

Necking 23

Neutral axis

elastic 28, 40

plastic 52, 53, 57

Neutral surface 40
No-sway frames 340, 346
386

Nodal displacements 476
Nodal forces 489

One-way spanning slabs 10
Out-of-balance moment 282

Parallel axis Theorem 28, 41
Perry factor 445

Perry-Robertson Formula 441, 444
Perry strut formula 445, 448
Pin-jointed frames 4, 8, 18

62, 121, 140

Pin-jointed space frame 93

Pinned support 8, 11

Plastic collapse (full) 556



Index

equilibrium condition 556
mechanism condition 556

yield condition 556

Plastic collapse (partial) 556
Plastic cross-section properties 51, 57
Plastic hinge 52, 53

555

Plastic moment of resistance 52, 53
555

Plastic neutral axis 52, 53, 57
Plastic section 52, 54, 56

Plastic section modulus 53, 54

56, 57

Poisson’s ratio 27

Principle of superposition 202
Prop force 386, 387

Proportional limit 23

Propped cantilever 275

Radius of curvature 183
Radius of gyration 41, 42 436
Reactions 7

Redundancy 16

redundant member 11, 13
135

redundant reaction 11, 12
Rigid connections 8, 314

315

Rigid-jointed Frames 4, 8, 314
324, 340, 346, 385, 397
Robertson constant 445, 446
Roller support 8, 11
Rotational stiffness 269

Secant modulus 25
Secondary stresses 314, 434
Section modulus

elastic 28, 43

45, 53, 56
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Index

plastic 53, 54
56, 57

Second moment of area 28, 41

42, 45

Section classification 54
Semi-compact section 54, 56
Settlement 289, 299

Shape factor 54, 57

Shear force 157, 159

Shear force diagram 159, 170
Shear rigidity 26

Sign conventions

bending moments for beams 163
shear forces 161

static equilibrium 2

Simple connections 8, 315

Simple pin-jointed frames 12, 13
Slender section 54, 56

Slenderness ratio 432, 433

441, 448

Strain energy

axial load effects 113, 114
bending effects

Stability 3

Static equilibrium 2, 63

Static method (plastic analysis) 557
Statical determinacy 3

Statical indeterminacy 3

Statically determinate beams 157
Statically determinate frames 314, 315
324

Statically indeterminate beams 252, 258
Statically indeterminate frames 315
Stiffness 474

absolute 269

axial 475

relative 270, 281

Stiffness coefficients 477

Stiffness matrix

element 474, 476

482

structural 474, 483

486

Strain 23, 25

Strain energy (axial effects) 113
strain energy (bending effects) 208
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Index

Strain-hardening 23, 51

Stress 23

axial 23

bending 26, 27, 40

43,53

permissible 51

working 51

yield 51, 52

Structural degrees-of-freedom 18
Structural displacement vector 484, 488
Structural load vector 484, 486
Structural loading 9

Struts 32

Sub-frames

Superposition 120, 135

202, 285, 387, 477

Support

encastre (fixed) 15

pinned 8, 11

14,15

roller 8, 11

14,15

Sway force 386

Sway frames 385, 386

397

Sway mechanism 586, 648

Tangent modulus 25

Tangent Modulus Theorem 441, 444
Temperature change 27

Tension coefficient 93, 94
Thermal effects 27, 120

Ties 62

Transformation matrix 482
simple 12, 13

compound 15

Trusses 94, 95

Two-dimensional force systems 2
Two-way spanning slabs 10
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Ultimate strain 23

Ultimate stress 51

Ultimate tensile strength 26

Unit load Method 113

determinate pin-jointed frames 116, 122
indeterminate pin-jointed frames 135, 140
beams (deflection) 208

indeterminate beams 252, 258

269

Upper bound solution (plastic) 557, 586
Upper yield stress 24

Vv
Virtual work 561

w
Work equations (plastic analysis)
internal work-done 561, 562
external work-done 561, 562

Y

Yield condition 556
Yield point 26, 51

Yield strength 26, 433
Yield stress 23, 51

52, 436, 444

Young’s modulus 23, 27
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