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Preface 

Prior to the development of quantitative structural theories in the mid-18th century and 
since, builders relied on an intuitive and highly developed sense of structural behaviour. 
The advent of modern mathematical modelling and numerical methods has to a large 
extent replaced this skill with a reliance on computer generated solutions to structural 
problems. Professor Hardy Cross1 aptly expressed his concern regarding this in the 
following quote: 

‘There is sometimes cause to fear that the scientific technique, the proud servant of the 
engineering arts, is trying to swallow its master.’ 

It is inevitable and unavoidable that designers will utilize continually improving 
computer software for analyses. However, it is essential that the use of such software 
should only be undertaken by those with the appropriate knowledge and understanding of 
the mathematical modelling, assumptions and limitations inherent in the programs they 
use. 

Students adopt a variety of strategies to develop their knowledge and understanding of 
structural behaviour, e.g. the use of: 

• computers to carry out sensitivity analyses, 
• physical models to demonstrate physical effects such as buckling, bending, the 

development of tension and compression and deformation characteristics, 
• the study of worked examples and carrying out analyses using ‘hand’ methods. 

This textbook focuses on the provision of numerous fully detailed and comprehensive 
worked examples for a wide variety of structural problems. In each chapter a résumé of 
the concepts and principles involved in the method being considered is given and 
illustrated by several examples. A selection of problems is then presented which students 
should undertake on their own prior to studying the given solutions. 

Students are strongly encouraged to attempt to visualise/sketch the deflected shape of 
a loaded structure and predict the type of force in the members prior to carrying out the 
analysis; i.e. 

(i) in the case of pin-jointed frames identify the location of the tension and 
compression members, 

(ii) in the case of beams/rigid-jointed frames, sketch the shape of the bending moment 
diagram and locate points of contra-flexure indicating areas of tension and compression. 

A knowledge of the location of tension zones is vital when placing reinforcement in 
reinforced concrete design and similarly with compression zones when assessing the 
effective buckling lengths of steel members. 



When developing their understanding and confirming their own answers by studying 
the solutions provided, students should also analyse the structures using a computer 
analysis, and identify any differences and the reasons for them.  

The methods of analysis adopted in this text represent the most commonly used ‘hand’ 
techniques with the exception of the direct stiffness method in Chapter 7. This matrix 
based method is included to develop an understanding of the concepts and procedures 
adopted in most computer software analysis programs. A method for inverting matrices is 
given in Appendix 3 and used in the solutions for this chapter—it is not necessary for 
students to undertake this procedure. It is included to demonstrate the process involved 
when solving the simultaneous equations as generated in the direct stiffness method. 

Whichever analysis method is adopted during design, it must always be controlled by 
the designer, i.e. not a computer! This can only be the case if a designer has a highly 
developed knowledge and understanding of the concepts and principles involved in 
structural behaviour. The use of worked examples is one of a number of strategies 
adopted by students to achieve this. 

1 Cross, H. Engineers and Ivory Towers. New York: McGraw Hill, 1952 

W.M.C.McKenzie  
To the many students who, during the last twenty five years, have made teaching a 

very satisfying and rewarding experience. 
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1.  
Structural Analysis and Design 

1.1 Introduction 

The design of structures, of which analysis is an integral part, is frequently undertaken 
using computer software. This can only be done safely and effectively if those 
undertaking the design fully understand the concepts, principles and assumptions on 
which the computer software is based. It is vitally important therefore that design 
engineers develop this knowledge and understanding by studying and using hand-
methods of analysis based on the same concepts and principles, e.g. equilibrium, energy 
theorems, elastic, elasto-plastic and plastic behaviour and mathematical modelling. 

In addition to providing a mechanism for developing knowledge and understanding, 
hand-methods also provide a useful tool for readily obtaining approximate solutions 
during preliminary design and an independent check on the answers obtained from 
computer analyses. 

The methods explained and illustrated in this text, whilst not exhaustive, include those 
most widely used in typical design offices, e.g. method-of-sections/joint resolution/unit 
load/McCaulay’s method/moment distribution/plastic analysis. 

In Chapter 7 a résumé is given of the direct stiffness method; the technique used in 
developing most computer software analysis packages. The examples and problems in 
this case have been restricted and used to illustrate the processes undertaken when using 
matrix analysis; this is not regarded as a hand-method of analysis. 

1.2 Equilibrium 

All structural analyses are based on satisfying one of the fundamental laws of physics, i.e. 

 
Equation 
(1) 

where 

F is the force system acting on a body 



m is the mass of the body 
a is the acceleration of the body 

Structural analyses carried out on the basis of a force system inducing a dynamic 
response, for example structural vibration induced by wind loading, earthquake loading, 
moving machinery, vehicular traffic etc., have a non-zero value for ‘a’ the acceleration. 
In the case of analyses carried out on the basis of a static response, for example 
stresses/deflections induced by the self-weights of materials, imposed loads which do not 
induce vibration etc., the acceleration ‘a’ is equal to zero. 

Static analysis can be regarded as a special case of the more general dynamic analysis 
in which: 

 
Equation 
(2) 

F can represent the applied force system in any direction; for convenience this is 
normally considered in either two or three mutually perpendicular directions as shown in 
Figure 1.1.  

 

Figure 1.1 

The application of Equation 2 to the force system indicated in Figure 1.1 is: 

Sum of the forces in the direction of the X-axis ΣFx=0 Equation 3 

Sum of the forces in the direction of the Y-axis ΣFy=0 Equation 4 

Sum of the forces in the direction of the Z-axis ΣFz=0 Equation 5 
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Since the structure is neither moving in a linear direction, nor in a rotational direction 
a further three equations can be written down to satisfy Equation 2: 

Sum of the moments of the forces about the X-axis ΣMx=0 Equation 6 

Sum of the moments of the forces about the Y-axis SMy=0 Equation 7 

Sum of the moments of the forces about the Z-axis ΣMz=0 Equation 8 

Equations 3 to 8 represent the static equilibrium of a body (structure) subject to a 
three-dimensional force system. Many analyses are carried out for design purposes 
assuming two-dimensional force systems and hence only two linear equations (e.g. 
equations 3 and 4 representing the x and y axes) and one rotational equation (e.g. 
equation 8 representing the z-axis) are required. The x, y and z axes must be mutually 
perpendicular and can be in any orientation, however for convenience two of the axes are 
usually regarded as horizontal and vertical, (e.g. gravity loads are vertical and wind loads 
frequently regarded as horizontal). It is usual practice, when considering equilibrium, to 
assume that clockwise rotation is positive and anti-clockwise rotation is negative. The 
following conventions have been adopted in this text:  

 

Figure 1.2  

Structures in which all the member forces and external support reactions can be 
determined using only the equations of equilibrium are ‘statically determinate’ otherwise 
they are ‘indeterminate structures’. The degree-of-indeterminacy is equal to the number 
of unknown variables (i.e. member forces/external reactions) which are in excess of the 
equations of equilibrium available to solve for them, see Section 1.5 

The availability of current computer software enables full three-dimensional analyses 
of structures to be carried out for a wide variety of applied loads. An alternative, more 
traditional, and frequently used method of analysis when designing is to consider the 
stability and forces on a structure separately in two mutually perpendicular planes, i.e. a 
series of plane frames and ensure lateral and rotational stability and equilibrium in each 
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plane. Consider a typical industrial frame comprising a series of parallel portal frames as 
shown in Figure 1.3. The frame can be designed considering the X-Y and the Y-Z planes 
as shown.  

 

Figure 1.3 

1.3 Mathematical Modelling 

The purpose of mathematical modelling is to predict structural behaviour in terms of 
loads, stresses and deformations under any specified, externally applied force system. 
Since actual structures are physical, three-dimensional entities it is necessary to create an 
idealized model which is representative of the materials used, the geometry of the 
structure and the physical constraints e.g. the support conditions and the externally 
applied force system. 

The precise idealisation adopted in a particular case is dependent on the complexity of 
the structure and the level of the required accuracy of the final results. The idealization 
can range from simple 2-dimensional ‘beam-type’ and ‘plate’ elements for pin-jointed or 
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rigid jointed plane frames and space frames to more sophisticated 3-dimensional 
elements such as those used in grillages or finite element analyses adopted when 
analysing for example bridge decks, floor-plates or shell roofs. 

It is essential to recognise that irrespective of how advanced the analysis method is, it 
is always an approximate solution to the real behaviour of a structure. 

In some cases the approximation reflects very closely the actual behaviour in terms of 
both stresses and deformations whilst in others, only one of these parameters may be 
accurately modelled or indeed the model may be inadequate in both respects resulting in 
the need for the physical testing of scaled models. 

1.3.1 Line Diagrams 
When modelling it is necessary to represent the form of an actual structure in terms of 

idealized structural members, e.g. in the case of plane frames as beam elements, in which 
the beams, columns, slabs etc. are indicated by line diagrams. The lines normally 
coincide with the centre-lines of the members. A number of such line diagrams for a 
variety of typical plane structures is shown in Figures 1.4 to 1.9. In some cases it is 
sufficient to consider a section of the structure and carry out an approximate analysis on a 
sub-frame as indicated in Figure 1.8.  

 

Figure 1.4 

 

Figure 1.5 
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Figure 1.6  

 

Figure 1.7 
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Figure 1.8 
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Figure 1.9 

1.3.2 Load Path 
The support reactions for structures relate to the restraint conditions against linear and 

rotational movement. Every structural element and structure must be supported in order 
to transfer the applied loading to the foundations where it is dissipated through the 
ground. For example beams and floor slabs may be supported by other beams, columns or 
walls which are supported on foundations which subsequently transfer the loads to the 
ground. It is important to trace the load path of any applied loading on a structure to 
ensure that there is no interruption in the flow as shown in Figure 1.10.  

 

Figure 1.10 
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The loads are transferred between structural members at the joints using 
either simple or rigid connections (i.e. moment connections). In the case of 
simple connections axial and/or shear forces are transmitted whilst in the 
case of rigid connections in addition to axial and shear effects, moments 
are also transferred. 

The type of connections used will influence the degree-of-indeterminacy 
and the method of analysis required (e.g. determinate, indeterminate, pin-
jointed frame, rigid-jointed frame). Connection design, reflecting the 
assumptions made in the analysis, is an essential element in achieving an 
effective load path. 

1.3.3 Foundations 
The primary function of all structural members/frames is to transfer the applied dead 

and imposed loading, from whichever source, to the foundations and subsequently to the 
ground. The type of foundation required in any particular circumstance is dependent on a 
number of factors such as the magnitude and type of applied loading, the pressure which 
the ground can safely support, the acceptable levels of settlement and the location and 
proximity of adjacent structures. 

In addition to purpose made pinned and roller supports the most common types of 
foundation currently used are indicated Figure 1.11. The support reactions in a structure 
depend on the types of foundation provided and the resistance to lateral and rotational 
movement.  

 

Figure 1.11 
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1.4 Structural Loading 

All structures are subjected to loading from various sources. The main categories of 
loading are: dead, imposed and wind loads. In some circumstances there may be other 
loading types which should be considered, such as settlement, fatigue, temperature 
effects, dynamic loading, or impact effects (e.g. when designing bridge decks, crane-
gantry girders or maritime structures). In the majority of cases design considering 
combinations of dead, imposed and wind loads is the most appropriate. 

Most floor systems are capable of lateral distribution of loading. In situations where 
lateral distribution is not possible, the effects of the concentrated loads should be 
considered with the load applied at locations which will induce the most adverse effect, 
e.g. maximum bending moment, shear and deflection. In addition, local effects such as 
crushing and punching should be considered where appropriate. 

In multi-storey structures it is very unlikely that all floors will be required to carry the 
full imposed load at the same time. Statistically it is acceptable to reduce the total floor 
loads carried by a supporting member by varying amounts depending on the number of 
floors or floor area carried. Dynamic loading is often represented by a system of 
equivalent static forces which can be used in the analysis and design of a structure. 

The primary objective of structural analysis is to determine the distribution of internal 
moments and forces throughout a structure such that they are in equilibrium with the 
applied design loads. 

Mathematical models which can be used to idealise structural behaviour include: two- 
and three-dimensional elastic behaviour, elastic behaviour considering a redistribution of 
moments, plastic behaviour and non-linear behaviour. The following chapters illustrate 
most of the hand-based techniques commonly used to predict structural member forces 
and behaviour. 

In braced structures (i.e. those in which structural elements have been provided 
specifically to transfer lateral loading) where floor slabs and beams are considered to be 
simply supported, vertical loads give rise to different types of beam loading. Floor slabs 
can be designed as either one-way spanning or two-way spanning as shown in Figures 
1.12(a) and (b). 

 

Figure 1.12 

In the case of one-way spanning slabs the entire load is distributed to the two main 
beams. Two-way spanning slabs distribute load to main beams along all edges. These 
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differences give rise to a number of typical beam loadings in floor slabs as shown in 
Figures 1.13.  

 

Figure 1.13 
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1.5 Statical Indeterminacy 

Any plane-frame structure which is in a state of equilibrium under the action of an 
externally applied force system must satisfy the following three conditions: 

• the sum of the horizontal components of all applied forces must equal zero, 
• the sum of the vertical components of all applied forces must equal zero, 
• the sum of the moments (about any point in the plane of the frame) of all applied 

forces must equal zero. 

This is represented by the following ‘three equations of static equilibrium’ 

Sum of the horizontal forces equals zero +ve 
ΣFx=0 

 

Sum of the vertical forces equals zero +ve 
ΣFy=0  

Sum of the moments about a point in the plane of the 
forces equals zero 

+ve 
ΣM=0 

 

In statically determinate structures, all internal member forces and external reactant 
forces can be evaluated using the three equations of static equilibrium. When there are 
more unknown member forces and external reactant forces than there are available 
equations of equilibrium a structure is statically indeterminate and it is necessary to 
consider the compatibility of structural deformations to fully analyse the structure. 

A structure may be indeterminate due to redundant components of reaction and/or 
redundant members. i.e. a redundant reaction or member is one which is not essential to 
satisfy the minimum requirements of stability and static equilibrium, (Note: it is not 
necessarily a member with zero force). 

The degree-of-indeterminacy (referred to as ID in this text) is equal to the number of 
unknown variables (i.e. member forces/external reactions) which are in excess of the 
equations of equilibrium available to solve for them. 

1.5.1 Indeterminacy of Two-Dimensional Pin-Jointed Frames 
The external components of reaction (r) in pin-jointed frames are normally one of two 

types: 

i) a roller support providing one degree-of-restraint, i.e. perpendicular to the roller, 
ii) a pinned support providing two degrees-of-restraint, e.g. in the horizontal and 

vertical directions. 

as shown in Figure 1.14 
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Figure 1.14 

It is necessary to provide three non-parallel, non-concentric, components of reaction to 
satisfy the three equations of static equilibrium. Consider the frames indicated in Figures 

1.15 and 1.16 

 

Figure 1.15 

 

Figures 1.16 

In Figures 1.15 and 1.16 the applied forces and the external components of reaction 
represent co-planar force systems which are in static equilibrium. In Figure 1.15 there are 
three unknowns, (HA, VA and VC), and three equations of equilibrium which can be used 
to determine their values: there are no redundant components of reaction. 
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In Figure 1.16 there are five unknowns components of reaction, (HA, VA, VF, HE and 
VE), and only three equations of equilibrium; there are two redundant reactions in this 
case. 

The internal members of pin-jointed frames transfer either tensile or compressive axial 
loads through the nodes to the supports and hence reactions. A simple pin-jointed frame 
is one in which the minimum number of members is present to ensure stability and static 
equilibrium. 

Consider the basic three member pinned-frame indicated in Figure 1.15. There are 
three nodes and three members. A triangle is the basis for the development of all pin-
jointed frames since it is an inherently stable system, i.e. only one configuration is 
possible for any given three lengths of the members.  

Consider the development of the frame shown in Figure 1.17: 

 

Figure 1.17 

Initially there are three nodes and three members. If the number of members in the 
frame is to be increased then for each node added, two members are required to maintain 
the triangulation. The minimum number of members required to create a simple frame 
can be determined as follows: 

 

  

Any members which are added to the frame in addition to this number are redundant 
members and make the frame statically indeterminate; e.g. 

 

Figure 1.18 
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It is also essential to consider the configuration of the members in a frame to ensure 
that it is triangulated. The simple frames indicated in Figure 1.19 are unstable. 

 

Figure 1.19 

As indicated previously, the minimum number of reactant forces to maintain static 
equilibrium is three and consequently when considering a simple, pin-jointed plane-frame 
and its support reactions the combined total of members and components of reaction is 
equal to: 

Σ (number of members+support reactions)=(m+r)=(2n−3)+3=2n   

Consider the frames shown in Figure 1.20 with pinned and roller supports as indicated. 

 

Figure 1.20  
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The degree of indeterminacy ID=(m+r)−2n 
Compound trusses which are fabricated from two or more simple trusses by a 

structural system involving no more than three, non-parallel, non-concurrent, unknown 
forces can also be stable and determinate. Consider the truss shown in Figure 1.21(a) 
which is a simple truss and satisfies the relationships m=(2n−3) and ID=0.  

 

Figure 1.21 

This truss can be connected to a similar one by a pin and an additional member as 
shown in Figure 1.21(b) to create a compound truss comprising two statically determinate 
trusses. Since only an additional three unknown forces have been generated the three 
equations of equilibrium can be used to solve these by considering a section A–A as 
shown (see Chapter 3—Section 3.2.—Method of Sections for Pin-Jointed Frames: 
Problem 3.4). 

1.5.2 Indeterminacy of Two-Dimensional Rigid-Jointed Frames 
The external components of reaction (r) in rigid-jointed frames are normally one of 

three types: 

i) a roller support providing one degree-of-restraint, i.e. perpendicular to the roller, 
ii) a pinned support providing two degrees-of-restraint, e.g. in the horizontal and 

vertical directions, 
iii) a fixed (encastre) support providing three degrees-of-restraint, i.e. in the horizontal 

and vertical directions and a moment restraint, 

as shown in Figure 1.22  

 

Figure 1.22 

In rigid-jointed frames, the applied load system is transferred to the supports by 
inducing axial loads, shear forces and bending moments in the members. Since three 
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components of reaction are required for static equilibrium the total number of unknowns 
is equal to: [(3×m)+r]. At each node there are three equations of equilibrium, i.e.  

Σ the vertical forces Fy=0;   

Σ the horizontal 
forces 

Fx=0;   

Σ the moments M=0, providing (3×n) equations. 

    The degree of indeterminacy 
ID=[(3m)+r]−3n 

Consider the frames shown in Figure 1.23 

 

Figure 1.23 

The existence of an internal pin in a member in a rigid-frame results in only shear and 
axial loads being transferred through the frame at its location. This reduces the number of 
unknowns and hence redundancies, since an additional equation is available for solution, 
i.e. Sum of the moments about the pin equals zero, i.e. Σ Mpin=0 

Consider the effect of introducing pins in the frames shown in Figure 1.24  
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Figure 1.24 

The existence of an internal pin at a node with two members in a rigid-frame results in 
the release of the moment capacity and hence one additional equation as shown in Figure 
1.25(a). When there are three members meeting at the node then there are effectively two 
values of moment, i.e. M1 and M2 and in the third member M3=(M1+M2) The introduction 
of a pin in one of the members produces a single release and in two members (effectively 
all three members) produces two releases as shown in Figure 1.25(b). 

In general terms the introduction of ‘p’ pins at a joint introduces ‘p’ additional 
equations. When pins are introduced to all members at the joint the number of additional 
equations produced equals (number of members at the joint—1). 

 

Figure 1.25 
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Consider the frame shown in Figure 1.26. 

 

Figure 1.26 

The inclusion of an internal roller within a member results in the release of the 
moment capacity and in addition the force parallel to the roller and hence provides two 
additional equations. Consider the continuous beam ABC shown in Figure 1.27. in which 
a roller has been inserted in member AB 

 

Figure 1.27 

ID={[(3m)+r]−3n}−2 due to the release of the moment and axial load capacity at the 
roller ∴ ID={[(3×2)+6]−(3×3)−2=1  

Consider the same beam AB with a pin added in addition to the roller. 

 

Figure 1.28 

ID={[(3m)+r]−3n}−3 due to the release of the moment capacity at the position of the 
pin and the release of the moment and axial load capacity at the roller 

ID={[(3×2)+6]−(3×3)−3=0 The structure is statically determinate. 
A similar approach can be taken for three-dimensional structures; this is not 

considered in this text. 
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1.6 Structural Degrees-of-Freedom 

The degrees-of-freedom in a structure can be regarded as the possible components of 
displacements of the nodes including those at which some support conditions are 
provided. In pin-jointed, plane-frames each node, unless restrained, can displace a small 
amount δ which can be resolved in to horizontal and vertical components δH and δV as 
shown in Figure 1.29. 

 

Figure 1.29 

Each component of displacement can be regarded as a separate degree-of-freedom and 
in this frame there is a total of three degrees-of-freedom: 

The vertical and horizontal displacement of node B and the horizontal displacement of 
node C as indicated. 

In a pin-jointed frame there are effectively two possible components of displacement 
for each node which does not constitute a support. At each roller support there is an 
additional degree-of-freedom due to the release of one restraint. In a simple, i.e. statically 
determinate frame, the number of degrees-of-freedom is equal to the number of members. 
Consider the two frames indicated in Figures 1.20(a) and (b):  

In Figure 
1.20(a): 

the number of members m=3 

  possible components of displacements at node B =2 

  possible components of displacements at node 
support C 

=1 

  Total number of degrees-of-freedom (=m)=3 
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In Figure 
1.20(b): 

the number of members m=11 

  possible components of displacements at nodes =10 

  possible components of displacements at 
support E 

=1 

  Total number of degrees-of-freedom (=m)=11 
 

In the case of indeterminate frames, the number of degrees-of-freedom is equal to the 
(number of members—ID); consider the two frames indicated in Figures 1.20(c) and (d): 

In Figure 
1.20(c): 

the number of members m=14 

  possible components of displacements at 
nodes 

=12 

  possible components of displacements at 
support G 

=1 

  degree-of-indeterminacy ID=1 

  Total number of degrees-of-freedom  (m−ID)=13 

In Figure 
1.20(d): 

the number of members m=15 

  possible components of displacements at 
nodes 

=10 

  degree-of-indeterminacy ID=5 

  Total number of degrees-of-freedom (m−ID)=10 
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In rigid-jointed frames there are effectively three possible components of displacement 
for each node which does not constitute a support; they are rotation and two components 
of translation e.g. θ, δH and δV. At each pinned support there is an additional degree-of-
freedom due to the release of the rotational restraint and in the case of a roller, two 
additional degrees-of-freedom due to the release of the rotational restraint and a 
translational restraint. Consider the frames shown in Figure 1.23. 

In Figure 1.23(a): the number of nodes (excluding supports) =2 

  possible components of displacements at nodes =6 

  possible components of displacements at support D =1 

  Total number of degrees-of-freedom =7 

In Figure 
1.23(b): 

the number of nodes (excluding supports) =4 

  possible components of displacements at nodes =12 

  possible components of displacements at support 
G 

=1 

  possible components of displacements at support F =1 

  Total number of degrees-of-freedom =14 

In Figure 1.23(c): the number of nodes (excluding supports) =3 

  possible components of displacements at nodes =9 

  possible components of displacements at support A =1 

  Total number of degrees-of-freedom =10 
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In Figure 1.23(d): the number of nodes (excluding supports) =1 

  possible components of displacements at nodes =3 

  possible components of displacements at support C =2 

  possible components of displacements at support D =1 

  Total number of degrees-of-freedom =6 
 

The introduction of a pin in a member at a node produces an additional degree-of-
freedom. Consider the typical node with four members as shown in Figure 1.30. In (a) the 
node is a rigid connection with no pins in any of the members and has the three degrees-
of-freedom indicated. In (b) a pin is present in one member, this produces an additional 
degrees-of-freedom since the rotation of this member can be different from the remaining 
three, similarly with the other members as shown in (c) and (d). 

 

Figure 1.30 

Degrees-of-freedom: 

 

In many cases the effects due to axial deformations is significantly smaller than those 
due to the bending effect and consequently an analysis assuming axial rigidity of 
members is acceptable. Assuming axial rigidity reduces the degrees-of-freedom which 
are considered; consider the frame shown in Figure 1.31.  
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Figure 1.31 

1.6.1 Problems: Indeterminacy and Degrees-of-Freedom 
Determine the degree of indeterminacy and the number of degrees-of-freedom for the 

pin-jointed and rigid-jointed frames indicated in Problems 1.1 to 1.3. and 1.4 to 1.6 
respectively.  

 

Problem 1.1 
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Problem 1.2 

 

Problem 1.3 

 

Problem 1.4 

Structural analysis and design     25



 

Problem 1.5 

 

Problem 1.6 
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1.6.2 Solutions: Indeterminacy and Degrees-of-freedom 
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2.  
Material and Section Properties 

2.1 Introduction 

Structural behaviour is dependent upon material characteristics such as elastic 
constants which describe the stress/strain relationships and the geometry of the cross-
section of individual members. This section describes the principal characteristics and 
properties which must be considered and evaluated to enable mathematical modelling to 
be undertaken. 

2.1.1 Simple Stress and Strain 
The application of loads to structural members induce deformations and internal 

resisting forces within the materials. The intensity of these forces is known as the stress 
in the material and is measured as the force per unit area of the cross-sections which is 
normally given the symbol σ when it acts perpendicular to the surface of a cross-section 
and τ when it acts parallel to the surface. Different types of force cause different types 
and distributions of stress for example: axial stress, bending stress, shear stress, torsional 
stress and combined stress. 

Consider the case of simple stress due to an axial load P which is supported by a 
column of cross-sectional area A and original length L as shown in Figure 2.1. The 
applied force induces an internal stress σ such that: 

 

Figure 2.1 



The deformation induced by the stress is quantified by relating the change in length to 
the original length and is known as the strain in the material normally given the symbol ε 
where: 

δ=(change in length/original length)=(δ/L)   

Note: the strain is dimensionless since the units of δ and L are the same. 

The relationship between stress and strain was first established by Robert 
Hook in 1676 who determined that in an elastic material the strain is 
proportional to the stress. The general form of a stress/strain graph is as 
shown in Figure 2.2.  

 

Figure 2.2 

The point at which this graph ceases to obey Hook’s Law and becomes non-linear is 
the ‘elastic limit’ or ‘proportional limit’. 

A typical stress-strain curve for concrete is shown in Figure 2.3(a). This is a non-linear 
curve in which the peak stress is developed at a compressive strain of approximately 
0.002 (depending upon the strength of the concrete) with an ultimate strain of 
approximately 0.0035. There is no clearly defined elastic range over which the stress 
varies linearly with the strain. Such stress/strain curves are typical of brittle materials. 

A typical stress-strain curve for hot-rolled mild steel is shown in Figure 2.3(b). When 
a test specimen of mild steel reinforcing bar is subjected to an axial tension in a testing 
machine, the stress/strain relationship is linearly elastic until the value of stress reaches a 
yield value, e.g. 250 N/mm2. 
At this point an appreciable increase in the stretching of the sample occurs at constant load: this is 

known as yielding. During the process of yielding a molecular change takes place in the 
material which has the effect of hardening the steel. After approximately 5% strain has occurred 
sufficient strain-hardening will have developed to enable the steel to carry a further increase in 
load until a maximum load is reached. 
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The stress-strain curve falls after this point due to a local reduction in the diameter of the sample 
(known as necking) with a consequent smaller cross-sectional area and load carrying capacity. 
Eventually the sample fractures at approximately 35% strain.  

 

Figure 2.3 

The characteristics of the stress/strain curves are fundamental to the development and 
use of structural analysis techniques. A number of frequently used material properties 
relating to these characteristics are defined in Sections 2.1.2 to 2.1.6. 

2.1.2 Young’s Modulus (Modulus of Elasticity)—E 
From Hooke’s Law (in the elastic region): stress strain ∴ stress=(constant×strain). 

The value of the constant is known as ‘Young’s Modulus’ and usually given the 
symbol ‘E’. Since strain is dimensionless, the units of E are the same as those for stress. 
It represents a measure of material resistance to axial deformation. For some materials the 
value of Young’s Modulus is different in tension than it is in compression. The numerical 
value of E is equal to the slope of the stress/strain curve in the elastic region, i.e. tanθ in 
Figure 2.2. 

2.1.3 Secant Modulus—Es 
The ‘secant modulus’ is equal to the slope of a line drawn from the origin of the stress-

strain graph to a point of interest beyond the elastic limit as shown in Figure 2.4. 
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Figure 2.4 

The secant modulus is used to describe the material resistance to deformation in the 
inelastic region of a stress/strain curve and is often expressed as a percentage of Young’s 
Modulus, e.g. 75%–0.75E. 

2.1.4 Tangent Modulus—Et 
The ‘tangent modulus’ is equal to the slope of a tangent line to the stress-strain graph 

at a point of interest beyond the elastic limit as shown in Figure 2.5. 

 

Figure 2.5 

The tangent modulus can be used in inelastic buckling analysis of columns as shown 
in Section 6.3.6 of Chapter 6.  

2.1.5 Shear Rigidity (Modulus of Rigidity)—G 
The shear rigidity is used to describe the material resistance against shear deformation. 

similar to Young’s Modulus for axial or normal stress/strain. The numerical value of G is 
equal to the slope of the shear stress/strain curve in the elastic region, where the shear 
strain is the change angle induced between two perpendicular surfaces subject to a shear 
stress. 
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2.1.6 Yield Strength 
The yield strength corresponds with the point on the stress/strain graph where 

permanent deformation begins in the material. In some cases, e.g. in Figure 2.3(a) there is 
no distinct yield point whilst in others, such as in Figure 2.3(b) there is a well-defined 
yield region. In the former case a percentage offset is often used to obtain an approximate 
yield point, e.g. a 0.2% offset point can be determined by drawing a line parallel to the 
elastic linear line of the graph starting at a point 0.2% (0.002) along the strain axes as 
shown in Figure 2.6. The intersection of this line with the stress-strain curve defines the 
0.2% yield point. 

 

Figure 2.6 

2.1.7 Ultimate Tensile Strength 
The ‘ultimate strength’ is the maximum stress which a material is capable of 

sustaining and corresponds to the highest point on the stress/strain curve; see Figure 
2.3(b). In engineering terms this is normally the value adopted, however if a specimen 
undergoes considerable necking prior to fracture the true value will differ from this. 

2.1.8 Modulus of Rupture in Bending 
The ‘modulus of rupture’ represents the ultimate strength in bending obtained during a 

bending test. It is determined by calculating the maximum bending stress in the extreme 
fibres in a member at failure. 

2.1.9 Modulus of Rupture in Torsion 
The ‘modulus of rupture’ represents the ultimate strength in torsion obtained during 

torsion test. It is determined by calculating the maximum shear stress in the extreme 
fibres of a circular member at failure.  
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2.1.10 Poisson’s Ratio—υ 
The ‘Poisson’s Ratio’ for a material is a dimensionless constant representing the ratio 

of the lateral strain to the axial strain as shown in Figure 2.7. 

 

Figure 2.7 

2.1.11 Coefficient of Thermal Expansion—a 
The linear coefficient of thermal expansion describes by how much a material will 

expand for each degree of temperature increase/decrease, e.g. the change in the length of 
a bar made from a particular material is given by: 

δL=αLΔT 
where 
a is the coefficient of thermal expansion for the material, 
L is the original length, 
∆T is the change in temperature—a reduction being considered negative and an 

increase being positive. 
The unit for coefficient of thermal expansion is typically °C−1. 

2.1.12 Elastic Assumptions 
The laws of structural mechanics are well established in recognised elastic theory 

using the following assumptions: 

• the material is homogeneous which implies its constituent parts have the same 
physical properties throughout its entire volume. 

• the material is isotropic which implies that the elastic properties are the same in all 
directions. 

• the material obeys Hooke’s Law, i.e. when subjected to an external force system the 
deformations induced will be directly proportional to the magnitude of the applied force. 
(P δ) 

• the material is elastic, which implies that it will recover completely from any 
deformation after the removal of load. 

• the modulus of elasticity is the same in tension and compression. 
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• plane sections remain plane during deformation. During bending this assumption is 
violated and is reflected in a non-linear bending stress diagram throughout cross-sections 
subject to a moment; in most cases this can be neglected. 

2.2 Elastic Cross-Section Properties 

An evaluation of the elastic section properties of a cross-section is fundamental to all 
structural analyses. These encompass a wide range of parameters such as; cross-sectional 
area, position of the centroid and the elastic neutral axes, the second moment of area 
about the centroidal axes and any parallel axes and the elastic section modulus, (Note: not 
the Elastic Modulus of Elasticity which is discussed in Section 2.1). Each of these is 
discussed separately in Sections 2.2.1 to 2.2.8. 

Most structural elements have a cross-section for which standard properties are 
known, e.g. square, rectangle, triangle, trapezium, circle etc., or comprise a combination 
of one or more such shapes. If the properties of each shape which makes up a complete 
cross-section are known, this information can be used to determine the corresponding 
properties of the composite shape. A number of examples are given to illustrate this in the 
following sections. 

In structural steelwork a variety of hot-rolled standard sections are available, the cross-
sectional properties of which are given in published tables. A selection of the most 
common ones are shown in Figure 2.8. 

 

Figure 2.8 
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2.2.1 Cross-sectional Area 
The cross-sectional area of a composite shape can be expressed as: 

 

  

where:  

Atotal is the total area of the composite cross-section 

Ai is the cross-sectional area of each component part 

Consider the composite shapes indicated in (i) to (ix) and determine the value of Atotal  

 

Figure 2.9 
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Figure 2.10 

 

  

 

Figure 2.11 
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Figure 2.12 

 

  

 

Figure 2.13 
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Figure 2.14 

 
  

 

Figure 2.15 

 

  

Check the area of the trapezium in (vi): Atotal=[0.5×(70+150)×(50)]=5500 mm2 
In a similar manner to adding the individual areas of component parts to obtain the 

total area, section properties can be evaluated by subtracting areas which do not exist, e.g. 
in hollow sections. Consider examples (vii) to (ix).  
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Figure 2.16 

 
  

 

Figure 2.17 
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Figure 2.18 

 

  

2.2.2 Centre of Gravity and Centroid 
The centre of gravity of an object is the point through which the force due to gravity 

on the total mass of the object is considered to act. The corresponding position on a plane 
surface (i.e. relating to the cross-sectional area) is known as the centroid; both are 
indicated in Figure 2.19  

 

Figure 2.19 

Consider the cross-section A shown in Figures 2.20(a) and (b) which can be 
considered to be an infinite number of elemental areas each equal to δA. The 1st moment 
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of area (i.e. area×perpendicular lever arm) of the total area about any axis is equal to the 
sum of the 1st moments of area of each individual area about the same axis, i.e. 

 

  

where: 

A is the total area of the cross section 

 is the distance in the x direction to the centroid for the total area 

 is the distance in the y direction to the centroid for the total area 

x is the distance in the x direction to the centroid of the elemental area 
y is the distance in the y direction to the centroid of the elemental area 

 

Figure 2.20 

In precise terms, ΣδAx/A and ΣδAy/A are the integrals for the shape being considered, 
however in most practical cases the cross-sectional area comprises a number of standard 
shapes (instead of the elemental area) i.e. rectangles, triangles, circles etc. in which the 
position of the centroid is known as shown in Figure 2.21  
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Figure 2.21 

Consider the composite shapes (i) to (ix) indicated previously to determine 
the co-ordinates of their centroids. 

 

Figure 2.22 

 

Figure 2.23 
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Figure 2.24 

Note: If there are axes of symmetry then the centroid lies at the intersection point of the 
axes.  

 

Figure 2.25 

 

Figure 2.26 
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Figure 2.27 

 

Figure 2.28 

 

Figure 2.29 
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Figure 2.30 
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2.2.3 Problems: Cross-sectional Area and Position of Centroid 
Determine the cross-sectional area and the values of and to locate the position of 

the centroid for the sections shown in Problems 2.1 to 2.6. Assume the origin of the co-
ordinate system to be at the bottom left-hand corner for each section.  

 

Problem 2.1 

 

Problem 2.2 
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Problem 2.3 

 

Problem 2.4 
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Problem 2.5 

 

Problem 2.6  
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2.2.4 Solutions: Cross-sectional Area and Position of Centroid 

 

2.2.5 Elastic Neutral Axes 
Consider a beam of rectangular cross-section which is simply supported at the ends 

and carries a distributed load, as shown in Figure 2.31. 
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Figure 2.31 

The beam will deflect due to the bending moments and shear forces induced by the 
applied loading, resulting in a curved shape as indicated in Figure 2.32. 

 

Figure 2.32 

Clearly if the ends of the beam are assumed to remain perpendicular to the 
longitudinal axis, then the material above this axis must be in compression, whilst that 
below it must be in tension. At a point between the top and the bottom of the beam a 
layer of fibres exist which remain at their original length and consequently do not have 
any bending stress in them. This layer of fibres forms the ‘neutral surface’ and on a cross-
section is indicated by the ‘neutral axis’ as shown in Figure 2.33.  

 

Figure 2.33 

2.2.6 Second Moment of Area—I and Radius of Gyration—r 
Two of the most important properties of a cross-section are the ‘second moment of 

area’ and the ‘radius of gyration’. Consider the area shown in Figure 2.20(b). If the 
elemental area δA has its centroid at a perpendicular distance ‘r’ from a given axis, the 
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second moment of area of the element about the given axis is the product of the area of 
the element and the square of the distance of the centroid from the axis, i.e. 

   

The second moment of area of the total area A is equal to Σ(δAr2) over the whole area. 
It is convenient to consider two mutually perpendicular axes which intersect at the 
centroid of a cross-section and hence: 

   

Alternatively: 

 

  

where rxx and ryy are known as the ‘radii of gyration’ about the x-x and y-y axes 
respectively. 

Consider the rectangular cross-section shown in Figure 2.34. 

 

Figure 2.34  
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2.2.6.1 The Parallel Axis Theorem 
It can also be shown that the second moment of area of a cross-sectional area A about 

an axis parallel to any other axis is equal to the second moment of area of A about that 
other axis plus the area multiplied by the square of the perpendicular distance between 
the axes. Consider the rectangular areas shown in Figure 2.35: 

 

Figure 2.35 

These relationships are used extensively to determine the values of the second moment 
of area and radius of gyration of compound sections comprising defined areas such as 
rectangles, triangles circles etc. 

Consider the cross-sectional area shown in Figures 2.24 and determine the values of 
the second moment of area and radius of gyration about the centroidal axes. Data from 
Figure 2.24 is indicated in Figure 2.36: 

 

Figure 2.36 
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IQQ=(Iyy+Ax2) for each rectangle in which QQ is the y-y axis for the whole section. In 
this case the second term for each rectangle is equal to zero since the y-y axis coincides 
with their centroidal axes.  

 

 

2.2.7 Elastic Section Modulus—Z 
The bending moments induced in a beam by an applied load system generate bending 

stresses in the material fibres which vary from a maximum in the extreme fibres to zero at 
the level of the neutral axis as shown in Figures 2.33 and 2.37. 

The magnitude of the bending stresses at any vertical cross-section can be determined 
using the simple theory of bending from which the following equation is derived:  

 
  

 

Figure 2.37 

where: 

M the applied bending moment at the section being considered, 
E the value of Young’s modulus of elasticity, 
R the radius of curvature of the beam, 
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σ the bending stress, 
y the distance measured from the elastic neutral axis to the level on the cross-

section at which the stress is being evaluated, 
I the second moment of area of the full cross-section about the elastic neutral 

axis. 

It is evident from the equation given above that for any specified cross-section in a 
beam subject to a known value of bending moment (i.e. M and I constant), the bending 
stress is directly proportional to the distance from the neutral axis; i.e. 

   

This is shown in Figure 2.37, in which the maximum bending stress occurs at the 
extreme fibres. 

In design it is usually the extreme fibre stresses relating to the ymaximum values at the 
top and bottom which are critical. These can be determined using: 

 
  

where σ and M are as before, 
Ztop is the elastic section modulus relating to the top fibres and defined as 

 

Zbottom is the elastic section modulus relating to the bottom fibres and 
defined as  

 

If a cross-section is symmetrical about the x-x axis then Ztop=Zbottom. In asymmetric 
sections the maximum stress occurs in the fibres corresponding to the smallest Z value. 
For a rectangular cross-section of breadth B and depth D subject to a bending moment M 
about the major x-x axis, the appropriate values of I, y and Z are:  
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In the case of bending about the minor y-y axis: 

 

Consider the cross-sectional area shown in Figures 2.29/2.38 and determine the values 
of the maximum and minimum elastic section modulii about the centroidal axes.  

 

Figure 2.38 
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2.2.8 Problems: Second Moments of Area and Elastic Section 
Modulii 

Determine the following values for the sections indicated in Problems 2.1 to 2.6. 

(i) the second moment of areas Ixx and Iyy and 
(ii) the elastic section modulii Zxx and Zyy. 

2.2.9 Solutions: Second Moments of Area and Elastic Section 
Modulii 
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2.3 Plastic Cross-Section Properties 

When using elastic theory in design, the acceptance criterion are based on 
“permissible” or “working” stresses. These are obtained by dividing the “yield stress” py 
of the material by a suitable Factor of Safety. The loads adopted to evaluate an actual 
working stress are “working loads”. 

In a structure fabricated from linearly elastic material, the Factor of Safety (F. of S.) 
can also be expressed in terms of the load required to produce yield stress and the 
working load. This is known as the Load Factor (λ). 

 
  

2.3.1 Stress/Strain Relationship 
The plastic analysis and design of structures is based on collapse loads. A typical 

stress-strain curve for a ductile material having the characteristic of providing a large 
increase in strain beyond the yield point without any increase in stress, (e.g. steel) is 
given in Figure 2.39. 

 

Figure 2.39 

When adopting this curve for the theory of plasticity (see Chapter 8) it is idealised as 
indicated in Figure 2.40  
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Figure 2.40 

If a beam manufactured from material with a characteristic stress/strain curve as 
shown in Figure 2.39 has a rectangular cross section and is subjected to an increasing 
bending moment only, then the progression from elastic stress/strain distributions to 
plastic stress/strain distributions are as indicated in Figure 2.41. 

 

Figure 2.41 
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Initially at low values of applied moment (a) the maximum stress and strain values are 
less than the permissible working values as indicated in Figure 2.41 (i.e. between points 
A and B in Figure 2.40). 

As the applied moment increases, then the stress and strain values increase until at 
stage (b), both attain the yield values εy and py. This corresponds to point C in Figure 
2.40. 

A further increase in the applied moment induces yield in some of the inner fibres of 
the material. Whilst the extreme fibre strains must now exceed εy, the stress must 
obviously remain at py. This corresponds to point D in Figure 2.40 and (c) in Figure 2.41. 

As the applied moment increases still further, so the whole section eventually reaches 
the yield stress. (As indicated in (d) there is a very small region around the neutral axis 
which has not reached yield, but this can be ignored without any appreciable error). 
When the whole section has attained yield stress then the section cannot provide any 
further moment resistance and a plastic hinge is formed allowing the beam to rotate at the 
location of the beam. The value of the applied moment at which this occurs is known as 
the Plastic Moment of Resistance (Mp). 

2.3.2 Plastic Neutral Axis 
Obviously at all stages of loading, the compression force (FC) induced by the applied 

moment must equal the tension force (FT). This being so, then at the formation of the 
plastic hinge where all the material is subjected to the same stress i.e. py, the plastic 
neutral axis must be that axis which equally divides the area into two separate parts, i.e. 

 

 

and Force in compression=Force in tension 

 

  

i.e. Area in compression=Area in tension 
In plastic analysis the neutral axis is the equal area axis. 

2.3.3 Evaluation of Plastic Moment of Resistance (Mp) and 
Plastic Section Modulus 

In elastic analysis the limiting elastic moment can be expressed in terms of the yield 
stress and the elastic section modulus, at the limit of elasticity; 
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Similarly in plastic analysis, the plastic moment of resistance can be expressed in 
terms of the yield stress and the plastic section modulus. 

   

Consider the section shown in Figure 2.42. 

 

Figure 2.42 

If the rectangular section is subjected to a moment equal to the plastic moment of 
resistance Mp of the section then we can determine a value for the plastic section 

modulus.  

 

  

Hence for a rectangular section the Plastic Section Modulus  
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The Plastic Section Modulus Sxx=1st moment of area about the equal area 
axis 

2.3.4 Shape Factor 
The ratio of the plastic modulus to the elastic modulus (or plastic moment to limiting 

elastic moment) is known as the shape factor given by the symbol ν. 

 

  

2.3.5 Section Classification 
In design codes the compression elements of structural members are classified into 

four categories depending upon their resistance to local buckling effects which may 
influence their load carrying capacity. The compression may be due to direct axial forces, 
bending moments, or a combination of both. There are two distinct types of element in a 
cross-section identified in the code: 

1. Outstand elements—elements which are attached to an adjacent element at one edge 
only, the other edge being free, e.g. the flange of an I-section. 

2. Internal elements—elements which are attached to other elements on both 
longitudinal edges, including: 

— webs comprising the internal elements perpendicular to the axis of bending 
— flanges comprising the internal elements parallel to the axis of bending 

e.g. the webs and flanges of a rectangular hollow section. 
The classifications specified in the code are: 

• Class 1 Plastic Sections 

• Class 2 Compact Sections 

• Class 3 Semi-compact Sections 

• Class 4 Slender Sections 

and are determined by consideration of the limiting values given in Tables of the code. 
The classifications are based on a number of criteria. 
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2.3.5.1 Aspect Ratio 
The aspect ratio for various types of element can be determined using the variables 

indicated in the code for a wide range of cross-sections. A typical example is the hot-
rolled I-section indicated in Figure 2.43.  

 

Figure 2.43 

The limiting aspect ratios given must be modified to allow for the design strength py. 
This is done by multiplying each limiting ratio by ε which is defined as: 

. In the case of the web of a hybrid section ε should be based on the 
design strength pyf of the flanges. 

In addition to ε, some limiting values also include parameters r1 and r2 which are stress 
ratios, these are not considered further here. 

2.3.5.2 Type of Section 
The type of section e.g. universal beam, universal column, circular hollow sections, 

welded tubes, hot finished rectangular hollow sections, cold formed rectangular hollow 
sections etc. also influences the classification. 

The classifications given in codes indicate the moment/rotation characteristics of a 
section, as shown in Figure 2.44. 

 

Figure 2.44 
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where: 

Mp = plastic moment of resistance 

Me = limiting elastic moment of resistance 

M = elastic moment of resistance 

These characteristics determine whether or not a fully plastic moment can develop 
within a section and whether or not the section possesses sufficient rotational capacity to 
permit the section to be used in plastic design.  

Consider a section subject to an increasing bending moment; the bending stress 
diagram changes from a linearly elastic condition with extreme fibre stresses less than the 
design strength (py), to one in which all of the fibres can be considered to have reached 
the design strength, as shown in Figure 2.45. 

 

Figure 2.45 

2.4 Example 2.1: Plastic Cross-section Properties—Section 1 

Determine the position of the plastic neutral axis plastic, the plastic section modulus 
Sxx and the shape factor υ for the welded section indicated in Figure 2.46. 
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Figure 2.46 

(i) Position of plastic neutral axis ( plastic) 

A=[(90×10)+(90×15)]=2250 mm2 A/2=(2250/2)=1125 mm2   

For equal area axis: 

plastic=1125/15=75 mm   

(ii) Plastic section modulus (Sxx): (1st moment of area about 
the plastic neutral axis) 

Sxx=[(90×10)×20]+[(15×15)×7.5)]+[(75×15)×37.5)]=61.875×103 
mm3 

  

(iii)
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2.5 Problems: Plastic Cross-section Properties 

Determine the following values for the welded sections indicated in Problems 2.13 to 
2.16, 

(i) position of the plastic neutral axis plastic, 
(ii) the plastic section modulus Sxx and 
(iii) the shape factor υ. 

 

Problem 2.13 
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Problem 2.14 

 

Problem 2.15 

 

Problem 2.16 
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2.6 Solutions: Plastic Cross-section Properties 
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3. 
Pin-Jointed Frames 

3.1 Introduction 

The use of beams/plate-girders does not always provide the most economic or suitable 
structural solution when spanning large openings. In buildings which have lightly loaded, 
long span roofs, when large voids are required within the depth of roof structures for 
services, when plated structures are impractical, or for aesthetic/architectural reasons, the 
use of roof trusses, lattice girders or space-frames may be more appropriate. 

Such trusses/girders/frames, generally, transfer their loads by inducing axial tension or 
compressive forces in the individual members. The magnitude and sense of these forces 
can be determined using standard methods of analysis such as ‘the method of sections’, 
‘the method of joint-resolution’, ‘the method of tension coefficients’ or the use of 
‘computer software’. The first three methods indicated are summarized and illustrated in 
this Chapter. 

3.2 Method of Sections 

The method of sections involves the application of the three equations of static 
equilibrium to two-dimensional plane frames. The sign convention adopted to indicate 
ties (i.e. tension members) and struts (i.e. compression members) in frames is as shown in 
Figure 3.1. 

 

Figure 3.1 

The method involves considering an imaginary section line which cuts the frame 
under consideration into two parts A and B as shown in Figure 3.4. 
Since only three independent equations of equilibrium are available any section taken through a 

frame must not include more than three members for which the internal force is unknown. 
Consideration of the equilibrium of the resulting force system enables the magnitude and sense (i.e. 

compression or tension) of the forces in the cut members to be determined. 



3.2.1 Example 3.1: Pin-Jointed Truss 
A pin-jointed truss supported by a pinned support at A and a roller support at G carries 

three loads at joints C, D and E as shown in Figure 3.2. Determine the magnitude and 
sense of the forces induced in members X, Y and Z as indicated.  

 

Figure 3.2 

Step 1: Evaluate the support reactions. It is not necessary to know any information 
regarding the frame members at this stage other than dimensions as shown in Figure 3.3, 
since only externally applied loads and reactions are involved. 

 

Figure 3.3 
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Apply the three equations of static equilibrium to the force system: 

 

 

Step 2: Select a section through which the frame can be considered to be cut and using 
the same three equations of equilibrium determine the magnitude and sense of the 
unknown forces (i.e. the internal forces in the cut members).  

 

Figure 3.4 

It is convenient to assume all unknown forces to be tensile and hence at the cut section 
their direction and lines of action are considered to be pointing away from the joints 
(refer to Figure 3.4). If the answer results in a negative force this means that the 
assumption of a tie was incorrect and the member is actually in compression, i.e. a strut. 

The application of the equations of equilibrium to either part of the cut frame will 
enable the forces X(FDE), Y(FEI) and Z(FHI) to be evaluated. 

Note: The section considered must not cut through more than three members with 
unknown internal forces since only three equations of equilibrium are applicable. 

Consider part A:  
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Figure 3.5 

 

 

 

 

 
These answers can be confirmed by considering Part B of the structure and applying 

the equations as above. 

3.3 Method of Joint Resolution 

Considering the same frame using joint resolution highlights the advantage of the 
method of sections when only a few member forces are required. 

In this technique (which can be considered as a special case of the method of 
sections), sections are taken which isolate each individual joint in turn in the frame, e.g. 
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Figure 3.6 

In Figure 3.6 four sections are shown, each of which isolates a joint in the structure as 
indicated in Figure 3.7. 

 

Figure 3.7 

Since in each case the forces are coincident, the moment equation is of no value, hence 
only two independent equations are available. It is necessary when considering the 
equilibrium of each joint to do so in a sequence which ensures that there are no more than 
two unknown member forces in the joint under consideration. This can be carried out 
until all member forces in the structure have been determined.  

Consider Joint G: 

 

Consider Joint F: substitute for calculated values, i.e. FFG (direction of force is into the 
joint) 
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Consider Joint H: substitute for calculated values, i.e. FGH and FFH 

 

Consider Joint E: substitute for calculated values, i.e. FEF and FEH  

 

3.3.1 Problems: Method of Sections and Joint Resolution 
Determine the support reactions and the forces in the members of the pin-jointed 

frames indicated by the ‘*’ in Problems 3.1 to 3.4 using the method of sections.  
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Problem 3.1 

 

Problem 3.2 

 

Problem 3.3 

 

Problem 3.4 

Determine the support reactions and the forces in the members of the pin-jointed 
frames indicated in Problems 3.5 to 3.10 using the method of joint resolution. 
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Problem 3.5 

 

Problem 3.6 

 

Problem 3.7 
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Problem 3.8 

 

Problem 3.9  

 

Problem 3.10 
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3.3.2 Solutions: Method of Sections and Joint Resolution 
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3.4 Method of Tension Coefficients 

The method of tension coefficients is a tabular technique of carrying out joint 
resolution in either two or three dimensions. It is ideally suited to the analysis of pin-
jointed space-frames. 

Consider an individual member from a pin-jointed plane-frame, e.g. member AB 
shown in Figure 3.8 with reference to a particular X-Y co-ordinate system. 

If AB is a member of length LAB having a tensile force in it of TAB, then the 
components of this force in the X and Y directions are TAB Cosθ and TAB Sinθ 
respectively. 

If the co-ordinates of A and B are (XA, YA) and (XB, YB), then the component of TAB 
in the x-direction is given by : 

 
  

 

Figure 3.8 
where 

  
and is known as the tension coefficient of the bar. Similarly, the component of TAB in 

the y-direction is given by: 
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If at joint A in the frame there are a number of bars, i.e. AB, AC … AN, and external 
loads XA and YA acting in the X and Y directions, then since the joint is in equilibrium 
the sum of the components of the external and internal forces must equal zero in each of 
those directions. 

Expressing these conditions in terms of the components of each of the forces then 
gives:  

 
(1) 

 
(2) 

 
A similar pair of equations can be developed for each joint in the frame giving a total 

number of equation equal to (2×number of joints) 
In a statically determinate triangulated plane-frame the number of unknown member 

forces is equal to [(2×number of joints)−3], hence there are three additional equations 
which can be used to determine the reactions or check the values of the tension 
coefficients. 

Once a tension coefficient (e.g. tAB) has been determined, the unknown member force 
is given by the product: 

   

Note: A member which has a −ve tension coefficient is in compression and is a strut. 

3.4.1 Example 3.2: Two-Dimensional Plane Truss 
Consider the pin-jointed, plane-frame ABC loaded as shown in Figure 3.9. 

 

Figure 3.9 
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Construct a table in terms of tension coefficients and an X/Y co-ordinate system as 
shown in Table 3.1. 

The equilibrium equations are solved in terms of the ‘t’ values and hence the member 
forces and support reactions are evaluated and entered in the table as shown in Table 3.1. 

Consider joint B: 
There are only two unknowns and two equations, hence: 
Adding both equations 

 

  

   
 

Joints A and C can be considered in a similar manner until all unknown values, 
including reactions, have been determined.  

The reader should complete this solution to obtain the following values: FAC=+14.28 
kN Ax=+20 kN Ay=−4.29 kN Cy=+14.28 kN 

 

Table 3.1 

In the case of a space frame, each joint has three co-ordinates and the forces have 
components in the three orthogonal X, Y and Z directions. This leads to (3×Number. of 
joints) equations which can be solved as above to determine the ‘t’ values and 
subsequently the member forces and support reactions. 

3.4.2 Example 3.3: Three-Dimensional Space Truss 
The space frame shown in Figure 3.10 has three pinned supports at A, B and C, all of 

which lie on the same level as indicated. Member DE is horizontal and at a height of 10 
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m above the plane of the supports. The planar dimensions (z-x, x-y and z-y) of the frame 
are indicated in Figure 3.11. 

Determine the forces in the members when the frame carries loads of 80 kN and 40 kN 
acting in a horizontal plane at joints E and D respectively as shown.  

 

Figure 3.10 

 

Figure 3.11 
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Solution: 

 

  

The equations from the Tension Coefficient Table are used to determine the ‘t’ values. 
Since only three equations are available at any joint, only three unknowns can be 
determined at any one time, i.e. identify a joint with no more that three unknown member 
forces to begin the calculation; in this case the only suitable joint is D.  

Solve the three simultaneous equations at joint D to determine the tension coefficients 
tAD, tDE and tCD; i.e. 

Consider Joint D: Equations (10), (11) and (12) 

 
  

Similarly for the next joint in which there are no more than three unknowns, i.e.  
Joint E 
Consider Joint E: Equations (13), (14) and (15) 

 

  

The support reactions can be determined after the tension coefficient values have been 
determined using Equations (1) to (9). 

The sum of the reactions in the x, y and z directions should be checked by ensuring 
that they are equal and opposite to the applied load system.  
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Table 3.2 

3.4.3 Problems: Method of Tension Coefficients 
The pin-jointed space-frames shown in Problems 3.11 to 3.16 have three pinned 

supports at A, B and C as indicated. In each case the supports A, B and C are in the same 
plane. Using the data given determine: 

(i) the member forces and 
(ii) the support reactions, 

when the frames are subjected to the loading indicated.  

 

Problem 3.11 
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Problem 3.12 

 

Problem 3.13 
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Problem 3.14 

 

Problem 3.15 

 

Problem 3.16 
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3.4.4 Solutions: Method of Tension Coefficients 
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3.5 Unit Load Method for Deflection 

The Unit Load Method of analysis is based on the principles of strain energy and 
Castigliano’s 1st Theorem. When structures deflect under load the work-done by the 
displacement of the applied loads is stored in the members of the structure in the form of 
strain energy. 

3.5.1 Strain Energy (Axial Load Effects) 
Consider an axially loaded structural member of length ‘L’, cross-sectional area ‘A’, 

and of material with modulus of elasticity ‘E’ as shown in Figure 3.12(a) 

 

Figure 3.12 

When an axial load ‘P’ is applied as indicated, the member will increase in length by 
‘δL’ as shown in Figure 3.12(b). Assuming linear elastic behaviour δL P, this 
relationship is represented graphically in Figure 3.13. 

 

Figure 3.13 

The work-done by the externally applied load ‘P’ is equal to: 
(average value of the force×distance through which the force moves in its line of 

action) 
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For linearly elastic materials the relationship between the applied axial load and the 
change in length is:  

 

  

This work-done by the externally applied load is equal to the ‘energy’ stored by the 
member when it changes length and is known as the strain energy, usually given the 
symbol ‘U’. It is this energy which causes structural members to return to their original 
length when an applied load system is removed; (Note: assuming that the strains are 
within the elastic limits of the material). 

∴ Strain energy=Work-done by the applied load system 

 
  

(Note: the principles of strain energy also apply to members subject to shear, bending, 
torsion etc.). 

3.5.2 Castigliano’s 1st Theorem 
Castigliano’s 1st Theorem relating to strain energy and structural deformation can be 

expressed as follows: 
‘If the total strain energy in a structure is partially differentiated with respect to an 

applied load the result is equal to the displacement of that load in its line of action.’ 
In mathematical terms this is: 
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where: 

U is the total strain energy of the structure due to the applied load system, 
W is the force acting at the point where the displacement is required, 
∆ is the linear displacement in the direction of the line of action of W. 

This form of the theorem is very useful in obtaining the deflection at joints in pin-
jointed structures. Consider the pin-jointed frame shown in Figure 3.14 in which it is 
required to determine the vertical deflection of joint B.  

 

Figure 3.14 

Step 1: 
The member forces induced by the applied load system are calculated, in this case 

referred to as the ‘P’ forces, as shown in Figure 3.15. 

 

Figure 3.15 
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Step 2: 
The applied load system is removed from the structure and an imaginary Unit load is 

applied at the joint and in the direction of the required deflection, i.e. a vertical load equal 
to 1.0 at joint B. The resulting member forces due to the unit load are calculated and 
referred to as the ‘u’ forces, as shown in Figure 3.16. 

 

Figure 3.16 

If both the Step 1 and the Step 2 load systems are considered to act simultaneously, 
then by superposition the total force in each member is given by: 

   

where: 

P is the force due to the applied load system 
u is the force due to the applied imaginary Unit load applied at B 
β is a multiplying factor to reflect the value of the load applied at B (since the unit 

load is an imaginary force the value of β=zero and is used here as a mathematical 
convenience.) 

The total strain energy in the structure is equal to the sum of the energy stored in all 
the members:  

   

Using Castigliano’s 1st Theorem the deflection of joint B is given by: 
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and 

 

  

Since β=zero the vertical deflection at B (Δβ) is given by: 

 

  

i.e. the deflection at any joint in a pin-jointed frame can be determined from: 

 
  

where: 

δ is the displacement of the point of application of any load, along the line of 
action of that load, 

P is the force in a member due to the externally applied loading system, 
u is the force in a member due to a unit load acting at the position of, and in the 

direction of the desired displacement, 
L/A is the ratio of the length to the cross-sectional area of the members, 
E is the modulus of elasticity of the material for each member (i.e. Young’s 

modulus). 

3.5.3 Example 3.4: Deflection of a Pin-Jointed Truss 
A pin-jointed truss ABCD is shown in Figure 3.17 in which both a vertical and a 

horizontal load are applied at joint B as indicated. Determine the magnitude and direction 
of the resultant deflection at joint B and the vertical deflection at joint D. 
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Figure 3.17 

Step 1: Evaluate the member forces. The reader should follow the procedure given in 
Example 3.1 to determine the following results: 

Horizontal component of reaction at support A HA=−20.0 kN  
Vertical component of reaction at support A VA=−4.29 kN 

 
Vertical component of reaction at support C VC=+14.29 kN 

 

Use the method of sections or joint resolution as indicated in Sections 3.2 and 3.3 
respectively to determine the magnitude and sense of the unknown member forces (i.e. 
the P forces). 

The reader should complete this calculation to determine the member forces as 
indicated in Figure 3.18. 

 

Figure 3.18 

Step 2: To determine uhe vertical deflection at joint B remove the externally applied 
load system and apply a unit load only in a vertical direction at joint B as shown in Figure 
3.19. Use the method of sections or joint resolution as before to determine the magnitude 
and sense of the unknown member forces (i.e. the u forces). 

The reader should complete this calculation to determine the member forces as 
indicated in Figure 3.19.  
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Figure 3.19 

The vertical deflection  
This is better calculated in tabular form as shown in Table 3.3. 

Member Length 
(L) 

Cross-
section (A)

Modulus 
(E) 

P forces 
(kN) 

u 
forces

PL×u 
(kNm) 

AB 5.0 m A E +7.15 −0.71 −25.38 

BC 4.24 m A E −20.20 −0.81 +69.37 

AD 4.0 m A E +14.29 +0.57 +32.58 

CD 3.0 m A E +14.29 +0.57 +24.44 

BD 3.0 m A E 0.0 0.0 0.0 

         

Σ +101.01 

Table 3.3 
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The +ve sign indicates that the deflection is in the same direction as the applied unit 
load. 

Hence the vertical deflection  
Note: Where the members have different cross-sectional areas and/or modulii of 

elasticity each entry in the last column of the table should be based on (PL×u)/AE and not 
only (PL×u). 

A similar calculation can be carried out to determine the horizontal deflection at joint 
B. The reader should complete this calculation to determine the member forces as 
indicated in Figure 3.20. 

 

Figure 3.20 

The horizontal deflection  

Member Length 
(L) 

Cross-
section (A) 

Modulus 
(E) 

P forces 
(kN) 

u 
forces

PL×u 
(kNm) 

AB 5.0 m A E +7.15 +0.71 +25.74 

BC 4.24 m A E −20.20 −0.61 +52.25 

AD 4.0 m A E +14.29 +0.43 +24.58 
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CD 3.0 m A E +14.29 +0.43 +18.43 

BD 3.0 m A E 0.0 0.0 0.0 

          

Σ +121.00 

Table 3.4 

Hence the horizontal deflection  
The resultant deflection at joint B can be determined from the horizontal and vertical 

components evaluated above, i.e. 

 

  

A similar calculation can be carried out to determine the vertical deflection at joint D. 
The reader should complete this calculation to determine the member forces as 

indicated in Figure 3.21. 

 

Figure 3.21 
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The vertical deflection  

Member Length 
(L) 

Cross-
section (A)

Modulus 
(E) 

P forces 
(kN) 

u 
forces

PL×u 
(kNm) 

AB 5.0 m A E +7.15 −0.71 −25.38 

BC 4.24 m A E −20.20 −0.81 +69.37 

AD 4.0 m A E +14.29 +0.57 +32.58 

CD 3.0 m A E +14.29 +0.57 +24.44 

BD 3.0 m A E 0.0 +1.0 0.0 

          

Σ +101.01 

Table 3.5 

Hence the vertical deflection  

3.5.3.1 Fabrication Errors—(Lack-of-fit) 
During fabrication it is not unusual for a member length to be slightly too short or too 

long and assembly is achieved by forcing members in to place. The effect of this can be 
accommodated very easily in this method of analysis by adding additional terms relating 
to each member for which lack-of-fit applies. The δL term for the relevant members is 
equal to the magnitude of the error in length, i.e. ΔL where negative values relate to 
members which are too short and positive values to members which are too long. 

(Note: under normal applied loading the ) 
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3.5.3.2 Changes in Temperature 
The effects of temperature change in members can also be accommodated in a similar 

manner; in this case the δL term is related to the coefficient of thermal expansion for the 
material, the change in temperature and the original length, 

i.e. δL=αLΔT   

where 

a is the coefficient of thermal expansion, 
L is the original length, 
ΔT is the change in temperature—a reduction being considered negative and an 

increase being positive. 

Since this is an elastic analysis the principle of superposition can be used to obtain 
results when a combination of applied load, lack-of-fit and/or temperature difference 
occurs. This is illustrated in Example 3.5. 

3.5.4 Example 3.5: Lack-of-fit and Temperature Difference 
Consider the frame indicated in Example 3.4 and determine the vertical deflection at 

joint D assuming the existing loading and that member BC is too short by 2.0 mm, 
member CD is too long by 1.5 mm and that members AD and CD are both subject to an 
increase in temperature of 5ºC. Assume α=12.0×10−6/°C and AE=100×103 kN.  

 

Figure 3.22 

The δL value for member BC due to lack-of-fit ∆L=−2.0 mm 
The δL value for member CD due to lack-of-fit ∆L=+1.5 mm 
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Member Length 
(mm) 

AE (kN) P-
force 
(kN) 

PL/AE 
(mm) 

ΔL 
(mm)

ΔT 
(mm)

u (PL/AE+ΔL+ΔT)×u
(mm) 

AB 5000 100×103 +7.15 +0.36 0 0 −0.71 −0.26 

BC 4243 100×103 −20.20 −0.86 −2.0 0 −0.81 +2.32 

AD 4000 100×103 +14.29 +0.57 0 +0.24 +0.57 +0.46 

CD 3000 100×103 +14.29 +0.43 +1.5 +0.18 +0.57 +1.20 

BD 3000 100×103 0 0 0 0 1.0 0 

                

Σ=+3.72 

Table 3.6 

The vertical deflection at joint D due to combined loading, lack-of-fit and temperature 
change is given by: 

 
  

Note: Statically determinate, pin-jointed frames can accommodate small changes in 
geometry without any significant effect on the member forces induced by the applied 
load system, i.e. the member forces in Example 3.5 are the same as those in Example 3.4.  
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3.5.5 Problems: Unit Load Method for Deflection of Pin-Jointed 
Frames 

A series of pin-jointed frames are shown in Problems 3.17 to 3.20. Using the applied 
load systems and data given in each case, determine the value of the deflections 
indicated. Assume E=205 kN/mm2 and α=12×10−6/ºC where required.  

 

Problem 3.17 

 

Problem 3.18 

 

Problem 3.19 
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Problem 3.20 

Pin-jointed frames     141



3.5.6 Solutions: Unit Load Method for Deflection of Pin-Jointed 
Frames 
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3.6 Unit Load Method for Singly-Redundant Pin-Jointed 
Frames 

The method of analysis illustrated in Section 3.5 can also be adopted to determine the 
member forces in singly-redundant frames. Consider the frame shown in Example 3.6. 

3.6.1 Example 3.6: Singly-Redundant Pin-Jointed Frame 1 
Using the data given, determine the member forces and support reactions for the pin-

jointed frame shown in Figure 3.23. 

 

Figure 3.23 

The degree-of-indeterminacy ID=(m+r)−2n=(5+4)−(2×4)=1 
Assume that member BD is a redundant member and consider the original frame to be 

the superposition of two structures as indicated in Figures 3.24(a) and (b). The frame in 
Figure 3.24(b) can be represented as shown in Figure 3.25.  

 

Figure 3.24 
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Figure 3.25 

To maintain compatibility in the length of member BD in the original frame the 
change in length of the diagonal BD in Figure 3.24(a) must be equal and opposite to that 
in Figure 3.24(b) as shown in Figure 3.26. 

 

Figure 3.26  

(δ′BD due to P-forces)+(δ″BD due to unit load forces)×FBD=0 

 
  

Using joint resolution the P-forces and the u-forces can be determined as indicated in 
Figure 3.27.  

 

Figure 3.27 
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Member Length 
(mm) 

AE (kN) P-
force 
(kN) 

PL/AE 
(mm) 

u (PL/AE)×u 
(mm) 

(uL/AE)×u 
(mm) 

Memb
force

BC 3000 35.88×103 +10.00 +0.84 −0.71 −0.59 0.04 +4.38

CD 3000 35.88×103 +10.00 +0.84 −0.71 −0.59 0.04 +4.38

DA 3000 35.88×103 0 0 −0.71 0 0.04 −5.62

AC 4243 35.88×103 −14.14 −1.67 +1.00 −1.67 0.12 −6.23

BD 4243 35.88×103 0 0 +1.00 0 0.12 +7.91

          

  Σ=−2.85 Σ=+0.36 

  

 
  

 
The final member forces=[P-forces+(u-forces×7.91)] and are given in the last column 

of the table  

 

Figure 3.28 
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3.6.2 Example 3.7: Singly-Redundant Pin-Jointed Frame 2 
Using the data given, determine the member forces and support reactions for the pin-

jointed frame shown in Figure 3.29. 

The cross-sectional area of all members is equal to 140 mm2. Assume 
E=205 kN/mm2  

 

Figure 3.29 

All member lengths L=3.0 m 

AE=(140×205)=28.7×103 kN 

Sin60º=0.866 Cos60º=0.5 

  

 
  

The degree of indeterminacy ID=(m+r)−2n=(8+7)−(2×7)=1 

Consider the vertical reaction at support F to be redundant. The equivalent 
system is the superposition of the statically determinate frame and the 
(unit load frame×VF) as shown in Figures 3.30 and 3.31.  
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Figure 3.30 

 

Figure 3.31 

Using joint resolution the P-forces and the u-forces can be determined as indicated in 
Figures 3.32 and 3.33.  

 

Figure 3.32 
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Figure 3.33  

Mem 

ber 

Length 
(mm) 

AE (kN) P-
force 
(kN) 

PL/AE 
(mm)

u (PL/AE)

×u 
(mm) 

(uL/AE)×u 
(mm) 

Member 
forces 

AB 3000 28.7×103 0 0 0 0 0 0 

BC 3000 28.7×103 0 0 0 0 0 0 

CD 3000 28.7×103 0 0 +0.58 0 0.035 0 

DE 3000 28.7×103 0 0 +0.58 0 0.035 0 

DF 3000 28.7×103 0 0 −0.58 0 0.035 0 

CF 3000 28.7×103 0 0 −0.58 0 0.035 0 

CG 3000 28.7×103 0 0 +0.58 0 0.035 0 

BG 3000 28.7×103 −30.00 −3.14 0 0 0 −30.00 

            

Σ=zero Σ=+0.18 
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The final member forces=[P-forces+(u-forces×0)] and are given in the last column of the 
table. 

VG=+25.98 kN  

HG=−15.0 kN  

  

All other reactions are equal to zero.  

 

Figure 3.34 

3.6.3 Problems: Unit Load Method for Singly-Redundant Pin-
Jointed Frames 

Using the data given in the singly-redundant, pin-jointed frames shown in Problems 
3.21 to 3.24, determine the support reactions and the member forces due to the applied 
loads. Assume E=205 kN/mm2 and α=12×10−6/°C where required.  
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Problem 3.21 

 

Problem 3.22 

 

Problem 3.23 

 

Problem 3.24 
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3.6.4 Solutions: Unit Load Method for Singly-Redundant Pin-
Jointed Frames 
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4. 
Beams 

4.1 Statically Determinate Beams 

Two parameters which are fundamentally important to the design of beams are shear 
force and bending moment. These quantities are the result of internal forces acting on the 

material of a beam in response to an externally applied load system. 

4.1.1 Example 4.1: Beam with Point Loads 
Consider a simply supported beam as shown in Figure 4.1 carrying a series of secondary 

beams each imposing a point load of 4 kN. 

 

Figure 4.1 

This structure can be represented as a line diagram as shown in Figure 4.2: 

 

Figure 4.2 

Since the externally applied force system is in equilibrium, the three equations of 
static equilibrium must be satisfied, i.e. 



+ve ↑ ΣFy=0 The sum of the vertical forces must equal zero. 

 
The sum of the moments of all forces about any point on 
the plane of the forces must equal zero. 

+ve→ ΣFx=0 The sum of the horizontal forces must equal zero. 

The assumed positive directions are as indicated. In this particular problem there are no 
externally applied horizontal forces and consequently the third equation is not required. 

(Note: It is still necessary to provide horizontal restraint to a structure 
since it can be subject to a variety of load cases, some of which may have 
a horizontal component.)  

Consider the vertical equilibrium of the beam: 

 

Equation 
(1) 

Note: The sum of the moments is taken about one end of the beam (end A) for 
convenience. Since one of the forces (VA) passes through this point it does not produce a 
moment about A and hence does not appear in the equation. It should be recognised that 
the sum of the moments could have been considered about any known point in the same 

plane. 

 
Equation 
(2) 

This calculation was carried out considering only the externally applied forces, i.e. 
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Figure 4.3 

The structure itself was ignored, however the applied loads are transferred to the end 
supports through the material fibres of the beam. Consider the beam to be cut at section 

X–X producing two sections each of which is in equilibrium as shown in Figure 4.4.  

 

Figure 4.4 

Clearly if the two sections are in equilibrium there must be internal forces 
acting on the cut surfaces to maintain this; these forces are known as the 
shear force and the bending moment, and are illustrated in Figure 4.5 

 

Figure 4.5 
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The force V and moment M are equal and opposite on each surface. The magnitude and 
direction of V and M can be determined by considering two equations of static 

equilibrium for either of the cut sections; both will give the same answer. 

Consider the left-hand section with the ‘assumed’ directions of the internal 
forces V and M as shown in Figure 4.6. 

 

Figure 4.6 

4.1.2 Shear Force Diagrams 
In a statically determinate beam, the numerical value of the shear force can be obtained 

by evaluating the algebraic sum of the vertical forces to one side of the section being 
considered. The convention adopted in this text to indicate positive and negative shear 

forces is shown in Figure 4.7.  

 

Figure 4.7 

The calculation carried out to determine the shear force can be repeated at 
various locations along a beam and the values obtained plotted as a graph; 
this graph is known as the shear force diagram. The shear force diagram 
indicates the variation of the shear force along a structural member. 

Consider any section of the beam between A and B: 
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Note: The value immediately under the point load at the cut section is not being 
considered. 

 
  

This value is a constant for all values of x between zero and 600 mm, the graph will 
therefore be a horizontal line equal to 10.0 kN. This force produces a +ve shear effect, i.e. 

 

Consider any section of the beam between B and C: 

 

 
  

This value is a constant for all values of x between 600 mm and 1200 mm, the graph will 
therefore be a horizontal line equal to 6.0 kN. This force produces a +ve effect shear 

effect. 

Similarly for any section between C and D:  
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Consider any section of the beam between D and E: 

 

  

   

 
  

 
  

and 

 
  

In each of the cases above the value has not been considered at the point of application of 
the load. 

Consider the location of the applied load at B shown in Figure 4.8. 

 

Figure 4.8 
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The 4.0 kN is not instantly transferred through the beam fibres at B but instead over the 
width of the actual secondary beam. The change in value of the shear force between 

x<600 mm and x>600 mm occurs over this width, as shown in Figure 4.9.  

 

Figure 4.9 

The width of the secondary beam is insignificant when compared with the overall span, 
and the shear force is assumed to change instantly at this point, producing a vertical line 

on the shear force diagram as shown in Figure 4.10. 

 

Figure 4.10 

The full shear force diagram can therefore be drawn as shown in Figure 4.11. 
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Figure 4.11 

The same result can be obtained by considering sections from the right-hand side of the 
beam.  

4.1.3 Bending Moment Diagrams 
In a statically determinate beam the numerical value of the bending moment (i.e. 

moments caused by forces which tend to bend the beam) can be obtained by evaluating 
the algebraic sum of the moments of the forces to one side of a section. In the same 

manner as with shear forces either the left-hand or the right-hand side of the beam can be 
considered. The convention adopted in this text to indicate positive and negative bending 

moments is shown in Figures 4.12(a) and (b). 

Bending inducing tension on the underside of a beam is considered 
positive. 

 

Figure 4.12(a) 

Bending inducing tension on the top of a beam is considered negative. 
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Figure 4.12(b) 

Note: Clockwise/anti-clockwise moments do not define +ve or −νe bending moments. 
The sign of the bending moment is governed by the location of the tension surface at the 

point being considered. 

As with shear forces the calculation for bending moments can be carried 
out at various locations along a beam and the values plotted on a graph; 
this graph is known as the ‘bending moment diagram’. The bending 
moment diagram indicates the variation in the bending moment along a 
structural member. 

Consider sections between A and B of the beam as before: 

 

In this case when x=600 mm the 4.0 kN load passes through the section being considered 
and does not produce a bending moment, and can therefore be ignored.  

 
  

Unlike the shear force, this expression is not a constant and depends on the value of ‘x’ 
which varies between the limits given. This is a linear expression which should be 

reflected in the calculated values of the bending moment. 

x=0 Mx= 10.0×0=zero 

x=200 mm Mx=10.0×0.2=2.0 kNm 
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x=400 mm Mx=10.0×0.4=4.0 kNm 

x=600 mm Mx=10.0×0.6–6.0 kNm 

Clearly the bending moment increases linearly from zero at the simply supported end to a 
value of 6.0 kNm at point B. 

Consider sections between B and C of the beam: 

 

  

   

 

x=800 mm Mx =+(10.0×0.8)−(4.0×0.2)=7.2 kNm 

x=1000 mm Mx=+(10.0×1.0)−(4.0×0.4)−8.4 kNm 

x=1200 mm Mx =+(10.0×1.2)−(4.0×0.6)=9.6 kNm 

As before the bending moment increases linearly, i.e. from 7.2 kNm at x=800 mm to a 
value of 9.6 kNm at point C. 

Since the variation is linear it is only necessary to evaluate the magnitude 
and sign of the bending moment at locations where the slope of the line 
changes, i.e. each of the point load locations.  
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Consider point D: 

 

   

Consider point E: 

 

   

Similarly at point F: 

   

The full bending moment diagram can therefore be drawn as shown in Figure 4.13. 

 

Figure 4.13 
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The same result can be obtained by considering sections from the right-hand side of the 
beam. The value of the bending moment at any location can also be determined by 

evaluating the area under the shear force diagram.  

Consider point B: 

 

Bending moment at B=shaded area on the shear force diagram 

MB=(10.0×0.6)=6.0 kNm as before 

  

Consider a section at a distance of x=900 mm along the beam between D and E: 

 

Bending moment at x=shaded area on the shear force diagram 

Mx=(10.0×0.6)+(6.0×0.3)=7.8 kNm as before 

Consider a section at a distance of x=2100 mm along the beam 
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between D and E: 

 

Bending moment at x=shaded area on the shear force diagram 

 
  

(Note: A maximum bending moment occurs at the same position as a zero shear force.)  

4.1.4 Example 4.2: Beam with a Uniformly Distributed Load (UDL) 
Consider a simply-supported beam carrying a uniformly distributed load of 5 kN/m, as 

shown in Figure 4.14 

 

Figure 4.14 

The shear force at any section a distance x from the support at A is given by: 
Vx=algebraic sum of the vertical forces 
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This is a linear equation in which Vx decreases as x increases. The points of interest are at 
the supports where the maximum shear forces occur, and at the locations where the 

maximum bending moment occurs, i.e. the point of zero shear. 

Vx=0 when +9.0−5.0x=0 ∴ x=1.8 m 
  

Any intermediate value can be found by substituting the appropriate value of ‘x’ in the 
equation for the shear force; e.g. 

x=600 mm Vx =+9.0−(5.0×0.6)=+6.0 kN 

x=2100 mm Vx =+9.0−(5.0×2.1) =−1.5 kN 

The shear force can be drawn as shown in Figure 4.15. 

 

Figure 4.15 

The bending moment can be determined as before, either using an equation or evaluating 
the area under the shear force diagram.  

Using an equation: 
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Bending moment at x: Mx =+(9.0×x)−[(5.0×x)×(x/2)]=(9.0x−2.5x2)  

In this case the equation is not linear, and the bending moment diagram 
will therefore be curved. 

Consider several values: 

x=0 Mx=zero 

x=600 mm Mx =+(9.0×0.6)−(2.5×0.62)=4.5 kNm 

x=1800 mm Mx =+(9.0×1.8)−(2.5×1.82)=8.1 kNm 

x=2100 mm Mx =+(9.0×2.1)−(2.5×2.12)=7.88 kNm 

Using the shear force diagram: 

 

  

Mx=shaded area =+[0.5×(9.0+6.0)×0.6]=4.5 kNm 

 

  

Mx=shaded area =+[0.5×9.0×1.8]=8.1 kNm 

x=2100 mm 
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Mx=shaded area =+[8.1−(0.5×0.3×1.5)]=7.88 kNm 

The bending moment diagram is shown in Figure 4.16. 

 

Figure 4.16 

The UDL loading is a ‘standard’ load case which occurs in numerous beam designs and 
can be expressed in general terms using L for the span and w for the applied load/metre 

or Wtotal(= wL) for the total applied load, as shown in Figure 4.17.  

 

Figure 4.17 

Clearly both give the same magnitude of support reactions, shear forces and bending 
moments. 

In cantilever beams, all support restraints are provided at one location, i.e. 
an ‘encastre’ or ‘fixed’ support as shown in Example 4.3. 
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4.1.5 Example 4.3: Cantilever Beam 
Consider the cantilever beam shown in Figure 4.18 which is required to support a 

uniformly distributed load in addition to a mid-span point load as indicated. 

 

Figure 4.18 

Support Reactions 

 

  

Shear force at B: 

VB=[51.0−(6.0×3.0)]=33.0 kN 

and=(33.0–15.0)=18.0 kN 
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4.1.6 Problems: Statically Determinate Beams—Shear Force and 
Bending Moment 

A series of simply supported beams are indicated in Problems 4.1 to 4.10. Using the 
applied loading given in each case: 

i) determine the support reactions, 

ii) sketch the shear force diagram and 

iii) sketch the bending moment diagram indicating the maximum value(s). 

 

Problem 4.1 
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Problem 4.2 

 

Problem 4.3 

 

Problem 4.4 

 

Problem 4.5 

 

Problem 4.6 
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Problem 4.7 

 

Problem 4.8 

 

Problem 4.9 

 

Problem 4.10 
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4.1.7 Solutions: Statically Determinate Beams—Shear Force and 
Bending Moment 
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4.2 McCaulay’s Method for the Deflection of Beams 

In elastic analysis the deflected shape of a simply supported beam is normally assumed to 
be a circular arc of radius R (R is known as the radius of curvature), as shown in Figure 

4.19. 

 

Figure 4.19  

Consider the beam AB to be subject to a variable bending moment along its length. 
The beam is assumed to deflect as indicated. 

R is the radius of curvature, 

L is the span, 

I is the second moment of area about the axis of bending, 

E is the modulus of elasticity, 

ds is an elemental length of beam measured a distance of x from the left-
hand end 
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M is the value of the bending moment at position x. 

The slope of the beam at position x is given by: 

 
  

Differentiating the slope with respect to x gives: 

 

Equation 
(1)—
bending 
moment 
(Mx) 

Integrating Equation (1) with respect to x gives 

 Equation 
(2)—
EI×slop
e (EIθ) 

Integrating Equation (2) with respect to x gives 

 Equation 
(3)—
EI×deflectio
n (EIδ) 

Equations (1) and (2) result in two constants of integration A and B; these are determined 
by considering boundary conditions such as known values of slope and/or deflection at 

positions on the beam.  
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4.2.1 Example 4.4: Beam with Point Loads 
Consider a beam supporting three point loads as shown in Figure 4.20. 

 

Figure 4.20 

Step 1: Formulate an equation which represents the value of the bending moment at a 
position measured x from the left-hand end of the beam. This expression must include all 

of the loads and x should therefore be considered between points D and E. 

 

Figure 4.21 

Consider the vertical equilibrium of the beam: 

 
(i) 

Consider the rotational equilibrium of the beam: 

 

(ii) 
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Substituting into equation (i) gives ∴ VA=8.8 kN 

The equation for the bending moment at x: 

 
Equation 
(1) 

The equation for the slope (θ) at x:  

 Equation 
(2) 

The equation for the deflection (δ) at x: 

 Equation 
(3) 

where A and B are constants of integration related to the boundary conditions. 

Note: It is common practice to use square brackets, i.e. [], to enclose the 
lever arms for the forces as shown. These brackets are integrated as a unit 
and during the calculation for slope and deflection; they are ignored if the 
contents are −ve, i.e. the position x being considered is to the left of the 
load associated with the bracket. 

Boundary Conditions 

The boundary conditions are known values associated with the slope 
and/or deflection. In this problem, assuming no settlement occurs at the 
supports then the deflection is equal to zero at these positions, i.e. 
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Substituting for x and y in equation (3) ∴ B=0 

 

  

The general equations for the slope and deflection at any point along the length of the 
beam are given by: 

The equation for the slope at x: 

 Equation 
(4) 

The equation for the deflection at x: 

 Equation 
(5) 

e.g. the deflection at the mid-span point can be determined from equation (5) by 
substituting the value of x=5.0 and ignoring the [] when their contents are −ve, i.e.  
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The maximum deflection can be determined by calculating the value of x when the slope, 
i.e. equation (4) is equal to zero and substituting the calculated value of x into equation 

(5) as above. 

In most simply supported spans the maximum deflection occurs near the 
mid-span point this can be used to estimate the value of x in equation (4) 
and hence eliminate some of the [] brackets, e.g. if the maximum 
deflection is assumed to occur at a position less than 6.0 m from the left-
hand end the last two terms in the [] brackets need not be used to 
determine the position of zero slope. This assumption can be checked and 
if incorrect a subsequent calculation carried out including an additional 
bracket until the correct answer is found. 

Assume ymaximum occurs between 5.0 m and 6.0 m from the left-hand end 
of the beam, then: 

The equation for the slope at x is: 

 
  

This equation reduces to: 

   

since x was assumed to lie between 5.0 m and 6.0 m ignoring the two [] terms was 
correct. The maximum deflection can be found by substituting the value of x=5.2 m in 

equation (5) and ignoring the [] when their contents are −ve, i.e. 

 

  

Note: There is no significant difference from the value calculated at mid-span. 
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4.2.2 Example 4.5: Beam with Combined Point Loads and UDLs 
A simply supported beam ABCD carries a uniformly distributed load of 3.0 kN/m 

between A and B, point loads of 4 kN and 6 kN at B and C respectively, and a uniformly 
distributed load of 5.0 kN/m between B and D as shown in Figure 4.22. Determine the 

position and magnitude of the maximum deflection.  

 

Figure 4.22 

Consider the vertical equilibrium of the beam: 

 (i) 

Consider the rotational equilibrium of the beam: 

 
(ii) 

Substituting into equation (i) gives ∴ VA= 16.33 kN 

 

Figure 4.23 

In the case of a UDL when a term is written in the moment equation in square brackets, 
[], this effectively applies the load for the full length of the beam. For example, in Figure 

4.23 the 3.0 kN/m load is assumed to apply from A to D and consequently only an 
additional 2.0 kN/m need be applied from position B onwards as shown in Figure 4.24.  
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Figure 4.24 

The equation for the bending moment at x is: 

 Equation 
(1) 

The equation for the slope at x is: 

 Equation 
(2) 

The equation for the deflection at x is: 

 Equation 
(3) 

where A and B are constants of integration related to the boundary conditions. 
Boundary Conditions 
In this problem, assuming no settlement occurs at the supports then the deflection is equal 

to zero at these positions, i.e. 

 

  

Substituting for x and y in equation (3) ∴ B=0 
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The general equations for the slope and bending moment at any point along the length of 
the beam are given by: 

The equation for the slope at x: 

 Equation 
(4) 

The equation for the deflection at x: 

 Equation 
(5) 

Assume ymaximum occurs between 2.0 m and 4.0 m from the left-hand end of the beam, 
then: 

The equation for the slope at ‘x’ is: 

 

  

This cubic can be solved by iteration. 

Guess a value for x, e.g. 3.1 m 

(16.33×3.12)/2−(3.0×3.13)/6−(4.0×1.12)/2−(2.0×1.13)/6−58.98=1.73   
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>0 

The assumed value of 3.1 is slightly high, try x=3.05 m 

(16.33×3.052)/2−(3.0×3.053)/6−(4.0×1.052)/2−(2.0×1.053)/6–
58.98=0.20 

  

This value is close enough. x=3.05 m and since x was assumed to lie between 2.0 m and 
4.0 m, ignoring the [x−4] term was correct. 

The maximum deflection can be found by substituting the value of x=3.05 
m in equation (5) and ignoring the [] when their contents are −ve, i.e. 

 

  

4.3 Equivalent Uniformly Distributed Load Method for the 
Deflection of Beams 

In a simply supported beam, the maximum deflection induced by the applied loading 
always approximates the mid-span value if it is not equal to it. A number of standard 
frequently used load cases for which the elastic deformation is required are given in 

Appendix 2 in this text. 

In many cases beams support complex load arrangements which do not 
lend themselves either to an individual load case or to a combination of 
the load cases given in Appendix 2. Provided that deflection is not the 
governing design criterion, a calculation which gives an approximate 
answer is usually adequate. The equivalent UDL method is a useful tool 
for estimating the deflection in a simply supported beam with a complex 
loading. 
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Consider a single-span, simply supported beam carrying a non-uniform 
loading which induces a maximum bending moment of M as shown in 
Figure 4.25.  

 

Figure 4.25 

The equivalent UDL (we) which would induce the same magnitude of maximum bending 
moment (Note: the position may be different) on a simply supported span carrying a 

uniform loading can be determined from: 

 

  

where we is the equivalent uniform distributed load. 

The maximum deflection of the beam carrying the uniform loading will 
occur at the mid 

 
  

Using this expression, the maximum deflection of the beam carrying the non-uniform 
loading can be estimated by substituting for the we term, i.e. 
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The maximum bending moments in Examples 5.4 and 5.5 are 32.8 kNm and 30.67 kNm 
respectively (the reader should check these answers). 

Using the equivalent UDL method to estimate the maximum deflection in 
each case gives: 

 

  

Note: The estimated deflection is more accurate for beams which are predominantly 
loaded with distributed loads.  

4.3.1 Problems: McCaulay’s and Equivalent UDL Methods for 
Deflection of Beams 

A series of simply supported beams are indicated in Problems 4.11 to 4.15. Using the 
applied loading given in each case determine the maximum deflection. Assume all beams 

are uniform with Young’s Modulus of Elasticity=E and Second Moment of Area=I  

 

Problem 4.11 
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Problem 4.12 

 

Problem 4.13 

 

Problem 4.14 

 

Problem 4.15 
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4.3.2 Solutions: McCaulay’s and Equivalent UDL Methods for 
Deflection of Beams 
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4.4 The Principle of Superposition 

The Principle of Superposition can be stated as follows: 

‘If the displacements at all points in a structure are proportional to the 
forces causing them, the effect produced on that structure by a number of 
forces applied simultaneously, is the same as the sum of the effects when 
each of the forces is applied individually.’ 

This applies to any structure made from a material which has a linear load-
displacement relationship. Consider the simply-supported beam ABCD 
shown in Figure 4.26 which carries two point loads at B and C as 
indicated. 

 

Figure 4.26 

 

Figure 4.27 

Beams     231



Note: the maximum deflection does not necessarily occur at the mid-span point. 

When the loads are considered individually the corresponding functions 
are as indicated in Figure 4.28.  

 

Figure 4.28 

It is evident from Figure 4.28 that: 

VA=(12.0+7.5)=19.5 kN; VD=(4.0+12.5)=16.5 kN   

   

 

  

This Principle can be used very effectively when calculating the deflection of beams, 
(particularly non-uniform beams), as used in the Examples and Problems given in Section 

4.5. Examples 5.6 to 5.10 illustrate the application of the Principle. 
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4.4.1 Example 4.6: Superposition—Beam 1 

 

Figure 4.29 

Using superposition this beam can be represented as the sum of the two load cases shown 
in Figure 4.30.  

 

Figure 4.30 
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4.4.2 Example 4.7: Superposition—Beam 2 

 

Figure 4.31 

Using superposition this beam can be represented as the sum of:  

 

Figure 4.32 
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4.4.3 Example 4.8: Superposition—Beam 3 

 

Figure 4.33 

Using superposition this beam can be represented as the sum of:  

 

Figure 4.34 

VA=(24.0+12.0+5.0–2.5)=38.5 kN;  
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4.4.4 Example 4.9: Superposition-Beam 4 

 

Figure 4.35 

Using superposition this beam can be represented as the sum of: 

 

Figure 4.36 
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4.4.5 Example 4.10: Superposition -Beam 5 

 

Figure 4.37 

Using superposition this beam can be represented as the sum of: 

 

Figure 4.38 
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4.5 Unit Load Method for Deflection of Beams 

In Chapter 3, Section 3.5 the deflection of pin-jointed frames was calculated using the 
concept of strain energy and Castigliano’s 1st Theorem. This approach can also be applied 
to structures such as beams and rigid-jointed frames in which the members are primarily 
subject to bending effects. 

In the case of pin-jointed frames the applied loads induce axial load effects 
and subsequent changes in the lengths of the members. In the case of 
beams and rigid-jointed frames, the corresponding applied loads induce 
bending moments and subsequent changes in the slope of the member. 

Pin-jointed frames comprise discrete members with individual axial loads 
which are constant along the length of the member. In beams the bending 
moment generally varies along the length and consequently the summation 
of the bending effect for the entire beam is the integral of a function 
involving the bending moment. 

4.5.1 Strain Energy (Bending Load Effects) 
A simply-supported beam subjected to a single point load is shown in Figure 4.39. An 

incremental length of beam dx, over which the bending moment can be considered to be 
constant, is indicated a distance ‘x’ from the left-hand support. 
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Figure 4.39 

From ‘simple bending theory’  

where R is the radius of curvature and 1/R is the curvature of the beam, 
i.e. the rate of 

change of slope.  

Assuming the moment is applied to the beam gradually, the relationship 
between the moment and the change in slope is as shown in Figure 4.40.  

 

Figure 4.40 

Differentiating the expression for strain energy with respect to x gives: 
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Using Castigliano’s 1st Theorem relating to strain energy and structural deformation: 

 
  

where: 

U is the total strain energy of the structure due to the applied load system, 

W is the force or moment acting at the point where the displacement or 
rotation is required, 

Δ is the linear displacement or rotation in the direction of the line of 
action of W. 

Consider the simply-supported beam ABCD shown in Figure 4.41 in which it is required 
to determine the mid-span deflection at C due to an applied load P at position B. 

 

Figure 4.41 
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Step 1: 
The applied load bending moment diagram is determined as shown in Figure 4.42 

 

Figure 4.42 

Step 2: 
The applied load system is removed from the structure and an imaginary Unit load is 

applied at the position and in the direction of the required deflection, i.e. a vertical load 
equal to 1.0 at point C. The resulting bending moment diagram due to the unit load is 

indicated in Figure 4.43  

 

Figure 4.43 

If both the Step 1 and the Step 2 load systems are considered to act 
simultaneously, then by superposition the bending moment in the beam is 
given by: 

   

where: 

M is the bending moment due to the applied load system 

m is the bending moment due to the applied imaginary Unit load applied 
at C 

β is a multiplying factor to reflect the value of the load applied at C, 
(since the unit load is an imaginary force the value of β=zero and is 
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used here as a mathematical convenience.) 

The strain energy in the structure is equal to the total energy stored along the full length 
of the beam: 

 

  

Using Castigliano’s 1st Theorem the deflection of point C is given by: 

 

  

Since β=zero the vertical deflection at B (Δβ) is given by: 

 

  

i.e. the deflection at any point in a beam can be determined from: 

 

  

where:  

δ is the displacement of the point of application of any load, along the 
line of action of that load, 
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M is the bending in the member due to the externally applied load system, 

m is the bending moment in member due to a unit load acting at the 
position of, and in the direction of the desired displacement, 

I is the second-moment of area of the member, 

E is the modulus of elasticity of the material for the member. 

4.5.2 Example 4.11: Deflection and Slope of a Uniform Cantilever 
A uniform cantilever beam is shown in Figure 4.44 in which a 20 kN is applied at B as 

indicated. Determine the magnitude and direction of the deflection and slope at B. 

 

Figure 4.44 

The bending moment diagrams for the applied load, a unit point load at B and a unit 
moment at B are shown in Figure 4.45. 

 

Figure 4.45 
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Solution: 

 

  

The bending moment at position ‘x’ due to the applied vertical load M=−20.0x 

The bending moment at position ‘x’ due to the applied unit vertical load 
m=−x 

 

  

The bending moment at position ‘x’ due to the applied unit moment at B m=−1.0  

 

  

The product integral can be also be calculated as: 

(Area of the applied load bending moment diagram×the ordinate on the 
unit load bending moment diagram corresponding to the position of the 
centroid of the applied load bending moment diagram), e.g. 

To determine the vertical deflection: 

Area of the applied load bending moment diagram A=(0.5×4.0×80.0)=160 
kNm2 

Ordinate at the position of the centroid y1=2.67 m 
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To determine the slope: 

Area of the applied load bending moment diagram A=(0.5×4.0×80.0)=160 
kNm2 

Ordinate at the position of the centroid y2=1.0 

 
  

4.5.3 Example 4.12: Deflection and Slope of a Non-Uniform 
Cantilever 

Consider the same problem as in Example 4.11 in which the cross-section of the 
cantilever has a variable EI value as indicated in Figure 4.46. 

 

Figure 4.46 

The bending moment diagrams for the applied load, a unit point load at C and a unit 
moment at C are shown in Figure 4.47. 
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Figure 4.47 

Solution: 

 

  

In this case since (Mm/EI) is not a continuous function the product integral must be 
evaluated between each of the discontinuities, i.e. C to B and B to A. 

 

  

Consider the section from C to B:  
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Consider the section from B to A:  

 

  

Similarly to determine the slope: 

 

  

Consider the section from C to B:  

 

  

Consider the section from B to A:  

 

  

Alternatively, the applied bending moment diagram can be considered as a the sum of 
the areas created by the discontinuity. (In most cases this will result in a number of 
recognised shapes e.g. triangular, rectangular or parabolic, in which the areas and the 
position of the centroid can be easily calculated). 
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The deflection can then be determined by summing the products 
(area×ordinate) for each of the shapes. 

 

  

The slope can then be determined by summing the products (area×ordinate) for each of 
the shapes. 

 

  

4.5.4 Example 4.13: Deflection and Slope of a Linearly Varying 
Cantilever 

Consider the same problem as in Example 4.11 in which the cross-section of the 
cantilever has an I which varies linearly from I at the free end to 2I at the fixed support at 
A as indicated in Figure 4.48. Determine the vertical displacement and the slope at point 

B for the loading indicated. 

 

Figure 4.48 
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The value of I at position ‘x’ along the beam is given by: I+I(x/L)=I(L+x)/L. 

In this case since the I term is dependent on x it cannot be considered 
outside the integral as a constant. The displacement must be determined 
using integration and cannot be calculated using the sum of the 
(area×ordinate) as in Examples 5.11 and 5.12.  

 

Figure 4.49 

Solution: 

The bending moment at position ‘x’ due to the applied vertical load 
M=−20.0x 

The bending moment at position ‘x’ due to the applied unit vertical load 
m=−x 
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The bending moment at position ‘x’ due to the applied unit moment at B m=−1.0  

 

  

4.5.5 Example 4.14: Deflection of a Non-Uniform, Simply-Supported 
Beam 

A non-uniform, single-span beam ABCD is simply-supported at A and D and carries 
loading as indicated in Figure 4.50. Determine the vertical displacement at point B. 

 

Figure 4.50 
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The bending moment diagrams for the applied load, a unit point load at B are shown in 
Figure 4.51. 

The beam loading can be considered as the superposition of a number of 
load cases each of which produces a bending moment diagram with a 
standard shape. Since there are discontinuities in the bending moment 
diagrams the product integrals should be carried out for the three regions 
A to B, D to C and C to B.  

 

Figure 4.51 

Solution: 

It is convenient in this problem to change the position of the origin from 
which ‘x’ is measured for the different regions A–B, D–C and C–B as 
shown in Figure 4.51. 
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Consider the section from A to B:  

 

  

Consider the section from D to C:  

 

  

Consider the section from C to B:  

 

  

Alternatively: considering Σ (areas×ordinates)  

 

Figure 5.52 
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4.5.6 Example 4.15: Deflection of a Frame and Beam Structure 
A uniform beam BCD is tied at B, supported on a roller at C and carries a vertical load at 
D as indicated in Figure 4.53. Using the data given determine the vertical displacement at 

point D. 

 

Figure 4.53 

Solution: 

Consider the rotational equilibrium of the beam: 
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Consider the vertical equilibrium of the structure: 

   

Since the structure comprises both an axially loaded member and a flexural member the 
deflection at D is given by:  

 

  

 

Figure 4.54 
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Consider the section from B to C:  

 

  

Consider the section from D to C:  

 

  

In the previous examples the product integrals were also determined using: 

(the area of the applied bending moment diagram×ordinate on the unit 
load bending moment diagram). 

In Table 4.1 coefficients are given to enable the rapid evaluation of 
product integrals for standard cases along lengths of beam where the EI 
value is constant. 
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Table 4.1 

Consider the contribution from the beam BCD to the vertical deflection at D in Example 
4.15. 
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4.5.7 Example 4.16: Deflection of a Uniform Cantilever using 
Coefficients 

A uniform cantilever beam is shown in Figure 4.55 in which a uniformly distributed load 
and a vertical load is applied as indicated. Using the coefficients in Table 4.1 determine 

the magnitude and direction of the deflection at D. 

 

Figure 4.55 

The bending moment diagrams for the applied loads and a unit point load at B are shown 
in Figure 4.56.  

 

Figure 4.56 

Solution: 

Consider the unit load bending moment diagrams for both applied loads as 
the sum of rectangular and a triangular area as shown.  
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4.5.8 Problems: Unit Load Method for Deflection of Beams/Frames 
A series of statically-determinate beams/frames are indicated in Problems 4.16 to 4.23. 
Using the applied loading given in each case determine the deflections indicated. The 
relative values of Young’s Modulus of Elasticity (E), Second Moment of Area (I) and 

Cross-sectional area (A) are given in each case.  

 

Problem 4.16 

 

Problem 4.17 
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Problem 4.18 

 

Problem 4.19 

 

Problem 4.20 
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Problem 4.21 

 

Problem 4.22 

 

Problem 4.23 
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4.5.9 Solutions: Unit Load Method for Deflection of Beams/Frames 
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4.6 Statically Indeterminate Beams 

In many instances multi-span beams are used in design, and consequently it is necessary 
to consider the effects of the continuity on the support reactions and member forces. Such 
structures are indeterminate (see Chapter 1) and there are more unknown variables than 
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can be solved using only the three equations of equilibrium. A few examples of such 
beams are shown in Figure 4.57(a) to (d). 

 

Figure 4.57(a) 

 

Figure 4.57(b) 

 

Figure 4.57(c) 

 

Figure 4.57(d) 

A number of analysis methods are available for determining the support reactions, and 
member forces in indeterminate beams. In the case of singly-redundant beams the ‘unit-

load method’ can be conveniently used to analyse the structure. In multi-redundant 
structures the method of ‘moment distribution’ is a particularly useful hand-method of 

analysis. These methods are considered in Sections 4.6.1 and 4.6.2 respectively.  
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4.6.1 Unit Load Method for Singly-Redundant Beams 
Using the method of analysis illustrated in Section 4.5 and considering the compatibility 
of displacements, member forces in singly-redundant beams can be determined as shown 

in Examples 4.17 and 4.18 and in Problems 4.24 to 4.27. 

4.6.2 Example 4.17: Singly-Redundant Beam 1 
A propped cantilever ABC is fixed at A, supported on a roller at C and carries a mid-span 

point load of 15 kN as shown in Figure 4.58, 

(i) determine the value of the support reactions and 

(ii) sketch the shear force and bending moment diagram. 

 

Figure 4.58 

The degree-of-indeterminacy ID=[(3m+r)]−3n=[(3×1)+4]−(3×2)=1 

Assume that the reaction at C is the redundant reaction and consider the 
original beam to be the superposition of two beams as indicated in Figures 
4.59(a) and (b). The beam in Figure 4.59(b) can be represented as shown 
in Figure 4.60. (Note: HA=zero)  

 

Figure 4.59 
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Figure 4.60 

To maintain compatibility at the roller support, i.e. no resultant vertical displacement, the 
deformation of point C in Figure 4.59(a) must be equal and opposite to that in Figure 

4.59(b) as shown in Figure 4.61.  

 

Figure 4.61 

(δ′ due to the applied load)+(δ″ due to the unit load)×VC=0 

 
  

The product integrals can be evaluated as before in Section 4.5, e.g. using the coefficients 
in Table 4.1. 

Solution: 

The bending moment diagrams for the applied loads and a unit point load 
at B are shown in Figure 4.62. 

 

Figure 4.62 
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Using the coefficients given in Table 4.1: 

 

  

 

Figure 4.63 

4.6.3 Example 4.18: Singly-Redundant Beam 2 
A non-uniform, two-span beam ABCD is simply supported at A, B and D as shown in 

Figure 4.64. The beam carries a uniformly distributed load on span AB and a point at the 
mid-span point of BCD. Using the data given: 
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(i) determine the value of the support reactions, 

(ii) sketch the shear force and bending moment diagrams. 

 

Figure 4.64 

Solution: 

Assume that the reaction at B is the redundant reaction. The bending 
moment diagrams for the applied loads and a unit point load at B are 
shown in Figure 4.65.  

 

Figure 4.65 
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Figure 4.66 
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4.6.4 Problems: Unit Load Method for Singly-Redundant Beams 
A series of singly-redundant beams are indicated in Problems 4.24 to 4.27. Using the 

applied loading given in each case: 

i) determine the support reactions, 

ii) sketch the shear force diagram and 

iii) sketch the bending moment diagram. 

 

Problem 4.24 

 

Problem 4.25 

 

Problem 4.26 
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Problem 4.27 

4.6.5 Solutions: Unit Load Method for Singly-Redundant Beams 
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4.7 Moment Distribution Method for Multi-Redundant Beams 

This section deals with continuous beams and propped cantilevers. An American 
engineer, Professor Hardy Cross, developed a very simple, elegant and practical method 

of analysis for such structures called Moment Distribution. This technique is one of 
developing successive approximations and is based on several basic concepts of 

structural behaviour which are illustrated in Sections 4.6.1 to 4.6.10. 

4.7.1 Bending (Rotational) Stiffness 
A fundamental relationship which exists in the elastic behaviour of structures and 

structural elements is that between an applied force system and the displacements which 
are induced by that system, i.e. 

 
  

where: 

P is the applied force, 

k is the stiffness, 

δ is the displacement. 

A definition of stiffness can be derived from this equation by rearranging it such that: 

k=P/δ 

when δ=1.0 (i.e. unit displacement) the stiffness is: ‘the force necessary to 
maintain a UNIT displacement, all other displacements being equal to 
zero.’ 

The displacement can be a shear displacement, an axial displacement, a 
bending (rotational) displacement or a torsional displacement, each in turn 
producing the shear, axial, bending or torsional stiffness. 

When considering beam elements in continuous structures using the 
moment distribution method of analysis, the bending stiffness is the 
principal characteristic which influences behaviour. 
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Consider the beam element AB shown in Figure 4.67 which is subject to a 
UNIT rotation at end A and is fixed at end B as indicated. 

 

Figure 4.67 

The force (MA) necessary to maintain this displacement can be shown to be equal to 
(4EI)/L (see Chapter 7, Section 7.2.2). From the definition of stiffness given previously, 

the bending stiffness of the beam is equal to (Force/1.0), therefore k=(4EI)/L. This is 
known as the absolute bending stiffness of the element. Since most elements in 

continuous structures are made from the same material, the value of Young’s Modulus 
(E) is constant throughout and 4E in the stiffness term is also a constant. This constant is 
normally ignored, to give k=I/L which is known as the relative bending stiffness of the 
element. It is this value of stiffness which is normally used in the method of Moment 

Distribution. It is evident from Figure 4.67 that when the beam element deforms due to 
the applied rotation at end A, an additional moment (MB) is also transferred by the 

element to the remote end if it has zero slope (i.e. is fixed) The moment MB is known as 
the carry-over moment. 

4.7.2 Carry-Over Moment 
Using the same analysis as that to determine MA, it can be shown that MB=(2EI)/L, i.e. 

(½×MA). It can therefore be stated that ‘if a moment is applied to one end of a beam then 
a moment of the same sense and equal to half of its value will be transferred to the 

remote end provided that it is fixed.’ 

If the remote end is ‘pinned’, then the beam is less stiff and there is no 
carry-over moment. 

4.7.3 Pinned End 
Consider the beam shown in Figure 4.68 in which a unit rotation is imposed at end A as 

before but the remote end B is pinned. 

 

Figure 4.68 
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The force (MA) necessary to maintain this displacement can be shown (e.g. using 
McCaulay’s Method) to be equal to (3EI)/L, which represents the reduced absolute 

stiffness of a pin-ended beam. It can therefore be stated that ‘the stiffness of a pin-ended 
beam is equal to ¾×the stiffness of a fixed-end beam.’ In addition it can be shown that 
there is no carry-over moment to the remote end. These two cases are summarised in 

Figure 4.69.  

 

Figure 4.69 

4.7.4 Free and Fixed Bending Moments 
When a beam is free to rotate at both ends as shown in Figures 4.70(a) and (b) such that 

no bending moment can develop at the supports, then the bending moment diagram 
resulting from the applied loads on the beam is known as the Free Bending Moment 

Diagram. 

 

Figure 4.70—Free Bending Moment Diagrams 

When a beam is fixed at the ends (encastre) such that it cannot rotate, i.e. zero slope at 
the supports, as shown in Figure 4.71, then bending moments are induced at the supports 
and are called Fixed-End Moments. The bending moment diagram associated only with 

the fixed-end moments is called the Fixed Bending Moment Diagram. 
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Figure 4.71—Fixed Bending Moment Diagram 

Using the principle of superposition, this beam can be considered in two parts in order to 
evaluate the support reactions and the Final bending moment diagram: 

(i) The fixed-reactions (moments and forces) at the supports 

 

Figure 4.72 

(ii) The free reactions at the supports and the bending 
moments throughout the length due to the applied load, 

assuming the supports to be pinned 

 

Figure 4.73 

Combining (i)+(ii) gives the final bending moment diagram as shown in Figure 4.74:  
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Figure 4.74 

The values of MA and MB for the most commonly applied load cases are given in 
Appendix 2. These are standard Fixed-End Moments relating to single-span encastre 

beams and are used extensively in structural analysis. 

4.7.5 Example 4.19: Single-span Encastre Beam 
Determine the support reactions and draw the bending moment diagram for the encastre 

beam loaded as shown in Figure 4.75. 

 

Figure 4.75 

Solution: 

Consider the beam in two parts. 

(i) Fixed Support Reactions 

The values of the fixed-end moments are given in Appendix 2. 
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Consider the rotational equilibrium of the beam: 

 

Equation 
(1) 

Consider the vertical equilibrium of the beam: 

 
Equation 
(2) 
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Consider the rotational equilibrium of the beam: 

 
Equation 
(1) 

Consider the vertical equilibrium of the beam: 

 
Equation 
(2) 

Bending Moment under the point load =(+13.33×2.0)=+26.67 kNm 
(This induces tension in the bottom of the beam) 

The final vertical support reactions are given by (i)+(ii): 

 

Check the vertical equilibrium: Total vertical force =+14.81+5.19=+20 kN  

 
Figure 4.76 
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Note the similarity between the shape of the bending moment diagram and the final 
deflected shape as shown in Figure 4.77. 

 

Figure 4.77 

4.7.6 Propped Cantilevers 
The fixed-end moment for propped cantilevers (i.e. one end fixed and the other end 

simply supported) can be derived from the standard values given for encastre beams as 
follows. Consider the propped cantilever shown in Figure 4.78, which supports a 

uniformly distributed load as indicated.  

 

Figure 4.78 

The structure can be considered to be the superposition of an encastre beam with the 
addition of an equal and opposite moment to MB applied at B to ensure that the final 

moment at this support is equal to zero, as indicated in Figure 4.79. 

 

Figure 4.79 
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4.7.7 Example 4.20: Propped Cantilever 
Determine the support reactions and draw the bending moment diagram for the propped 

cantilever shown in Figure 4.80. 

 

Figure 4.80 

Solution 

Fixed-End Moment for Propped Cantilever: 

Consider the beam fixed at both supports. 

The values of the fixed-end moments for encastre beams are given in 
Appendix 2. 

 

  

The moment MB must be cancelled out by applying an equal and opposite moment at B 
which in turn produces a carry-over moment equal to-(0.5×MB) at support A.  
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(i) Fixed Support Reactions 

 

Consider the rotational equilibrium of the beam: 

 

Equation 
(1) 

Consider the vertical equilibrium of the beam: 

 

Equation 
(2) 

 

Consider the rotational equilibrium of the beam: 

 
Equation 
(1) 

Examples in structural analysis     314



Consider the vertical equilibrium of the beam:  

 
Equation 
(2) 

The final vertical support reactions are given by (i)+(ii): 

 

  

Check the vertical equilibrium: Total vertical force =+50.0+30.0 =+80 kN  

 

Figure 4.81 

Beams     315



Note the similarity between the shape of the bending moment diagram and the final 
deflected shape as shown in Figure 4.82. 

 

Figure 4.82 

The position of the maximum bending moment can be determined by finding the point of 
zero shear force as shown in Figure 4.83.  

 

Figure 4.83 

4.7.8 Distribution Factors 
Consider a uniform two-span continuous beam, as shown in Figure 4.84. 

 

Figure 4.84 

If an external moment M is applied to this structure at support B it will produce a 
rotation of the beam at the support; part of this moment is absorbed by each of the two 
spans BA and BC, as indicated in Figure 4.85. 
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Figure 4.85 
The proportion of each moment induced in each span is directly proportional to the 

relative stiffnesses, e.g.  

 

  

The ratio is known as the Distribution Factor for the member at the joint where 
the moment is applied. 

As indicated in Section 4.7.2, when a moment (M) is applied to one end of 
a beam in which the other end is fixed, a carry-over moment equal to 50% 
of M is induced at the remote fixed-end and consequently moments equal 
to ½ M1 and ½ M2 will develop at supports A and C respectively, as shown 
in Figure 4.86. 

 

Figure 4.86 

Beams     317



4.7.9 Application of the Method 
All of the concepts outlined in Sections 4.7.1 to 4.7.8 are used when analysing 

indeterminate structures using the method of moment distribution. Consider the two 
separate beam spans indicated in Figure 4.87. 

 

Figure 4.87 

Since the beams are not connected at the support B they behave independently as simply 
supported beams with separate reactions and bending moment diagrams, as shown in 

Figure 4.88. 

 

Figure 4.88 

When the beams are continuous over support B as shown in Figure 4.89(a), a 
continuity moment develops for the continuous structure as shown in Figures 4.89(b) and 
(c). Note the similarity of the bending moment diagram for member AB to the propped 
cantilever in Figure 4.81. Both members AB and BD are similar to propped cantilevers in 
this structure.  
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Figure 4.89 
Moment distribution enables the evaluation of the continuity moments. The method is 

ideally suited to tabular representation and is illustrated in Example 4.21. 

4.7.10 Example 4.21: Three-span Continuous Beam 
A non-uniform, three span beam ABCDEF is fixed at support A and pinned at support F, 

as illustrated in Figure 4.90. Determine the support reactions and sketch the bending 
moment diagram for the applied loading indicated. 

 

Figure 4.90 

Solution: 
Step 1 

The first step is to assume that all supports are fixed against rotation and evaluate the 
‘fixed-end moments’. 

 

The values of the fixed-end moments for encastre beams are given in Appendix 2.  
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* Since support F is pinned, the fixed-end moments are (MDF−0.5MFD) at D and zero at F 
(see Figure 4.79): 

 
Step 2 
The second step is to evaluate the member and total stiffness at each internal joint/support 
and determine the distribution factors at each support. Note that the applied force system 

is not required to do this. 

 

Support C 
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Support D 

 
  

 

  

The structure and the distribution factors can be represented in tabular form, as shown in 
Figure 4.91. 

 

Figure 4.91 

The distribution factor for fixed supports is equal to zero since any moment is resisted by 
an equal and opposite moment within the support and no balancing is required. In the 
case of pinned supports the distribution factor is equal to 1.0 since 100% of any applied 
moment, e.g. by a cantilever overhang, must be balanced and a carry-over of ½×the 
balancing moment transferred to the remote end at the internal support. 
Step 3 
The fixed-end moments are now entered into the table at the appropriate locations, taking 

care to ensure that the signs are correct. 
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Step 4 
When the structure is restrained against rotation there is normally a resultant moment at a 

typical internal support. For example, consider the moments C:  

 

  

If the imposed fixity at one support (all others remaining fixed), e.g. support C, is 
released, the beam will rotate sufficiently to induce a balancing moment such that 
equilibrium is achieved and the moments MCA and MCD are equal and opposite. The 
application of the balancing moment is distributed between CA and CD in proportion to 
the distribution factors calculated previously. 

 

As indicated in Section 4.7.2, when a moment is applied to one end of a beam whilst 
the remote end is fixed, a carry-over moment equal to (½×applied moment) and of the 
same sign is induced at the remote end. This is entered into the table as shown.  
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Step 5 

The procedure outline above is then carried out for each restrained support in turn. The 
reader should confirm the values given in the table for support D. 

 

If the total moments at each internal support are now calculated they are: 

 

It is evident that after one iteration of each support moment the true values are nearer 
to 23.8 kNm and 69.0 kNm for C and D respectively. The existing out-of-balance 
moments which still exist, 0.64 kNm, can be distributed in the same manner as during the 
first iteration. This process is carried out until the desired level of accuracy has been 
achieved, normally after three or four iterations. 
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A slight modification to carrying out the distribution process which still 
results in the same answers is to carry out the balancing operation for all 
supports simultaneously and the carry-over operation likewise. This is 
quicker and requires less work. The reader should complete a further 
three/four iterations to the solution given above and compare the results 
with those shown in Figure 4.92.  

 

Figure 4.92 

The continuity moments are shown in Figure 4.93. 

 

Figure 4.93 

The support reactions and the bending moment diagrams for each span can be calculated 
using superposition as before by considering each span separately.  
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(i) Fixed Support Reactions 

 

Consider span AC: 

 

Equation 
(1) 

Consider the vertical equilibrium of the beam: 

 

Equation 
(2) 

Consider span CD: 

 

Equation 
(1) 

Consider the vertical equilibrium of the beam: 

 

Equation 
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(2) 

Consider span DF:  

 

Equation 
(1) 

Consider the vertical equilibrium of the beam: 

 
Equation 
(2) 

Fixed vertical reactions 

The total vertical reaction at each support due to the continuity moments is 
equal to the algebraic sum of the contributions from each beam at the 
support. 
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Free bending moments 

 

Consider span AC: 

 
Equation 
(1) 

Consider the vertical equilibrium of the beam:  

 
Equation 
(2) 

Consider span CD: 

 
Equation 
(1) 

Consider the vertical equilibrium of the beam: 

 
Equation 
(2) 

Consider span DF: 
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Equation 
(1) 

Consider the vertical equilibrium of the beam: 

 
Equation 
(2) 

 

  

   

The final bending moment diagram is shown in Figure 4.94.  

 
Figure 4.94 
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4.7.11 Problems: Moment Distribution—Continuous Beams 
A series of continuous beams are indicated in Problems 4.28 to 4.32 in which the relative 

EI values and the applied loading are given. In each case: 

i) determine the support reactions, 

ii) sketch the shear force diagram and 

iii) sketch the bending moment diagram. 

 

Problem 4.28 

 

Problem 4.29 

 

Problem 4.30 
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Problem 4.31 

 

Problem 4.32 

4.7.12 Solutions: Moment Distribution—Continuous Beams 
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5. 
Rigid-Jointed Frames 

5.1 Rigid-Jointed Frames 

Rigid-jointed frames are framed structures in which the members transmit applied loads 
by axial, shear, and bending effects. There are basically two types of frame to consider; 

(i) statically determinate frames; see Figure 5.1(a) and 

(ii) statically indeterminate frames; see Figure 5.1(b). 

 

Figure 5.1 

Rigid-joints (moment connections) are designed to transfer axial and shear forces in 
addition to bending moments between the connected members whilst pinned joints 
(simple connections) are designed to transfer axial and shear forces only. Typical 
moment and simple connections between steel members is illustrated in Figure 5.2. 



In the case of statically determinate frames, only the equations of 
equilibrium are required to determine the member forces. They are often 
used where there is a possibility of support settlement since statically 
determinate frames can accommodate small changes of geometry without 
inducing significant secondary stresses. Analysis of such frames is 
illustrated in this Examples 5.1 and 5.2 and Problems 5.1 to 5.4.  

 

Figure 5.2 

Statically indeterminate frames require consideration of compatibility when 
determining the member forces. One of the most convenient and most versatile methods 
of analysis for such frames is moment distribution. When using this method there are two 
cases to consider; no-sway frames and sway frames. Analysis of the former is illustrated 
in Example 5.2 and Problems 5.5 to 5.12 and in the latter in Example 5.4 and Problems 
5.13 to 5.18. 
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5.1.1 Example 5.1 Statically Determinate Rigid–Jointed Frame 1 
A asymmetric portal frame is supported on a roller at A and pinned at support D as 

shown in Figure 5.3. For the loading indicated: 

i) determine the support reactions and 

ii) sketch the axial load, shear force and bending moment 
diagrams. 

 

Figure 5.3 

Solution: 

Apply the three equations of static equilibrium to the force system 

 Equation 
(1) 

 
Equation 
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(2) 

 Equation 
(3) 

 
  

Assuming positive bending moments induce tension inside the frame: 

MB=−(6.0×4.0ĩ(2.0)=−48.0 kNm 

MC=+(46.5×3.0)−(40.0×4.0)=−20.50 kNm 

  

 

Figure 5.4 

The values of the end-forces F1 to F8 can be determined by considering the equilibrium of 
each member and joint in turn.  

Consider member AB: 

   

Consider joint B: 
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Consider member BC: 

   

Consider member CD: 

   

Check joint C: 

 

  

The axial force and shear force in member CD can be found from: 

Axial load=+/−(Horizontal force×Cosα)+/−(Vertical force×Sinα) 

Shear force=+/−(Horizontal force×Sinα)+/−(Vertical force×Cosα) 

The signs are dependent on the directions of the respective forces. 

Member CD:  
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Figure 5.5 
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5.1.2 Example 5.2 Statically Determinate Rigid-Jointed Frame 2 
A pitched-roof portal frame is pinned at supports A and H and members CD and DEF are 

pinned at the ridge as shown in Figure 5.6. For the loading indicated: 

i) determine the support reactions and 

ii) sketch the axial load, shear force and bending moment 
diagrams. 

 

Figure 5.6 

Apply the three equations of static equilibrium to the force system in addition to the Σ 
moments at the pin=0: 

 
Equation 
(1) 

 

Equation 

Rigid-jointed frames     361



(2) 

 
Equation 
(3) 

 
Equation 
(4) 

 
Equation 
(3a) 

 
Equation 
(3b) 

 

 
Figure 5.7 
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Assuming positive bending moments induce tension inside the frame:  

 

  

 

Figure 5.8 

The values of the end-forces F1 to F12 can be determined by considering the equilibrium 
of each member and joint in turn. 

Consider member ABC: 

   

Consider joint C: 
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Consider member CD: 

   

Consider member FGH: 

   

Consider joint F: 

 
  

   
Consider member DF: 

   

The calculated values can be checked by considering the equilibrium at joint D.  

 

Figure 5.9 
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The axial force and shear force in member CD can be found from: 

Axial load=+/−(Horizontal force×Cosα)+/−(Vertical force×Sinα) 

Shear force=+/−(Horizontal force×Sinα)+/−(Vertical force×Cosα) 

  

The signs are dependent on the directions of the respective forces. 

Similarly with θ for member DEF. 

Member CD: 

 

Member DEF: 
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Figure 5.10 
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5.1.3 Problems: Statically Determinate Rigid-Jointed Frames 
A series of statically determinate, rigid-jointed frames are indicated in Problems 5.1 to 

5.4. In each case, for the loading given: 

i) determine the support reactions and 

ii) sketch the axial load, shear force and bending moment 
diagrams. 

 

Problem 5.1 

 
Problem 5.2 
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Problem 5.3 

 

Problem 5.4 

Examples in structural analysis     368



5.1.4 Solutions: Statically Determinate Rigid-Jointed Frames 
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5.2 Moment Distribution for No-Sway Rigid-Jointed Frames 

The principles of moment distribution are explained in Chapter 4 in relation to the 
analysis of multi-span beams. In the case of rigid-jointed frames there are many instances 
where there more than two members meeting at a joint. This results in the out-of-balance 
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moment induced by the fixed-end moments being distributed among several members. 
Consider the frame shown in Figure 5.11: 

 

Figure 5.11 

Fixed-End Moments: 

   

 

Figure 5.12 

Distribution Factors: 
At joint B there are four members contributing to the overall stiffness of the joint. 
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The sum of the distribution factors is equal 1.0 since 100% of the out-of-balance moment 
must be distributed between the members.  

At joint C there are three members contributing to the overall stiffness of 
the joint. 

 

  

 
Figure 5.13 
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The carry-over moments equal to 50% of the balancing moments are applied to joints A, 
B, E, F and C. 

 

Figure 5.14 

As before with beams, the above process is carried out until the required accuracy is 
obtained. This is illustrated in Example 5.3 and the solutions to Problems 5.5 to 5.12.  

5.2.1 Example 5.3 No-Sway Rigid–Jointed Frame 1 
A rigid-jointed, two-bay rectangular frame is pinned at supports A, D and E and carries 

loading as indicated in Figure 5.15 Given that supports D and E settle by 3 mm and 2 mm 
respectively and that EI=102.5×103 kNm2; 

i) sketch the bending moment diagram and determine the support reactions, 
ii) sketch the deflected shape (assuming axially rigid members) and compare with the 

shape of the bending moment diagram (the reader should check the answer using a 
computer analysi`s solution). 
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Figure 5.15 
Fixed-end Moments: 

The final fixed-end moments are due to the combined effects of the applied member 
loads and the settlement; consider the member loads,  

 

Figure 5.16 

Member AB * 

 

  

* Since support A is pinned, the fixed-end moments are (MBA−0.5MAB) at B and zero at 
A. 
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Member CE * 

 

  

* Since support E is pinned, the fixed-end moments are (MCE−0.5MEC) at C and zero at E. 

   

Consider the settlement of supports D and E: δAB=3.0 mm and δBC=1.0 mm  

 

Figure 5.17 
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Note: the relative displacement between B and C i.e. δBC=(3.0–2.0)=1.0 
mm 

 

  

Final Fixed-end Moments: 

 
  

Distribution Factors: Joint B 

 

  

Distribution Factors: Joint C 

 

  

Moment Distribution Table: 
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Continuity Moments:  

 

 
Free bending moments:  
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Member CE: 
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The maximum value along the length of member CE can be found by identifying the 
point of zero shear as follows:  

 

 
Consider Member AB:  

 
For the complete frame:  
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5.2.2 Problems: Moment Distribution—No-Sway Rigid-Jointed 

Frames 
A series of rigid-jointed frames are indicated in Problems 5.5 to 5.12 in which the relative 

EI values and the applied loading are given. In each case: 
i) sketch the bending moment diagram and determine the support reactions, 
ii) sketch the deflected shape (assuming axially rigid members) and compare with the 

shape of the bending moment diagram, (check the answer using a computer analysis 
solution). 

 

Problem 5.5  

Examples in structural analysis     390



 

Problem 5.6  

 

Problem 5.7 
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Problem 5.8 

 

Problem 5.9 

 

Problem 5.10 
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Problem 5.11 

 

Problem 5.12 
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5.2.3 Solutions: Moment Distribution—No-Sway Rigid-Jointed 
Frames 
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5.3 Moment Distribution for Rigid-Jointed Frames with Sway 
The frames in Section 5.2 are prevented from any lateral movement by the support 

conditions. In frames where restraint against lateral movement is not provided at each 
level, unless the frame, the supports and the loading are symmetrical it will sway and 

consequently induce additional forces in the frame members. 

Consider the frame indicated in Figure 5.18(a) in which the frame, 
supports and applied load are symmetrical. 

 

Figure 5.18 

Consider the same frame in which the load has been moved such that is now asymmetric 
as indicated in Figure 5.19(a) 

 

Figure 5.19 

Rigid-jointed frames     431



It is evident from Figure 5.19(b) that the solution to this problem is incomplete. 
Inspection of the deflected shapes of each of the frames in Figure 5.18(a) and 5.19(a) 

indicates the reason for the inconsistency in the asymmetric frame. 

Consider the deflected shapes shown in Figures 5.20 (a) and (b):  

 

Figure 5.20 

In case (a) the deflected shape indicates the equal rotations of the joints at B and C due to 
the balancing of the fixed-end moments induced by the load; note that there is no lateral 

movement at B and C. 

In case (b) in addition to rotation due to the applied load there is also 
rotation of the joints due to the lateral movement ‘δ’ of B and C. The sway 
of the frame also induces forces in the members and this effect was not 
included in the results given in Figure 5.19(b). It is ignoring the ‘sway’ of 
the frame which has resulted in the inconsistency. In effect, the frame 
which has been analysed is the one shown in Figure 5.21, i.e. including a 
prop force preventing sway. The value of the prop force ‘P’ is equal to the 
resultant horizontal force in Figure 5.19. 

 

Figure 5.21 

The complete analysis should include the effects of the sway and consequently an 
additional distribution must be carried out for sway-only and the effects added to the no-
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sway results, i.e. to cancel out the non-existent ‘prop force’ assumed in the no-sway 
frame. 

 

Figure 5.22 

The technique for completing this calculation including the sway effects is illustrated in 
Example 5.4 and the solutions to Problems 5.13 to 5.18.  

5.3.1 Example 5.4 Rigid-Jointed Frame with Sway- Frame 1 
A rigid-jointed frame is fixed at support A, pinned at support H and supported on a roller 

at F as shown in Figure 5.23. For the relative EI values and loading given: 
i) sketch the bending moment diagram, 
ii) determine the support reactions and 
iii) sketch the deflected shape (assuming axially rigid members) and compare with the 

shape of the bending moment diagram, (the reader should check the answer using a 
computer analysis solution). EI=10×103 kNm2 

 

Figure 5.23 
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Consider the frame analysis as the superposition of two effects: 

 

Figure 5.24 

 

Figure 25.5 

Consider the No-Sway Frame: 
Fixed-end Moments Member BCD 

 
Fixed-end Moments Member DEF 
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Fixed-end Moments Member DGH 
Since support H pinned, the fixed-end moments are (MDH—0.5MHD) at D and zero at H.  

 
Distribution Factors : Joint B 

 
Distribution Factors : Joint D 
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No-Sway Moment Distribution Table: 

 
Determine the value of the reactions and prop force P:  

 
Consider member DEF:  

 
Consider member DGH:  
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Consider member BA and a section to the left of D:  

 

 Equation 
(1) 

 
Equation 
(2) 

Solve equations (1) and (2) simultaneously: 

   

Consider the equilibrium of the complete frame: 

 
  

 
  

Since the direction of the prop force is right-to-left the sway of the frame is from left-
toright as shown. 
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Apply an arbitrary sway force P′ to determine the ratio of the fixed-end moments. 

 
The fixed-end moments in each member are related to the end-displacements (δ) in each 
case. The relationship between δAB, δAD and δDH can be determined by considering the 

displacement triangle at joint B and the geometry of the frame.  

Displacement triangle:  
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Assume arbitrary fixed-end moments equal to: 

   

Sway-Qnly Moment Distribution Table:  

 

Determine the value of the arbitrary sway force P′: 

 
Consider member DEF: 

 
Consider member DGH:  

 
Consider member AB and a section to the left of D:  
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 Equation 
(3) 

 Equation 
(4) 

Solve equations (3) and (4) simultaneously: 

   

Consider the equilibrium of the complete frame: 
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The multiplying factor for the sway moments=+2.02 
Final Moments Distribution Table: 

Joint A  B   D  F H 

  AB  BA BD   DB DH DF  FD HD 

No-Sway 
Moments 

+9.93  +19.87 −19.87   +20.06 −6.66 −13.40  0 0 

Sway 
Moments×2.02 

−46.36  −44.24 +44.24   +37.57 −33.93 −3.64  0 0 

Final Moments 
(kNm) 

−36.43  −24.37 +24.37   +57.63 −40.59 −17.04  0 0 
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The horizontal deflection at the rafter level=δDH=0.8δAB=(0.8×20)=16 mm 
Final values of support reactions: 

 

  

Continuity Moments:  

 
Free bending moment member BCD:  

 
Free bending moment member DEF:  
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Free bending moment member DGH:  

 

 
* The maximum value along the length of members BCD can be found by identifying 

the point of zero shear as follows: 
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5.3.2 Problems: Moment Distribution - Rigid-Jointed Frames with 

Sway 
A series of rigid-jointed frames are indicated in Problems 5.13 to 5.18 in which the 

relative EI values and the applied loading are given. In each case: 
i) sketch the bending moment diagram and 
ii) sketch the deflected shape (assuming axially rigid members) and compare the shape 

of the bending moment diagram with a computer analysis solution of the deflected shape. 

 

Problem 5.13 
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Problem 5.14 

 

Problem 5.15 
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Problem 5.16 

 

Problem 5.17  
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Problem 5.18 
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5.3.3 Solutions: Moment Distribution—Rigid-Jointed Frames with 
Sway 
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6. 
Buckling Instability 

6.1 Introduction 

Structural elements which are subjected to tensile forces are inherently stable and will 
generally fail when the stress in the cross-section exceeds the ultimate strength of the 
material. In the case of elements subjected to compressive forces, secondary bending 

effects caused by, for example, imperfections within materials and/or fabrication 
processes, inaccurate positioning of loads or asymmetry of the cross-section, can induce 
premature failure either in a part of the cross-section, such as the outstand flange of an I 

section, or of the element as a whole. In such cases the failure mode is normally buckling 
(i.e. lateral movement), of which there are three main types: 

 

  

The design of most compressive members is governed by their overall buckling capacity, 
i.e. the maximum compressive load which can be carried before failure occurs by 

excessive deflection in the plane of greatest slenderness. 

Typically this occurs in columns in building frames and in trussed 
frameworks as shown in Figure 6.1.  

 
Figure 6.1 



Compression elements can be considered to be sub-divided into three groups: short 
elements, slender elements and intermediate elements. Each group is described 
separately, in Sections 6.1.1, 6.1.2 and 6.1.3 respectively. 

6.1.1 Short Elements 
Provided that the slenderness of an element is low, e.g. the length is not greater than 

(10×the least horizontal length), the element will fail by crushing of the material induced 
by predominantly axial compressive stresses as indicated in Figure 6.2(a). Failure occurs 
when the stress over the cross-section reaches a yield or crushing value for the material.  

The failure of such a column can be represented on a stress/slenderness 
curve as shown in Figure 6.2(b). 

 

Figure 6.2 

6.1.2 Slender Elements 
When the slenderness of an element is high, the element fails by excessive lateral 

deflection (i.e. buckling) at a value of stress considerably less than the yield or crushing 
values as shown in Figures 6.3(a) and (b). 
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Figure 6.3 

6.1.3 Intermediate Elements 
The failure of an element which is neither short nor slender occurs by a combination of 

buckling and yielding/crushing as shown in Figures 6.4(a) and (b).  

 

Figure 6.4 

6.2 Secondary Stresses 
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As mentioned in Section 6.1, buckling is due to small imperfections within materials, 
application of load etc., which induce secondary bending stresses which may or may not 
be significant depending on the type of compression element. Consider a typical column 

as shown in Figure 6.5 in which there is an actual centre-line, reflecting the variations 
within the element, and an assumed centre-line along which acts an applied compressive 

load, assumed to be concentric. 

 

Figure 6.5 

At any given cross-section the point of application of the load P will be eccentric to the 
actual centre-line of the cross-section at that point, as shown in Figure 6.6.  

 

Figure 6.6 

The resultant eccentric load produces a secondary bending moment in the cross-
section. The cross-section is therefore subject to a combination of an axial stress due to P 
and a bending stress due to (Pe) where e is the eccentricity from the assumed centre-line 
as indicated in Figure 6.7. 
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Figure 6.7 

The combined axial and bending stress is given by:  

where: 

σ is the combined stress, 

P is the applied load, 

e is the eccentricity from the assumed centre-line, 

A is the cross-sectional area of the section, and 

Z is the elastic section modulus about the axis of bending. 
This equation, which includes the effect of secondary bending, can be considered in 

terms of each of the types of element 

6.2.1 Effect on Short Elements 
In short elements the value of the bending stress in the equation is insignificant when 

compared to the axial stress i.e. and consequently the lateral 
movement and buckling effects can be ignored.  
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6.2.2 Effect on Slender Elements 
In slender elements the value of the axial stress in the equation is insignificant when 

compared to the bending stress i.e. particularly since the eccentricity 
during buckling is increased considerably due to the lateral deflection; consequently the 

lateral movement and bending effects determine the structural behaviour. 

6.2.3 Effect on Intermediate Elements 
Most practical columns are considered to be in the intermediate group and consequently 
both the axial and bending effects are significant in the column behaviour, i.e. both terms 

in the equation are important. 

6.3 Critical Stress (σcritical) 

In each case described in Sections 6.2.1 to 6.2.3 the critical load Pc (i.e. critical stress× 
cross-sectional area) must be estimated for design purposes. Since the critical stress 

depends on the slenderness it is convenient to quantify slenderness in mathematical terms 
as: 

 
  

where: 

LE is the effective buckling length, 

r is the radius of gyration=  and 

I and A are the second moment of area about the axis of bending and the 
cross-sectional area of the section as before. 

6.3.1 Critical Stress for Short Columns 
Short columns fail by yielding/crushing of the material and σcritical=Py, the yield stress of 
the material. If, as stated before, columns can be assumed short when the length is not 
greater than (10×the least horizontal length) then for a typical rectangular column of 
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cross-section (b×d) and length L≈10b, a limit of slenderness can be determined as 
follows: 

 

  

From this we can consider that short columns correspond with a value of slenderness less 
than or equal to approximately 30 to 35. 

6.3.2 Critical Stress for Slender Columns 
Slender columns fail by buckling and the applied compressive stress σcritical<<Py.  

The critical load in this case is governed by the bending effects induced by 
the lateral deformation. 

6.3.3 Euler Equation 
In 1757 the Swiss engineer/mathematician Leonhard Euler developed a theoretical 

analysis of premature failure due to buckling. The theory is based on the differential 
equation of the elastic bending of a pin-ended column which relates the applied bending 

moment to the curvature along the length of the column, i.e. 

 

  

where approximates to the curvature of the deformed column. 

Since this expression for bending moments only applies to linearly elastic 
materials, it is only valid for stress levels equal to and below the elastic 
limit of proportionality. This therefore defines an upper limit of stress for 
which the Euler analysis is applicable. Consider the deformed shape of the 
assumed centre-line of a column in equilibrium under the action of its 
critical load Pc as shown in Figure 6.8. 
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Figure 6.8 

The bending moment at position x along the column is equal to 
and hence Bending Moment 

 

This is a 2nd Order Differential Equation of the form:  

The solution of this equation can be shown to be:  

where: 

n is 0,1,2,3…etc. 

EI and L are as before. 

This expression for Pc defines the Euler Critical Load (PE) for a pin-ended 
column. The value of n=0 is meaningless since it corresponds to a value of 
Pc=0. All other values of n correspond to the 1st, 2nd, 3rd…etc. harmonics 
(i.e. buckling mode shapes) for the sinusoidal curve represented by the 
differential equation. The first three harmonics are indicated in Figure 6.9. 

Examples in structural analysis     488



 

Figure 6.9—Buckling mode-shapes for pin-ended columns 

The higher level harmonics are only possible if columns are restrained at the appropriate 
levels, e.g. mid-height point in the case of the 2nd harmonic and the third-height points in 

the case of the 3rd harmonic. 

The fundamental critical load (i.e. n=1) for a pin-ended column is 
therefore given by: 

 
  

This fundamental case can be modified to determine the critical load for a column with 
different end-support conditions by defining an effective buckling length equivalent to 

that of a pin-ended column. 

6.3.4 Effective Buckling Length (LE) 
The Euler Critical Load for the fundamental buckling mode is dependent on the 

buckling length between pins and/or points of contra-flexure as indicated in Figure 6.9. In 
the case of columns which are not pin-ended, a modification to the boundary conditions 
when solving the differential equation of bending given previously yields different mode 
shapes and critical loads as shown in Figure 6.10. 
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Figure 6.10—Effective Buckling Lengths for Different End Conditions 

The Euler stress corresponding to the Euler Buckling Load for a pin-ended column is 
given by: 

 
  

where (L/r) is the slenderness λ as before. 

Note: In practical design it is very difficult to achieve full fixity as 
assumed for the end conditions. This is allowed for by modifying the 
effective length coefficients e.g. increasing the value of 0.5L to 0.7L and 
0.7L to 0.85L. 

A lower limit to the slenderness for which the Euler Equation is applicable 
can be found by substituting the stress at the proportional limit σ e for σ 
Euler as shown in the following example with a steel column. 

Assume that σ e=200 N/mm2 and that E=205 kN/mm2 

 

  

In this case the Euler load is only applicable for values of slenderness≥≈100 and can be 
represented on a stress/slenderness curve in addition to that determined in Section 6.3.1 

for short columns as shown in Figure 6.11. 
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The Euler Buckling Load has very limited direct application in terms of 
practical design because of the following assumptions and limiting 
conditions: 

• the column is subjected to a perfectly concentric axial load only, 
• the column is pin-jointed at each end and restrained against lateral loading,  
• the material is perfectly elastic, 
• the maximum stress does not exceed the elastic limit of the material, 
• there is no initial curvature and the column is of uniform cross-section along its 

length, 
• lateral deflections of the column are small when compared to the overall length, 
• there are no residual stresses in the column, 
• there is no strain hardening of the material in the case of steel columns, 
• the material is assumed to be homogeneous. 

 

Figure 6.11 

Practical columns do not satisfy these criteria, and in addition in most cases are 
considered to be intermediate in terms of slenderness. 
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6.3.5 Critical Stress for Intermediate Columns 

 

Figure 6.12 

Since the Euler Curve is unsuitable for values of stress greater than the elastic limit it is 
necessary to develop an analysis which overcomes the limitations outlined above and 

which can be applied between the previously established slenderness limits (see Figure 
6.11) as shown in Figure 6.12.  

6.3.6 Tangent Modulus Theorem 
Early attempts to develop a relationship for intermediate columns included the Tangent 

Modulus Theorem. Using this method a modified version of the Euler Equation is 
adopted to determine the stress/slenderness relationship in which the value of the 

modulus of elasticity at any given level of stress is obtained from the stress/strain curve 
for the material and used to evaluate the corresponding slenderness. Consider a column 

manufactured from a material which has a stress/strain curve as shown in Figure 6.13(a). 

 

Figure 6.13 

The slope of the tangent to the stress/strain curve at a value of stress equal to σ is equal to 
the value of the tangent modulus of elasticity Et (Note: this is different from the value of 
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E at the elastic limit). The value of Et can be used in the Euler Equation to obtain a 
modified slenderness corresponding to the value of stress σ as shown at position ‘x’ in 

Figure 6.13(b): 

 

  

If successive values of λ for values of stress between σ e and σ y are calculated and plotted 
as shown, then a curve representing the intermediate elements can be developed. This 

solution still has many of the deficiencies of the original Euler equation. 

6.4 Perry-Robertson Formula 

The Perry-Robertson Formula was developed to take into account the deficiencies of the 
Euler equation and other techniques such as the Tangent Modulus Method. This formula 
evolved from the assumption that all practical imperfections could be represented by a 

hypothetical initial curvature of the column. 

As with the Euler analysis a 2nd Order Differential Equation is established 
and solved using known boundary conditions, and the extreme fibre stress 
in the cross-section at mid-height (the assumed critical location) is 
evaluated. The extreme fibre stress, which includes both axial and bending 
effects, is then equated to the yield value. Clearly the final result is 
dependent on the initial hypothetical curvature.  

Consider the deformed shape of the assumed centre-line of a column in 
equilibrium under the action of its critical load Pc and an assumed initial 
curvature as shown in Figure 6.14. 
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Figure 6.14 

The bending moment at position x along the column is equal to=−Pc(y+yo) 

 

  

If the initial curvature is assumed to be sinusoidal, then where a is 
the amplitude of the initial displacement and the equation becomes: 

 

  

The solution to this differential equation is: 

 

  

The constants A and B are determined by considering the boundary values at the pinned 
ends, i.e. when x=0 y=0 and when x=L y=0.  

Substitution of the boundary conditions in the equation gives: 
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The value of the stress at mid-height is the critical value since the maximum eccentricity 
of the load (and hence maximum bending moment) occurs at this position; 

 

  

(Note: yo at mid-height is equal to the amplitude a of the assumed initial curvature). 

The maximum bending moment 

 

The maximum combined stress at this point is given by: 

 
  

where c is the distance from the neutral axis of the cross-section to the extreme fibres. 
The maximum stress is equal to the yield value, i.e. σmaximum=σy 

 

  

The average stress over the cross-section is the load divided by the area, i.e. (Pc/A)  
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The (ac/r2) term is dependent upon the assumed initial curvature and is normally given 
the symbol η. 

 

  

This equation can be rewritten as a quadratic equation in terms of the average stress: 

 

  

The solution of this equation in terms of σaverage is: 

 

  

This equation represents the average value of stress in the cross-section which will induce 
the yield stress at mid-height of the column for any given value of η. Experimental 

evidence obtained by Perry and Robertson indicated that the hypothetical initial curvature 
of the column could be represented by; 

   

which was combined with a load factor of 1.7 and used for many years in design codes to 
determine the critical value of average compressive stress below which overall buckling 

would not occur. The curve of stress/slenderness for this curve is indicated in Figure 6.15 
for comparison with the Euler and Tangent Modulus solutions.  
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Figure 6.15 
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6.5 European Column Curves 

Whilst the Perry-Robertson formula does take into account many of the deficiencies of 
the Euler and Tangent Modulus approaches, it does not consider all of the factors which 

influence the failure of columns subjected to compressive stress. In the case of steel 
columns for example, the effects of residual stresses induced during fabrication, the type 
of section being considered (i.e. the cross-section shape), the material thickness, the axis 

of buckling, the method of fabrication (i.e. rolled or welded), etc. are not allowed for. 

A more realistic formula of the critical load capacity of columns has been 
established following extensive full-scale testing both in the UK and in 
other European countries. The Perry-Robertson formula has in effect been 
modified and is referred to in design codes as the Perry strut formula and 
is given in the following form: 

from which the value of pc may be obtained 
using: 

 
  

where: 

py is the design strength 

λ is the slenderness 

The Perry factor η for flexural buckling under axial force should be taken 
as: 

   

λ0 is the limiting slenderness below which it can be assumed that buckling will not occur. 

The European Column curves are indicated in graphical form in Figure 
6.16. 
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The Robertson constant a should be taken as 2.0, 3.5, 5.5 or 8.0 as 
indicated in design codes depending on the cross-section, thickness of 
material, axis of buckling and method of fabrication.  

 

Figure 6.16 

Typically, the values of ‘a’ are allocated to various cross-sections as 
indicated in Table 6.1.  

Robertson’s 
constant ‘a’ 

Axis of buckling 

Type of section Maximum 
thickness (see 

Note 1) 

x-x y-y 

Hot finished structural hollow 
section 

  2.0 2.0 

Cold-formed structural section   5.5 5.5 

Rolled I-section ≤40mm 
>40mm 

2.0 
3.5 

3.5 
5.5 
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Rolled H-section ≤40mm 
>40mm 

3.5 
5.5 

5.5 
8.0 

Welded I or H-section (see Notes 2 
and 4) 

≤40mm 
>40mm 

3.5 
3.5 

5.5 
8.0 

Rolled I-section with welded flange 
cover plates 0.25<U/B<0.8 (see 
Figure 6.17a) 

≤40mm 
>40mm 

2.0 
3.5 

3.5 
5.5 

Rolled H-section with welded 
flange cover plates 0.25<U/B<0.8 
(see Figure 6.17a) 

≤40 mm 
>40mm 

3.5 
5.5 

5.5 
8.0 

Rolled I or H-section with welded 
flange cover plates U/B≥0.8 (see 
Figure 6.17b) 

≤40 mm 
>40mm 

3.5 
5.5 

2.0 
3.5 

Rolled I or H-section with welded 
flange cover plates U/B≤0.25 (see 
Figure 6.17c) 

≤40 mm 
>40mm 

3.5 
3.5 

5.5 
8.0 

Welded box section (see Notes 3 
and 4) 

≤40 mm 
>40 mm 

3.5 
5.5 

3.5 
5.5 

Round, square or flat bar ≤40 mm 
>40mm 

3.5 
5.5 

3.5 
5.5 

Rolled angle, channel or T-section 
Two rolled sections laced, battened 
or back-to-back Compound rolled 
sections 

  Any axis: a=5.5 
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Note 1 : For thicknesses between 40 mm and 50 mm the value of pc may 
be taken as the average of the values for thicknesses up to 40 mm and over 

40 mm for the relevant value of py. 

Note 2 For welded I or H-sections with their flanges thermally cut by 
machine without subsequent edge grinding or machining, for buckling 
about the y-y axis, a=3.5 for flanges up to 40 mm thick and a=5.5 for 

flanges over 40 mm thick. 

Note 3 The category ‘welded box section’ includes any box section 
fabricated from plates or rolled sections, provided that all of the 

longitudinal welds are near the corners of the cross-section. (This is to 
avoid areas in the cross-section which have locked in residual compressive 

stresses which induce premature failure at a reduced buckling strength). 
Box sections with longitudinal stiffeners are NOT included in this 

category. 

Note 4 For welded I, H or box sections pc should be obtained from the 
Perry strut formula using a py value 20 N/mm2 below the normally 

assigned value. (This is a simplification to avoid the use of a different set 
of curves which are required for fabricated sections). 
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Table 6.1 

 

Figure 6.17 

The design of the majority of concrete and timber column members is usually based 
on square, rectangular or circular cross-sections, similarly with masonry columns square 
or rectangular sections are normally used. In the case of structural steelwork there is a 
wide variety of cross-sections which are adopted, the most common of which are shown 
in Figure 6.18. 

 

Figure 6.18 

In all cases, irrespective of the material or member cross-section, an assessment of end 
and intermediate restraint conditions must be made in order to estimate effective buckling 
lengths (LE) and hence slenderness λ. It is important to recognise that the effective 
buckling length is not necessarily the same about all axes. Typically, it is required to 
determine two LE and λ values (e.g. LEy, λy and LEx, λx), and subsequently determine the 
critical compressive stress relating to each one; the lower value being used to calculate 
the compressive resistance of a member. In the case of angle sections other axes are also 
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considered. The application of the Perry strut formula to various steel columns is 
illustrated in Examples 6.1 to 6.4 and Problems 6.1 to 6.5.  

6.6 Example 6.1 Slenderness 

The square column section shown in Figure 6.19 is pinned about both the x-x, and y-y 
axes at the top and fixed about both axis at the bottom. An additional restraint is to be 

provided to both axes at a height of L1 above the base. Determine the required value of L1 
to optimize the compression resistance of the section. 

 

Figure 6.19 

6.7 Example 6.2 Rolled UC Section 

A column, which is subjected to a concentric axial load ‘P’, is shown in Figure 6.20. 
Restraint against lateral movement, but not rotation, is provided about both axes at the 

top and the bottom of the column. Additional lateral restraint is also provided about the y-
y axis at mid-height as shown. 

Using the data provided determine the compression resistance of the 
column using the Perry strut formula. 
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Figure 6.20 

Data: 

 

  

Solution: 

Perry strut formula: 
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6.8 Example 6.3 Laced Section 
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A column comprising two Universal Beam sections laced together to act compositely is 
shown in Figure 6.21. The restraints to lateral movement about both the A-A and B-B 
axes are as indicated. Using the data given determine the compressive resistance of the 

section using the Perry strut formula. 

Data:  

Section      Section Property 

533×210×82 UB 
Universal Beam  

Yeild Stress Py=275 N/mm2  

Cross-sectional 
Area (A)  

105 cm2  Young’s Modulus E=205 
kN/mm2  

Radius of 
Gyration (ryy)  

4.38 cm  Robertson  Constants: 

Radius of 
Gyration (rxx)  

21.3 cm  x-x axis  a=5.5  

2nd Moment of 
Area (Ixx)  

47500 cm4  y-y axis  a=5.5  

2nd Moment of 
Area (Iyy)  

2010 cm4      

Solution: 

 
Figure 6.21 
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Composite Section Properties:  

 

  

The possibility of buckling of the individual UB sections and the composite section must 
be considered in this problem as follows: 

(Extract from to BS 5950–1:2000 Structural Use of Steelwork in Building) 

“The slenderness λc of the main components (based on their minimum 
radius of gyration) between consecutive points where the lacing is 
attached should not exceed 50. If the overall slenderness of the member is 
less than 1.4λc the design should be based on a slenderness of 1.4λc.”  

Perry strut formula: 

 

  

Note: Since the same curve is used for both the A-A and the B-B axes in this case (i.e. 
a=5.5), the compression resistance will correspond to the axis with the highest 
slenderness value, i.e. the one which produces the lowest pc value. 
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Consider an individual UB section: 

 

  

Consider the composite section: 
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Consider the B-B axis: 

 

  

Since 1.4λc is the largest value this should be used to determine the value of pc using the 
Perry strut formula.  
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Compression resistance  

A similar approach is taken when designing battened struts, the 
corresponding Clause in BS 5950–1:2000 Structural Use of Steelwork in 
Building is as follows: 

“The slenderness λc of a main component (based on its minimum radius of 
gyration) between end welds or end bolts of adjacent battens should not 
exceed 50. The slenderness λb of the battened strut about the axis 
perpendicular to the plane of the battens should be calculated from: 

   

where λm is the ratio LE/r of the whole member about that axis. If λb is less than 1.4λc the 
design should be based on λb=1.4λc. ” 

The application of this is illustrated in the solution to Problem 7.5. 

6.9 Example 6.4 Compound Section 

A column ABCE of a structure is shown in Figure 6.22. The column is 15.0 m long 
and supports a roof beam DEF at E. The beam carries a load of w kN/m length along its 
full length DEF. The column is fabricated from a 152×152×23 UC with plates welded 
continuously to the flanges as shown. Using the data given determine: 

(i) the compression resistance of the column, and 
(ii) the maximum value of w which can be supported. 
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Data: 

Section      Section Property  

152×152×23 UB 
Universal Beam  

Yield Stress py=275 
N/mm2  

Cross-sectional 
Area (A)  

29.2 cm2  Young’s Modulus E=205 
kN/mm2  

Radius of Gyration 
(ryy)  

3.70 cm  Robertson Constants:  

Radius of Gyration 
(rxx)  

6.54 cm  x-x axis  a=5.5  

2nd Moment of 
Area (Ixx)  

1250 cm4  y-y axis  a=5.5  

2nd Moment of 
Area (Iyy)  

400 cm4      

 

Figure 6.22 

Solution: 
(i) 
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Perry strut formula: 

 

  

Note: Since the same curve is used for both the A-A and the B-B axes in this case (i.e. 
a=5.5), the compression resistance will correspond to the axis with the highest 

slenderness value, i.e. the one which produces the lowest pc value.  
Consider the A-A axis: 

 

  

Consider the B-B axis: 
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Since λA-A is the largest value this should be used to determine the value of pc using the 
Perry strut formula. 

 

  

Critical value of pc=80.28 N/mm2 

Compression resistance Pc=(pc×Ag)=(80.28×6.92×103)/103=555.5 kN 

(ii)  

 

Figure 6.23 
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The maximum value of the vertical reaction at E=555.5 kN  

 
  

6.10 Problems: Buckling Instability 

A selection of column cross-sections is indicated in Problems 6.1 to 6.7 in addition to the 
position of the restraints about the x-x and y-y axes. Using the data given and the 

equation for the European Column Curves, (the Perry strut formula) determine the value 
of the compressive strength pc and hence the compression resistance, for each section. 

Data: 

Table 6.2- Section Property Data 

Robertson Constant Problem No. py (N/mm2) E (kN/mm2) 

x-x y-y 

6.1 275 205 3.5 2.0 

6.2 255 205 3.5 3.5 

6.3 275 205 5.5 5.5 

6.4 255 205 3.5 3.5 

6.5 275 205 5.5 5.5 

6.6 275 205 5.5 5.5 

6.7 255 205 5.5 5.5 
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Table 6.3- Section Pro perty Data 

Section Section 
Property 

533×210×82 
UB 

457×152×52 
UB 

200×90×30 
Channel 

150×100×10 
Hollow Section 

Overall 
Depth (D) 

528.3 mm 449.8 mm 200.0 mm 100.0 mm 

Overall 
Breadth (B) 

208.8 mm 152.4 mm 90.0 mm 50.0 mm 

Cross-
sectional 
Area (A) 

105 cm2 66.6 cm2 37.9 cm2 42.6 cm2 

Radius of 
Gyration 
(ryy) 

– – 2.88 cm 3.01 cm 

2nd Moment 
of Area (Ixx) 

47500 cm4 21400 cm4 2520 cm4 1160.0 cm4 

2nd Moment 
of Area (Iyy) 

2010 cm4 645 cm4 314 cm4 614.0 cm4 
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Problem 6.1 

 

Problem 6.2 

 
Problem 6.3 
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Problem 6.4 

 

Problem 6.5 

 
Problem 6.6 
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Problem 6.7 

6.11 Solutions: Buckling Instability 
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7.  
Direct Stiffness Method 

7.1 Direct Stiffness Method of Analysis 

The ‘stiffness’ method of analysis is a matrix technique on which most structural 
computer analysis programs are based. There are two approaches; the indirect and the 

direct methods. The direct method as illustrated in this chapter requires the visual 
recognition of the relationship between structural forces/displacements and the 

consequent element forces/displacements induced by the applied load system. The 
indirect method is primarily for use in the development of computer programs to enable 

the automatic correlation between these displacements. 

Neither method is regarded as a hand-analysis. The direct method is 
included here to enable the reader to understand the concepts involved and 
the procedure which is undertaken during a computer analysis. The 
examples and problems used to illustrate these concepts have been 
restricted to rigid-jointed structures assuming axially-rigid elements. In 
addition, the structures have been limited to having no more than three 
degrees-of-freedom and do not have any sloping members. In both 
methods it is necessary to develop element stiffness matrices, related to an 
element (local) co-ordinate system and a structural stiffness matrix related 
to a global co-ordinate system. The development of these matrices and co-
ordinate systems is explained in Sections 7.2 and 7.3. 

7.2 Element Stiffness Matrix [k] 

One of the fundamental characteristics governing the behaviour of elastic structures is the 
relationship between the applied loads and the displacements which these induce. This 

can be expressed as: 

   

where: 



[F] is a vector representing the forces acting on an element at its nodes i.e. 
the (element end forces vector), 

[k] is the element stiffness matrix relating to the degrees-of-freedom at the 
nodes relative to the local co-ordinate system, 

[δ] is a vector representing the displacements (both translational and 
rotational) of the element at its nodes relative to the local axes co-ordinate 
system (element displacement vector). 

Considering an element with only one degree-of-freedom, the matrix and 

vectors can be re-written as leading to a definition of stiffness as: 

"The force necessary to maintain a ‘unit’ displacement.” 

The ‘axial’ stiffness of a column as shown in Figure 7.1, can be derived from the 
standard relationship between the elastic modulus, stress and strain as follows:  

Elastic Modulus.  

This equation can be re-arranged to give: 

 
  

 
Figure 7.1 
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hence when δ=1.0 (i.e. unit displacement) then the force stiffness  

7.2.1 Beam Elements with Two Degrees-of-Freedom 
Consider a ‘beam element’ of length L, Young’s Modulus E and cross-sectional area A 
which is subject to axial forces F1 and F2 at the end nodes A and B as shown in Figure 

7.2. 

 

Figure 7.2 

Assume that node A is displaced a distance of δ1 in the direction of the longitudinal axis 
(i.e. the x-direction) and similarly node B is displaced a distance of δ2 as shown in Figure 

7.3. 

 

Figure 7.3 

The force/displacement relationships for this element are: 

   

Considering equilibrium in the x direction: 

 
  

These two equations can be expanded and written in the form: 

 Equation 
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(1)  

 Equation 
(2) 

 

  

where [k] is the element stiffness matrix. 

This element stiffness matrix [k] representing two-degrees-of-freedom is 
adequate for pinjointed structures in which it is assumed that elements are 
subject to purely axial loading. 

7.2.2 Beam Elements with Four Degrees-of-Freedom 
In the case of rigid-jointed plane-frame structures, the loading generally consists of axial, 
shear and bending forces, the effects of which must be determined by the axial, shear and 
bending effects on the elements. Consider a beam element with the following properties: 

 

  

which is assumed to be axially rigid, (i.e. neglect axial deformations), and has 
fourdegrees-of-freedom as indicated in Figure 7.4. 

 
Figure 7.4 
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When this element is displaced within a structure each node will displace in a vertical 
direction and rotate as indicated in Figure 7.5, where δ1 to δ4 are the nodal displacements.  

 

Figure 7.5 

The forces induced in this element by the loaded structure, and which maintain its’ 
displaced form can be represented by the element end forces F1 to F4 as shown in Figure 

7.6. 

 

Figure 7.6 

The element end-forces can be related to the element end-displacements as in the 
previous case giving;  
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where k11, k12, k13 etc. are the stiffness coefficients for the element. 

The displacement configuration in Figure 7.5 can be considered as 
consisting of the superposition of four independent displacements each 
having only one degree-of-freedom as shown in Figure 7.8. 

Similarly the element end-forces can be represented as the superposition 
of four sets of forces, each of which is required to maintain a displaced 
form as indicated in Figure 7.9 

The values of k1,1, k2,1, k3,1 and k4,1 (which represent the forces necessary 
to maintain a unit displacement) can be evaluated using an elastic method 
of analysis such as McCaulay’s Method, (see Chapter 4, Section 4.2). 

Consider the case in which a unit displacement is applied in direction δ1, 
(i.e. the slope at A=−1.0) as shown in Figure 7.7.  

 
Figure 7.7 
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Figure 7.8 
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Figure 7.9 
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e.g. F1={(k1,1 δ1)+(k1,2 δ2)+(k1,3 δ3)+(k1,4 δ4)}   

The bending moment at any position ‘x’ along the element can be expressed as: 

 
Equation 
(1) 

 
Equation 
(2) 

 Equation 
(3) 

   
Substitute for x and θ in equation (2): (x=0, θ=−1.0) 

 

Equation 
(2a) 

Substitute for x and δ in equation (3): (x=0, δ=0) 

 

Equation 
(3a) 

Re-write equations (2a) and (3a): 

 
Equation 
(4) 
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 Equation 
(5) 

Substitute for x and θ in equation (4): (x=L, θ=0) 

 
Equation 
(6) 

Substitute for x and δ in equation (5): (x=L, δ=0) 

 Equation 
(7) 

Solving equations (6) and (7) simultaneously and evaluating ΣM=0, ΣFy=0 gives: 

   

A similar analysis considering the other three unit displacement diagrams produces the 
following values for the element stiffness matrix coefficients:  

 

  

where: 

E is Young’s Modulus, 

I is the Second Moment of area of the cross-section and 

L is the length of the member. 
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This is the ‘element stiffness matrix’ for a beam element with four 
degrees-of-freedom as indicated in Figure 7.10 

 

Figure 7.10 

7.2.3 Local Co-ordinate System 
The co-ordinate system defining the positive directions for the element end displacements 

and the corresponding end forces is known as the ‘local co-ordinate system.’ A typical 
local co-ordinate system for axially rigid elements in a frame is shown in Figure 7.11.  

 

Figure 7.11 

7.2.4 Beam Elements with Six Degrees-of-Freedom 
A typical computer analysis program for plain frame elements in rigid-jointed frames 

uses beam elements with six degrees-of-freedom as shown in Figure 7.12.  

 

Figure 7.12 

The resulting stiffness matrix for such elements is: 
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The values of the stiffness coefficients are as determined in Sections 7.2.1 and 7.2.2, 
combining the effects of both the two and four degree-of-freedom cases. The order in 

which the values appear in the matrix is dependent on the numerical order defined in the 
local co-ordinate system, see Figure 7.12.  

 

  

It is evident from the stiffness matrices developed in each case that they are symmetrical 
about the main diagonal. (this is a consequence of Maxwell’s Reciprocal Theorem). The 

elements in matrices represent the force systems necessary to maintain unit displacements 
as indicated in Figure 7.9. 

The element stiffness matrices must be modified to accommodate the 
orientation of any elements which are not parallel to the ‘global co-
ordinate system’, see Section 7.3. This is achieved by applying 
‘transformation matrices’ such that: 
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where [T] is the transformation matrix relating the rotation of the element to the global 
axis system. This is not considered further in this text.  

7.3 Structural Stiffness Matrix [K] 

The stiffness matrix for an entire structure is dependent on the number of structural 
degrees-of-freedom which corresponds with the nodal (i.e. joint) displacements, e.g. 
consider the structures indicated in Figure 7.13, (Note: assuming axial rigidity).  

 
Figure 7.13 
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Each level of the frame can sway independently of the others and consequently there are 
three degrees-of-freedom due to sway (i.e. translation). In addition all of the internal 

joints can rotate producing nine degrees-of-freedom due to rotation. 

Three of the supports can rotate whilst one i.e. the roller can also move 
horizontally. The total number of degrees-of-freedom when the frame is 
assumed to be axially rigid is equal to SIXTEEN.  

When the axial deformations of the members is also included the number 
of degrees-offreedom increases to THIRTY ONE. 

In order to generate a structural stiffness matrix and complete the 
subsequent analysis it is necessary to establish a global co-ordinate system 
which defines the positions of the nodes and their displacements. The 
global co-ordinate system is also used to define the positive directions of 
the applied load system. 

Consider a portal frame having three degrees-of-freedom as indicated in 
Figure 7.14.  

 

Figure 7.14 

The nodal displacements in the structure can be related to the applied structural loads in 
the same way as those for the elements, i.e. 
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where: 

[P] is a vector representing the equivalent nodal loads applied to the 
structure (see Section 7.3) relative to the global axes—(structural load 
vector),  

[K] is the structural stiffness matrix relating to the degrees-of-freedom at 
the nodes relative to the global axes,  

[∆] is a vector representing the displacements (both translational and 
rotational) of the structure at its nodes relative to the global axes,—
(structural displacement vector).  

The coefficients for the structural stiffness matrix (i.e. K1,1, K1,2, K1,3 etc.) 
can be determined by evaluating the forces necessary to maintain unit 
displacements for each of the degrees-of-freedom in turn; in a similar 
manner to the element stiffness matrices.  

Consider the uniform rectangular portal frame shown in Figure 7.15 which 
supports a number of loads as indicated.  

 

Figure 7.15 

The structural displacements are as indicated in Figure 7.16 (assuming axially rigid 
members). 

Examples in structural analysis     548



 
Figure 7.16 

 

  

Consider Δ3=1.0 ∆1=Δ2=Δ4=0 

 

  

Consider Δ4=1.0 Δ1=Δ2=Δ3=0 
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In each case the size of the structural stiffness matrix is the same as the number of 
degree-of-freedom. 

7.4 Structural Load Vector [P] 

In most cases the loading applied to a structure occurs within, or along the length of the 
elements. Since only nodal loads are used in this analysis, the applied loading must be 
represented as ‘equivalent nodal loads’ corresponding to the degrees-of-freedom of the 
structure. This is easily carried out by replacing the actual load system by a set of forces 

equal in magnitude and opposite in direction to the ‘fixed-end forces.’ 

The Tixed-end forces’ due to the applied loads are calculated for each 
applied load case and only those which correspond to structural degrees-
of-freedom are subsequently used to develop the structural load vector as 
shown in Figures 7.17. to 7.19.  

 
Figure 7.17 
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The structural displacements and equivalent nodal load system are as indicated in 
Figure 7.18, (assuming axially rigid members). 

 

Figure 7.18 

The equivalent nodal loads can be determined as follows:  

 

Figure 7.19 

 

  

7.5 Structural Displacement Vector [A] 

The structural displacement vector can be determined from the product of the inverse of 
the structural stiffness matrix and the structural load vector, i.e.  
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7.6 Element Displacement Vector [δ] 

An element displacement vector is required for each element and is dependent on the 
relationship between the structural displacements and the element nodal displacements in 
each case. The structural displacements in terms of the global co-ordinate system and the 
individual element displacements in terms of their local co-ordinate systems are shown in 

Figure 7.20. 

 

Figure 7.20 

 

  

In the direct stiffness method the correlation between the structural displacements and the 
element displacements is carried out visually by inspection as indicated above.  
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7.7 Element Force Vector [F]Total 

The element end-forces due to the structural displacements can be related to the element 
end-displacements as indicated in Section 7.2.2. 

 

  

The total nodal forces developed at the nodes are given by: 

[F]Total=[F]+[Fixed-End Forces]   

 

  

7.8 Example 7.1: Two-span Beam 

Consider a uniform two-span beam ABC which is fully-fixed at supports A and C and 
simply supported at B as indicated in Figure 7.21. A uniformly distributed load of 24 
kN/m is applied to span AB and a central point load of 24 kN is applied to span BC as 

shown. 

Using the data given, the degrees-of-freedom indicated and assuming both 
members to be axially rigid, 

(i) generate the structural stiffness matrix [K] and the applied load vector [P], 
(ii) determine the structural displacements, 
(iii) determine the member end forces and the support reactions, 
(iv) sketch the shear force and bending moment diagrams, 
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(v) sketch the deflected shape. 

 

Figure 7.21 

Solution: 
To develop the structural stiffness matrix each degree-of-freedom is given a unit 

displacement in turn and the forces (corresponding to all degrees-of-freedom) necessary 
to maintain the displaced shape are determined. In this case there is only one degree-of-

freedom and hence the stiffness matrix comprises one element.  

 

 

The stiffness matrix [K]=[k11]=[1.34EI] 

The inverse of the stiffness matrix  

Structural Load Vector [P]: 
The structural load vector comprises coefficients equal in magnitude and opposite in 

direction to the fixed-end forces which correspond to the structural degrees-of-freedom. 
In this case, only the moment at joint B is required.  
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Figure 7.22 
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7.9 Example 7.2: Rigid–Jointed Frame 

A non-uniform, rigid-jointed frame ABCD is fully-fixed at supports A and D as indicated 
in Figure 7.23. A uniformly distributed load of 3 kN/m is applied to element BC a central 
point load of 5 kN is applied to element AB and a point load at node C as shown. Using 
the data given, the degrees-of-freedom indicated and assuming all members to be axially 

rigid, 
(i) generate the structural stiffness matrix [K] and the applied load vector [P], 
(ii) determine the structural displacements, 
(iii) determine the member end forces and the support reactions, 
(iv) sketch the shear force and bending moment diagrams, 
(vi) sketch the deflected shape. 

 

Figure 7.23 

Solution: 
Each degree-of-freedom is given a unit displacement in turn and the forces necessary to 

maintain the displacements is calculated in each case.  
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There are several methods for inverting matrices, the technique used here is given in 
Appendix 3. 
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The equivalent nodal loads required are those which correspond with the nodal degree-of-
freedom as follows: 
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Direct stiffness method     563
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Figure 7.24 

7.10 Problems: Direct Stiffness Method 
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A series of indeterminate structures are indicated in Problems 7.1 to 7.6 in which the 
assumed degrees-of-freedom at the nodes and the relative EI values for the members are 

given. In each case for the data indicated: 
(i) generate the structural stiffness matrix [K] and the applied load vector [P], (ii) determine the structural displacements [Δ], 
(iii) determine the member end forces [F], 
(iv) determine the support reactions, 

(v) sketch the axial load, shear force, and bending moment 
diagrams and the deflected shape for each structure. 

 

Problem 7.1 

 

Problem 7.2 
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Problem 7.3 

 

Problem 7.4 

 

Problem 7.5 

 

Problem 7.6 
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7.11 Solutions: Direct Stiffness Method 
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8.  
Plastic Analysis 

8.1 Introduction 

The Plastic Moment of Resistance (Mp) of individual member sections can be derived 
as indicated in Section 2.3 of Chapter 2. The value of Mp is the maximum value of 
moment which can be applied to a cross-section before a plastic hinge develops. Consider 
structural collapse in which either individual members may fail or the entire structure 
may fail as a whole due to the development of plastic hinges. 

 
According to the theory of plasticity, a structure is deemed to have reached the limit of 

its load carrying capacity when it forms sufficient hinges to convert it into a mechanism 
with consequent collapse. This is normally one hinge more than the number of degrees-
of-indeterminacy (ID) in the structure as indicated in Figure 8.1.  

 
Figure 8.1 



8.1.1 Partial Collapse 
It is possible for part of a structure to collapse whilst the rest remains stable. In this 

instance full collapse does not occur and the number of hinges required to cause partial 
collapse is less than the (ID+1.0). This is illustrated in the multi-span beam shown in 

Figure 8.2. Ignoring horizontal forces ID=[(2m+r)−2n]=[(2×4)+5−(2×5)]=3  

 

Figure 8.2 

For any given design load applied to a redundant structure, more than one collapse 
mechanism may be possible. The correct mechanism is the one which requires the least 

amount of ‘work done’ for it's inception. 

8.1.2 Conditions for Full Collapse 
There are three conditions which must be satisfied to ensure full collapse of a structure 

and the identification of the true collapse load, they are: 

(i) the mechanism condition in which there must be sufficient plastic hinges to develop 
a mechanism, (i.e. number of plastic hinges ≥[ID+1]), 

(ii) the equilibrium condition in which the bending moments for any collapse 
mechanism must be in equilibrium with the applied collapse loads, 

(iii) the yield condition in which the magnitude of the bending moment anywhere on 
the structure cannot exceed the plastic moment of resistance of the member in which it 
occurs. 

Provided that these three conditions can be satisfied then the true collapse load can be 
identified.  
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If only the mechanism and equilibrium conditions are satisfied then an upper-bound 
(unsafe) solution is obtained in which the collapse load determined is either greater than 
or equal to the true value. 

If only the yield and equilibrium conditions are satisfied then a lower-bound (safe) 
solution is obtained in which the collapse load determined is either less than or equal to 
the true value. 

Since the bending moment cannot exceed the Mp value for a given cross-section it is 
evident that when hinges develop they will occur at the positions of maximum bending 
moment, i.e. at fixed supports, rigid-joints, under point loads and within the region of 
distributed loads. 

The analysis of beams and frames involves determining: 

(i) the collapse loads, 
(ii) the number of hinges required to induce collapse, 
(iii) the possible hinge positions, 
(iv) the independent collapse mechanisms and their associated Mp values, 
(v) the possible combinations of independent mechanisms to obtain the highest 

required Mp value, 
(vi) checking the validity of the calculated value with respect to mechanism, 

equilibrium and yield conditions. 

There are two methods of analysis which are frequently used to determine the values of 
plastic moment of resistance for sections required for a structure to collapse at specified 

factored loads; they are the Static Method and the Kinematic Method. These are 
illustrated with respect to continuous beams in Sections 8.2 to 8.4. and with respect to 

frames in Sections 8.5 to 8.12. 

8.2 Static Method for Continuous Beams 

In the static method of analysis the ‘Free Bending Moment’ diagrams for the structure 
are drawn and the ‘Fixed Bending Moment’ diagrams are then added algebraically. The 
magnitude and ‘sense’ +ve or −ve of the moments must be such that sufficient plastic 
hinges occur to cause the collapse of the whole or a part of the structure. 

In addition, for collapse to occur, adjacent plastic hinges must be 
alternatively ‘opening’ and ‘closing’. For uniform beams the plastic 
moment of resistance of each hinge will be the same i.e. Mp. 

8.2.1 Example 8.1: Encastre Beam 
An encastre beam is 8.0 m long and supports an unfactored load of 40 kN/m as shown 

in Figure 8.3. Assuming that the yield stress py=460 N/mm2 and a load factor λ=1.7, 
determine the required plastic moment of resistance and plastic section modulus.  
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Figure 8.3 

Solution: 
The collapse load=(40.0×1.7)=68.0 kN/m 

The number of hinges required to induce collapse=(ID+1)=3 (see Figure 
8.1) 

The possible hinge positions are at the supports A and B and within the 
region of a distributed load since these are the positions where the 
maximum bending moments occur. Superimpose the fixed and free 
bending moment diagrams:  

 

Figure 8.4 

The beam has two redundancies (ignoring horizontal components of reaction) 
therefore a minimum of three hinges must develop to create a mechanism. Since the 
beam is uniform, at failure all values of the bending moment at the hinge positions must 
be equal to the plastic moment of resistance and cannot be exceeded anywhere: 
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It is evident from the above that all three conditions in Section 8.1.2 are satisfied and 
consequently the Mp value calculated for the required collapse load is true to achieve a 

load factor of 1.7 

8.2.2 Example 8.2: Propped Cantilever 1 
A propped cantilever is 6.0 m long and supports a collapse load of 24 kN as shown in 

Figure 8.5. Determine the required plastic moment of resistance Mp.  

 

Figure 8.5 

Solution: 
The collapse load=24.0 kN 

The number of hinges required to induce collapse=(ID+1)=2 (see Figure 
8.1) 

The possible hinge positions are at the support A and under the point load 
since these are the positions where the maximum bending moments occur. 

The support reactions for the free bending diagram are: VA=8.0 kN and 
VC=16.0 kN 

The maximum free bending moment at Mfree,C,=(8.0×4.0)=32.0 kNm 

The bending moment at B due to the fixed moment= −[M1×(2.0×6.0)] 
=−0.333M1 kNm  
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Figure 8.6 

The beam has one redundancy (ignoring horizontal components of reaction) therefore a 
minimum of two hinges must develop to create a mechanism. Since the beam is uniform, 

at failure all values of the bending moment at the hinge positions must be equal to the 
plastic moment of resistance and cannot be exceeded anywhere: 

   

As in Example 8.1 all three conditions in Section 8.1.2 are satisfied and consequently the 
true value of Mp has been calculated for the given collapse load. 

8.2.3 Example 8.3: Propped Cantilever 2 
A propped cantilever is L m long and supports a collapse load of w kN/m as shown in 

Figure 8.7. Determine the position of the plastic hinges and the required plastic moment 
of resistance Mp.  

 

Figure 8.7 
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Solution: 
The collapse load=w kN/m 

The number of hinges required to induce collapse=(ID+1)=2 (see Figure 
8.1) 

The possible hinge positions are at the support A and within the region of 
a distributed load since these are the positions where the maximum 
bending moments occur. In this case the maximum moment under the 
distributed load does not occur at mid-span since the bending moment 
diagram is not symmetrical. Consider the final bending moment diagram:  

 

Figure 8.8 

The maximum bending moment (i.e. Mp) occurs at a distance ‘x’ from the roller support 
and can be determined as follows; 

Since the moment is a maximum at position ‘x’ the shear force at ‘x’ is 
equal to zero.  

 

Equate the Mp values to determine x:  
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This is a standard value, i.e. for a propped cantilever the plastic hinge in the span occurs 
at a distance x=0.414L from the simply supported end and the value of the plastic 

moment Mp=0.0858wL2 

8.3 Kinematic Method for Continuous Beams 

In this method, a displacement is imposed upon each possible collapse mechanism and an 
equation between external work done and internal work absorbed in forming the hinges is 

developed. The collapse mechanism involving the greatest plastic moment, Mp, is the 
critical one.  

Consider the previous Example 8.1 of an encastre beam with a uniformly 
distributed load. The hinge positions were identified as occurring at A, B 
and the mid-span point (since the beam and loading are symmetrical). 
Assuming rigid links between the hinges, the collapse mechanism of the 
beam when the hinges develop can be drawn as shown in Figure 8.9(c). 
The deformed shape is drawn grossly magnified to enable the relationship 
between the rotations at the hinges and the displacements of the loads to 
be easily identified. 

A virtual work equation can be developed by equating the external work 
done by the applied loads to the internal work done by the formation of the 
hinges where: 
Internal work done during the formation of a hinge=(moment×rotation) 
External work done by a load during displacement=(load×displacement) 
(In the case of distributed loads the average displacement is used). 
The sign convention adopted is: 
Tension on the Bottom of the beam induces a ‘positive’ rotation (i.e. +ve 
bending) 
Tension on the Top of the beam induces a ‘negative’ rotation (i.e. −ve 
bending) 
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Note: the development of both −ve and +ve hinges involves +ve internal 
work  

 

Figure 8.9 

From the deformed shape in Figure 8.9: 

For small values of θ and β  

The load deflects zero at the supports and δ at the centre 

Average displacement of the load  

The Internal Work Done in developing the hinges is found from the 
product of the moment induced (i.e. Mp) and the amount of rotation (e.g. 
θ) for each hinge. 
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The External Work Done by the applied load system is found from the product of the 
load and the displacement for each load. 

 

  

Consider the previous Example 8.2 of propped cantilever with a single point load. The 
hinge positions were identified as occurring at support A, and under the point load at B. 
Assuming rigid links between the hinges, the collapse mechanism of the beam when the 
hinges develop can be drawn as shown in Figure 8.10(c).  

 

Figure 8.10 

From the deformed shape in Figure 8.10: 
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Consider the previous Example 8.3 of a propped cantilever with a uniformly 
distributed load. The hinge positions were identified as occurring at support A, and at a 
point load 0.4142L from the simple support. Assuming rigid links between the hinges, the 
deformed shape of the beam when the hinges develop can be drawn as shown in Figure 
8.11(c).  

 

Figure 8.11 

From the deformed shape in Figure 8.11: 

For small values of θ and/β δ=0.586Lθ=0.414Lβ :. β=1.415θ 

The load deflects zero at the supports and δ at a distance 0.414L from 
support B. 

Average displacement of the load  

Internal Work Done=External Work Done 

Mpθ+Mp(θ+β)=(w×L)×0.293Lθ 

3.415Mpθ=0.293wLθ 

Mp=0.0858wL2 (as before) 
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8.3.1 Example 8.4: Continuous Beam 
A non-uniform, three-span beam is fixed at support A, simply supported on rollers at D, F 
and G and carries unfactored loads as shown in Figure 8.12. Determine the minimum Mp 

value required to ensure a minimum load factor equal to 1.7 for any span.  

 

Figure 8.12 

There are a number of possible elementary beam mechanisms and it is 
necessary to ensure all possibilities have been considered. It is convenient 
in multi-span beams to consider each span separately and identify the 
collapse mechanism involving the greatest plastic moment Mp; this is the 
critical one and results in partial collapse. 

The number of elementary independent mechanisms can be determined 
from evaluating (the number of possible hinge positions—the degree-of-
indeterminacy). 

 

  

Number of independent mechanisms =(7−3)=4 

(Note: In framed structures combinations of independent mechanisms 
must also be considered see Section 8.5). 

λ=1.7 
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Consider span ABCD: 

In this span there are four possible hinge positions, however only three are 
required to induce collapse in the beam. There are two independent 
collapse mechanisms to consider, they are: 

(i) hinges developing at A (moment=2Mp), B (moment=2Mp) and D 
(moment=Mp) 

(ii) hinges developing at A (moment=2Mp), C (moment=2Mp) and D 
(moment=Mp) 

Static Method: 
The free bendng moment at B=119.0 kNm 

The free bendng moment at C=68.0 kNm.  

 

In this span the critical value of Mp=33.06 kNm with hinges developing at 
A, B and D. 

Kinematic Method: 
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Consider span DEF: 

In this span only three hinges are required to induce collapse in the beam. 

Hinges develop at D (moment=Mp), E (moment=Mp) and F (moment=Mp)  
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Consider span FG: 

In this span only two hinges are required to induce collapse in the beam. 

Hinges develop at F (moment=Mp), and between F and G 
(moment=1.5Mp)  

 

Span FG is effectively a propped cantilever and consequently the position of the hinge 
under the uniformly distributed load must be calculated. (Note: it is different from 

Example 8.3 since the plastic moment at each hinge position is not the same).  
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Equate the Mp values to determine x:  

 

8.4 Problems: Plastic Analysis—Continuous Beams 

A series of continuous beams are indicated in which the relative Mp values and the 
applied collapse loadings are given in Problems 8.1 to 8.5. Determine the required value 

of Mp to ensure a minimum load factor λ=1.7.  

 

Problem 8.1 

 
Problem 8.2 
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Problem 8.3 

 

Problem 8.4 

 

Problem 8.5 

8.5 Solutions: Plastic Analysis—Continuous Beams 
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8.6 Rigid-Jointed Frames 

In the case of beams identification of the critical spans (i.e. in terms of Mp or λ) can 
usually be solved quite readily by using either the static or the kinematic method and 
considering simple beam mechanisms. In the case of frames other types of mechanisms, 
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such as sway, joint and gable mechanisms are also considered. Whilst both techniques 
can be used the static method often proves laborious when applied to rigid frames, 
particularly for complex load conditions. It can be easier than the kinematic method in 
the case of determinate or singly redundant frames. Both methods are illustrated in this 
section and in the solutions to the given problems. 

As mentioned previously the kinematic solution gives a lower bound to 
the true solution whilst the static solution gives an upper bound. 

 
  

Two basic types of independent mechanism are shown in Figure 8.13: 

 

Figure 8.13 

Each of these collapse mechanisms can occur independently of each other. It is also 
possible for a critical collapse mechanism to develop which is a combination of the 

independent ones such as indicated in Figure 8.14. 

 

Figure 8.14 

It is necessary to consider all possible combinations to identify the critical collapse 
mode. The Mp value is determined for each independent mechanism and then combined 
mechanisms are evaluated to establish a maximum value of Mp (i.e. minimum λ). The 
purpose of combining mechanisms is to eliminate sufficient hinges which exist in the 
independent mechanisms, leaving only the minimum number required in the resulting 
combination to induce collapse. 

It is necessary when carrying out a kinematic solution, to draw the 
bending moment diagram to ensure that at no point the Mp value 
determined, is exceeded. 
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8.6.1 Example 8.5: Frame 1 
An asymmetric uniform, frame is pinned at supports A and G and is subjected to a 

system of factored loads as shown in Figure 8.15. Assuming the λvertical.load=1.7 and 
λhorizontal loads=1.4 determine the required plastic moment of resistance Mp of the section.  

 

Figure 8.15 

 

  

Kinematic Method: 
Consider each independent mechanism separately. 

Mechanism (i): Beam ABC  
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Combinations: 
Consider the independent mechanisms, their associated work equations and Mp values 

as shown in Figure 8.16: 
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Figure 8.16 

It is evident from inspection of the collapse mechanisms that the hinges located at C 
and E can be eliminated since in some cases the rotation is negative whilst in others it is 
positive. The minimum number of hinges to induce total collapse is one more than the 
number of redundancies, i.e. (ID+1)=2 and therefore the independent mechanisms should 
be combined to try and achieve this and at the same time maximize the associated Mp 
value. It is unlikely that mechanism (i) will be included in the failure mechanism since its 
associated Mp value is relatively small compared to the others. It is necessary to 
investigate several possibilities and confirm the resulting solution by checking that the 
bending moments do not exceed the plastic moment of resistance at any section. 

Combination 1: Mechanism (v)=[(ii)+(iv)] 

When combining these mechanisms the hinge at C will be eliminated and 
the resulting Mp value can be determined by adding the work equations. It 
is necessary to allow for the removal of the hinge at C in the internal work 
done since in each equation an (Mpθ) term has been included, but the 
hinge no longer exists. A total of 2Mp must therefore be subtracted from 
the resulting internal work, i.e. 
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It is possible that this is the true collapse mechanism, however this would have to be 
confirmed as indicated above by satisfying conditions (ii) and (iii) in Section 8.1.2. 

An alternative solution is also possible where the hinges at C and E are 
eliminated, this can be a achieved if mechanism (v) is combined with 
mechanism (iii). 

In mechanism (v) β=0.5θ (see the sway calculation above) and hence the 
total rotation at joint E=−(θ+β)=−1.5θ. If this hinge is to be eliminated 
then the combinations of mechanisms (iii) and (v) must be in the 
proportions of 1.5:1.0. (Note: when developing mechanism (v) the 
proportions were 1:1). 

The total value of the internal work for the eliminated 
hinge=(2×1.5Mp)=3.0Mp, i.e. 

 

  

 

  

The +ve rotation indicates tension inside the frame at point D and the −ve rotation 
indicates tension outside the frame at point F. 
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This is marginally higher than the previous value and since there does not 
appear to be any other obvious collapse mechanism, this result should be 
checked as follows:  

 

Figure 8.17 
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Figure 8.18 

The three conditions indicated in Section 8.1.2 have been satisfied: i.e. 

Mechanism condition: minimum number of hinges required=(ID+1)=2 
hinges, 

Equilibrium condition: the internal moments are in equilibrium with the 
collapse loads, 

Yield condition: the bending moment does not exceed Mp anywhere in the 
frame. 

Mp kinematic=Mp static=Mp true 
  

It is often convenient to carry-out the calculation of combinations using a table as shown 
in Table 8.1; eliminated hinges are indicated by EH in the Table. 

Independent and Combined Mechanisms for Example 8.5 

Hinge 
Position 

(i) (ii) (iii) (iv) (v)=(ii)+(iv) (vi)=(v)+1.5(iii) 
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B(MP) +2.0θ − − − − − 

C(Mp) −θ −θ − +θ EH 
(2.0Mpθ) 

EH (2.0Mpθ) 

D (Mp) − +2.0θ − − +2.0θ +2.0θ 

E (Mp) − −θ +θ −0.5θ −1.5θ EH (3.0Mpθ) 

F (Mp) − − −2.0θ − − −3.0θ 

External 
Work 

31.5θ 136.0θ 63.0θ 63.0θ 199.0θ 293.5θ 

Internal 
Work 

3.0Mpθ 4.0Mpθ 3.0Mpθ 1.5Mpθ 5.5Mpθ 10.0Mpθ 

Eliminated 
hinges 

− − − − 2.0Mpθ 5.0Mpθ 

Combined 
MPθ 

− − − − 3.5MPθ 5.0Mpθ 

Mp (kNm) 10.5 34.0 21.0 42.0 56.86 58.70 

Table 8.1 

Static Method: 
This frame can also be analysed readily using the static method since it only has one 

degree-of-indeterminacy. When using this method the frame can be considered as the 
superposition of two frames; one statically determinate and one involving only the 
assumed redundant reaction as shown in Figure 8.19. Applying the three equations of 
equilibrium to the two force systems results in the support reactions indicated.  
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Figure 8.19 

 
  

Equations can be developed for each of the five possible hinge positions in terms of the 
two frames as follows: 

 
Equation 
(1) 

 
Equation 
(2) 

 Equation 
(3) 

 
Equation 
(4) 
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Equation 
(5) 

As indicated previously, only two hinges are required to induce total collapse. A collapse 
mechanism involving two hinge positions can be assumed and the associated equations 
will each have two unknown values, i.e. HG and Mp and can be solved simultaneously. 

The value of the bending moment at all other hinge positions can then be 
checked to ensure that they do not exceed the calculated Mp value. If any 
one does exceed the value then the assumed mechanism was incorrect and 
others can be checked until the true one is identified. 

Assume a mechanism inducing hinges at D and E as in (v) above. 

 

  

 
Equation 
(6) 

 
Equation 
(7) 

Add equations (6) and (7): 
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Check the value of the moments at all other possible hinge positions.  

 

Since the bending moment at F is greater than Mp this mechanism does not satisfy the 
‘yield condition’ and produces an unsafe solution. 

The reader should repeat the above calculation assuming hinges develop at 
positions D and F and confirm that the true solution is when Mp=58.7 
kNm as determined previously using the kinematic method.  

8.7 Problems: Plastic Analysis—Rigid-Jointed Frames 1 

A series of rigid-jointed frames are indicated in Problems 8.6 to 8.9 in which the relative 
Mp values and the applied collapse loads are given. In each case determine the required 
Mp value, the value of the support reactions and sketch the bending moment diagram.  

 
Problem 8.6 
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Problem 8.7 

 
Problem 8.8 
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Problem 8.9 
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8.8 Solutions: Plastic Analysis—Rigid-Jointed Frames 1 
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8.9 Example 8.6: Joint Mechanism 

In framed structures where there are more than two members meeting at a joint there is 
the possibility of a joint mechanism developing within a collapse mechanism. Consider 
the frame shown in Figure 8.20 with the collapse loads indicated. At joint C individual 
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hinges can develop in members CBA, CDE and CFG giving three possible hinge 
positions at the joint in addition to positions B, D F and G. 

 

Figure 8.20 

Factored loads: as given 

 

  

Kinematic Method: 
Consider each independent mechanism separately. 

Mechanism (i): Beam ABC 
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The hinge at joint C is assumed to develop in member ABC at C1.  

 

Mechanism (ii): Joint 

The joint at C can rotate either in a clockwise direction or an anti-
clockwise direction.  
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The independent mechanisms can be entered into a table as before and the 
possible combinations investigated. 

In this example ID=2 and consequently a minimum of three hinges is 
required to induce total collapse. 

Since mechanisms (i) and (iv) have a significantly higher associated Mp 
value these have been selected to combine with the joint mechanism to 
produce a possible combination: 

Mechanism (vi): the addition of mechanisms (i)+(iv)+(v)(a)  

Independent and Combined Mechanisms for Example 8.6 

Hinge 
Position 

(i) (ii) (iii) (iv) (v) (vi)=(i)+(iv)+(v)(a) 

B (MP) +2.0θ − − − (a) (b) +2.0θ 

C1 (Mp) −θ − − − +θ −θ EH (2.0Mpθ) 

C2 (Mp)   −θ   − −θ +θ −θ 

C3 (Mp)   − −θ +θ −θ +θ EH (2.0Mpθ) 

D (Mp) − +2.0θ − − − − 

F (Mp) − − +2.0θ −θ − − 

G (Mp) − − −θ − − −θ 

External 
Work 

60.0θ 20.0θ 22.5θ 22.5θ − 82.5θ 

Internal 
Work 

3.0Mpθ 3.0Mpθ 4.0MPθ 2.0Mpθ 3.0Mpθ 8.0Mpθ 
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Eliminated 
hinges 

− − − − − 4.0Mpθ 

Combined 
Mpθ 

− − − − − 4.0MPθ 

Mp (kNm) 20.0 6.67 5.63 11.25 − 20.63 

Table 8.2 

 

Figure 8.21 
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Figure 8.22 

 

  

8.10 Problems: Plastic Analysis—Rigid-Jointed Frames 2 

A series of rigid-jointed frames are indicated in Problems 8.10 to 8.15 in which the 
relative Mp values and the applied collapse loads are given. In each case determine the 
required Mp value, the value of the support reactions and sketch the bending moment 
diagram.  
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Problem 8.10 

 

Problem 8.11 
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Problem 8.12 

 

Problem 8.13 

 

Problem 8.14 

 
Problem 8.15 
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8.11 Solutions: Plastic Analysis—Rigid-Jointed Frames 2 
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8.12 Gable Mechanism 

Another type of independent mechanism which is characteristic of pitched roof portal 
frames is the Gable Mechanism, as shown in Figure 8.23 with simple beam and sway 
mechanisms. 
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Figure 8.23 

In the beam and gable mechanisms the rafter of the frame is sloping and it is necessary 
to evaluate the displacement in the direction of the load. i.e. not necessarily perpendicular 
to the member as in previous examples. Consider the typical sloping member ABC 
shown in Figure 8.24(a) which is subject to a horizontal and a vertical load as indicated. 

 

Figure 8.24 

Assume that during the formation of a mechanism the centre-of-rotation of the 
member is point A and point C displaces in a perpendicular direction to ABC to point C'. 
For small rotations (α) of member ABC, δC′=LACα 

The vertical and horizontal displacements of C are given by δC,vertical=δC 
Cosθ=LADα and δC,horizontal=δC Sinθ=LCDα as shown in Figure 8.24(b), 
where θ is the angle of the member ABC to the horizontal. The vertical 
and horizontal displacements at point B can be determined in a similar 
manner. 

Examples in structural analysis     722



These values can then be used in the calculation of external work for the 
work equation.  

8.13 Instantaneous Centre of Rotation 

In more complex frames it is convenient to use the ‘instantaneous centre of rotation 
method’ when developing a collapse mechanism. The technique is explained below in 
relation to a simple rectangular portal frame and subsequently in Example 8.7. 

Consider the asymmetric rectangular frame shown in Figure 8.25 in which 
there are two independent mechanisms, one beam and one sway. The 
frame requires three hinges to cause collapse. Both mechanisms can 
combine to produce a collapse mechanism with hinges developing at A, C 
and D. In this mechanism there are three rigid-links, AB′C′, C′D′ and D′E 
as shown. 

 

Figure 8.25 

The centre-of-rotation for link AB′C′ is at A and the remote end C moves in a 
direction perpendicular to line AC shown. The centre-of-rotation for link D′E is at E and 
the remote end D moves in a direction perpendicular to line ED shown. 

In the case of link C′D′, the centre-of-rotation must be determined by 
considering the direction of movement of each end. C′ moves in a 
direction perpendicular to AC and consequently the centre-of-rotation 
must line on an extension of this line. Similarly, it must also lie on a line 
perpendicular to the movement of D, i.e. on an extension of ED. This 
construction is shown in Figure 8.26(a). The position of this centre-of-
rotation is known as the instantaneous centre-of-rotation and occurs at the 
instant of collapse.  
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The work equations can be developed and the required Mp value 
determined by considering the rotation of the hinges and the displacements 
of the loads. Consider the geometry shown in Figure 8.26(b) and equate 
the displacements in terms of θ, β and α as follows: 

 

  

(Note: equating the horizontal displacement of point C will give the same result, i.e. 
δC,horizontal=3.0α= 6.0θ) 

The rotation at the hinge at A=α=2.0θ 
Note: no internal work is done at support E 
Internal Work Done=External Work Done 

 
  

The reader should confirm that this is the critical value by calculating the reactions and 
checking that the bending moment on the frame does not exceed the appropriate Mp value 

for any member. (Note: In the case of member BCD this is equal to 2.0Mp=40 kNm). 

Examples in structural analysis     724



8.14 Example 8.7: Pitched Roof Frame 

A non-uniform, asymmetric frame is pinned at support A, fixed at support F and is 
required to carry collapse loads as indicated in Figure 8.27. Determine the minimum 

required value of Mp.  

 

Figure 8.27 

Factored loads: as given 

 

  

Kinematic Method: 
Consider each independent mechanism separately.  
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Combined Mechanism (iv): [2×mechanism (i)]+mechanism (iii) which eliminates a hinge 
at C 
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The reader should confirm that this is the critical value by calculating the reactions and 
checking that the bending moment on the frame does not exceed the appropriate Mp value 

for any member. (Note: In the case of support F this is equal to 2.0Mp=93.70 kNm). 

Alternatively, adding the virtual work equations:  

 

  

The combined mechanism can be evaluated in a Table as shown:  

Independent and Combined Mechanisms for Example 8.7 

Hinge Position (i) (ii) (iii) (iv) (v)=2(i)+(iii) 

B (Mp) +2.0θ – – – +2.0 θ 

C (Mp) −θ −θ – +2.0θ EH (2.0Mpθ) 

D (Mp) – +2.00 – – – 
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E (Mp) – −θ +θ −2.25θ −2.25θ 

F (2Mp) – – −2.0θ – – 

External Work 60.0θ 60.0θ 63.0θ 290.0θ 410.0θ 

Internal Work 3.0Mpθ 4.0Mpθ 3.0Mpθ 6.75Mpθ 10.75Mpθ 

Eliminated hinges – – – – 2.0Mpθ 

Combined Mpθ – – – – 8.75Mpθ 

Mp (kNm) 20.0 15.0 21.0 42.96 46,86 

 
Figure 8.28 
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8.15 Problems: Plastic Analysis—Rigid-Jointed Frames 3 

A series of rigid-jointed frames are indicated in Problems 8.16 to 8.21 in which the 
relative Mp values and the applied collapse loads are given. In each case determine the 
required Mp value, the value of the support reactions and sketch the bending moment 

diagram.  

 

Problem 8.16 

 
Problem 8.17 
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Problem 8.18 

 
Problem 8.19 
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Problem 8.20 

 

Problem 8.21 
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8.16 Solutions: Plastic Analysis—Rigid-Jointed Frames 3 
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Appendix 1  
Elastic Section Properties of Geometric 

Figures 

A  =  Cross-sectional area 

y1 or y2  =  Distance to centroid 

zxx  =  Elastic Section Modulus about the x-x axis 

rxx  =  Radius of Gyration about the x-x axis 

Ixx  =  Second Moment of Area about the x-x axis 
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Appendix 2 
Beam Reactions, Bending Moments and 

Deflections 

Simply Supported Beams 

Cantilever Beams 

Propped Cantilevers 

Fixed-End Beams 
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Appendix 3  
Matrix Algebra 

Product of a Matrix and a Vector: 
Consider three variables a1, α2 and α3 which are related to three other variables c1, c2 and 

c3 by the three equations (1), (2) and (3) as indicated: 

 
Equation 
(1) 

 
Equation 
(2) 

 
Equation 
(3)  

these equations can be represented in matrix form as: 

i.e. 

 

  

where b11, b12, b13 etc. are the coefficients for the square matrix [B]. 



Clearly for known values of c1, c2 and c3 the values of a1, α2 and α3 can be 
determined directly. If however, it is required to determine the ‘c’ values 
for given ‘a’ values then the relationship must be re-written as: 

   

and the INVERT of matrix [B] must be obtained. 

The invert of a matrix can be defined as: 

 
  

where adj B is the adjoint of matrix [B] and is equal to the transpose of the co-factor 
matrix [Bc] of matrix [B], i.e. 

   

The co-factor matrix is given by replacing each element in the matrix by its’ co-factor, 
i.e.  
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Example A.1 
Determine the values of c1, and c2 given that: 

 
  

Solution: 
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c1={+(0.8×40.0)−(0.6×45.0)}=+5.0 

c2={−(0.2×40.0)+(0.4×45.0)}=+10.0 

  

Example A.2 
Determine the values of c1, c2 and c3 given that: 

 

  

Solution: 

Determine the co-factor matrix: 

 

  

Determinant of [B]: 
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Index 

 

A 
Arbitrary sway force 388 
Aspect ratio 54 
Axial rigidity 20 
Axial stiffness 475 
Axial stress 23 

 

B 
Beam deflection 
Beam mechanism (plastic) 556, 564 
Bending moment 157, 159 
diagrams 163, 170 
free 271, 287 
557 
fixed 271, 282 
557 
sign convention: beams 163 
sign convention: frames 316 
Bending stiffness (absolute) 269 
Bending stiffness (relative) 270 
Bending stress 23, 26 
27, 40, 43, 53 
Brittle materials 23, 26 
Buckling 25, 54 
432, 455 
critical stress 436, 440 
effective buckling length 438, 439 
448 
intermediate elements 433, 436 
444 
limiting slenderness 445 
mode shapes (pinned columns) 438 
Perry-Robertson formula 441 



Perry strut formula 445, 448 
secondary stresses 434 
short elements 433, 435 
444 
slenderness 432, 433 
441, 448 
slender elements 433, 436 
444 

 

C  
Carry-over moment 270 
Castigliano’s 1st Theorem 113, 114 
115 
Centre-of-gravity 32 
Centroid 28, 32, 38 
Centroidal axes 28 
Coefficient of thermal expansion 27 
Collapse (plastic) 
full 556 
partial 556 
Collapse load (plastic) 51 
Combined mechanism (plastic) 589, 591 
Compact section 54, 56 
Compound pin-jointed frames 15 
Compound section 42, 452 
Connections 8 
Co-ordinate systems 
global 474, 484 
local 481,482 
Critical load 
Critical stress 436, 440 
Cross-sectional area 28, 38 

 

D 
Deflection 
beams 183, 208 
222 
pin-jointed frames 116, 122 
222 
Degree-of-indeterminacy 8, 11 
15, 21 
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Degrees-of-freedom 1, 18 
21, 477, 483 
beam elements 475, 476 
481 
pin-jointed frames 18 
rigid-jointed frames 18 
Direct stiffness method 474, 504 
Distribution factors 278 
Distribution of load 10 

 

E 
Effective buckling length 438, 439 
448 
Elastic cross-section properties 
Elastic limit 23, 444 
Elastic moment of resistance 52 
Elastic neutral axis 28, 40 
Elastic section modulus 28, 43 
45, 53, 56 
Elasto-plastic moment 52 
Element co-ordinate system 474 
Element displacement vector 474, 488 
Element end-forces vector 474, 489 
Element stiffness matrix 474, 476 
Encastre beam 272 
Equilibrium 1, 3, 9, 11 
Equivalent nodal loads 487 
Equivalent UDL 189, 191 
Euler load/stress 437, 440 
444 
European column curves 445 
Perry factor 445 
Perry-strut formula 445 
Robertson constant 445, 446 
External work done (plastic) 561, 562 
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F  
Factor of safety 51 
First moment of area 33, 54 
Fixed supports 15 
Fixed-end moment 271, 486 
Foundations 7, 8 
Fracture 24 
Frames 
pin-jointed 4, 8 
18, 62, 121, 140 
rigid-jointed 4, 8 
314, 315, 324, 340, 346, 385, 397 
plastic analysis 586, 593 
615, 654 
Free bending moment 271, 557 
 

G 
Gable mechanism 586, 648 
Global co-ordinate system 474, 482 
484 

 

H 
Hooke’s Law 23, 25, 27 

 

I 
Independent mechanism (plastic) 557, 589 
Indeterminacy 3, 8, 21 
555 
pin-jointed frames 11, 18 
rigid-jointed frames 15, 19 
Instability (buckling) 455 
Instantaneous centre of rotation 649 
Internal Work done (plastic) 561, 562 
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J  
Joint mechanism (plastic) 586, 611 
 

K 
Kinematic method (plastic analysis) 557, 560 

 

L 
Laced section 450 
Lack-of-fit 120 
Lateral distribution 9 
Limiting elastic moment 52 
Limiting slenderness 445 
Line diagrams 4 
Loading 9 
collapse 51 
Load distribution 10 
Load factor 51 
Load path 7 
Local co-ordinate system 481, 482 
Lower bound solution (plastic) 557, 586 

 

M 
MaCaulay’s Method 183, 191 
477 
Mathematical modelling 4, 9 
Mechanism condition 
Method of joint-resolution 62, 65 
Method of sections 62, 67 
Method of tension coefficients 62, 93 
Modelling 4, 9 
Modulus of elasticity 25, 27 
Modulus of rigidity (shear) 26 
Modulus of rupture (bending) 26 
Modulus of rupture (torsion) 26 
Moment connections 314, 315 
Moment distribution 269, 289 
arbitrary sway force 388 
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absolute stiffness 270 
carry-over moment 270, 282 
338 
distribution factors 278, 281 
338 
effect of pinned end 270, 282 
relative stiffness 270, 281 
out-of-balance moment 282, 284 
338 
prop force 386, 387 
sway force 386 
Moment of area (1st) 33, 54 
Moment of area (2nd) 41, 45 

 

N 
Necking 23 
Neutral axis 
elastic 28, 40 
plastic 52, 53, 57 
Neutral surface 40 
No-sway frames 340, 346 
386 
Nodal displacements 476 
Nodal forces 489 

 

O 
One-way spanning slabs 10 
Out-of-balance moment 282 

 

P  
Parallel axis Theorem 28, 41 
Perry factor 445 
Perry-Robertson Formula 441, 444 
Perry strut formula 445, 448 
Pin-jointed frames 4, 8, 18 
62, 121, 140 
Pin-jointed space frame 93 
Pinned support 8, 11 
Plastic collapse (full) 556 
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equilibrium condition 556 
mechanism condition 556 
yield condition 556 
Plastic collapse (partial) 556 
Plastic cross-section properties 51, 57 
Plastic hinge 52, 53 
555 
Plastic moment of resistance 52, 53 
555 
Plastic neutral axis 52, 53, 57 
Plastic section 52, 54, 56 
Plastic section modulus 53, 54 
56, 57 
Poisson’s ratio 27 
Principle of superposition 202 
Prop force 386, 387 
Proportional limit 23 
Propped cantilever 275 

 

R 
Radius of curvature 183 
Radius of gyration 41, 42 436 
Reactions 7 
Redundancy 16 
redundant member 11, 13 
135 
redundant reaction 11, 12 
Rigid connections 8, 314 
315 
Rigid-jointed Frames 4, 8, 314 
324, 340, 346, 385, 397 
Robertson constant 445, 446 
Roller support 8, 11 
Rotational stiffness 269 

 

S 
Secant modulus 25 
Secondary stresses 314, 434 
Section modulus 
elastic 28, 43 
45, 53, 56 
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plastic 53, 54 
56, 57 
Second moment of area 28, 41 
42, 45 
Section classification 54 
Semi-compact section 54, 56 
Settlement 289, 299 
Shape factor 54, 57 
Shear force 157, 159 
Shear force diagram 159, 170 
Shear rigidity 26 
Sign conventions 
bending moments for beams 163 
shear forces 161 
static equilibrium 2 
Simple connections 8, 315 
Simple pin-jointed frames 12, 13 
Slender section 54, 56 
Slenderness ratio 432, 433 
441, 448 
Strain energy 
axial load effects 113, 114 
bending effects 
Stability 3 
Static equilibrium 2, 63 
Static method (plastic analysis) 557 
Statical determinacy 3 
Statical indeterminacy 3 
Statically determinate beams 157 
Statically determinate frames 314, 315 
324 
Statically indeterminate beams 252, 258 
Statically indeterminate frames 315 
Stiffness 474 
absolute 269 
axial 475 
relative 270, 281 
Stiffness coefficients 477 
Stiffness matrix 
element 474, 476 
482 
structural 474, 483 
486 
Strain 23, 25 
Strain energy (axial effects) 113 
strain energy (bending effects) 208 

Index     788



Strain-hardening 23, 51 
Stress 23 
axial 23 
bending 26, 27, 40 
43, 53 
permissible 51 
working 51 
yield 51, 52 
Structural degrees-of-freedom 18 
Structural displacement vector 484, 488 
Structural load vector 484, 486 
Structural loading 9 
Struts 32 
Sub-frames 
Superposition 120, 135 
202, 285, 387, 477 
Support 
encastre (fixed) 15 
pinned 8, 11 
14, 15 
roller 8, 11 
14, 15 
Sway force 386 
Sway frames 385, 386 
397 
Sway mechanism 586, 648 

 

T 
Tangent modulus 25 
Tangent Modulus Theorem 441, 444 
Temperature change 27 
Tension coefficient 93, 94 
Thermal effects 27, 120 
Ties 62 
Transformation matrix 482 
simple 12, 13 
compound 15 
Trusses 94, 95 
Two-dimensional force systems 2 
Two-way spanning slabs 10 
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U 
Ultimate strain 23 
Ultimate stress 51 
Ultimate tensile strength 26 
Unit load Method 113 
determinate pin-jointed frames 116, 122 
indeterminate pin-jointed frames 135, 140 
beams (deflection) 208 
indeterminate beams 252, 258 
269 
Upper bound solution (plastic) 557, 586 
Upper yield stress 24 

 

V 
Virtual work 561 

 

W 
Work equations (plastic analysis) 
internal work-done 561, 562 
external work-done 561, 562 

 

Y 
Yield condition 556 
Yield point 26, 51 
Yield strength 26, 433 
Yield stress 23, 51 
52, 436, 444 
Young’s modulus 23, 27 

 

Index     790


	Book Cover
	Half-Title
	Series Title
	Title
	Copyright
	Contents
	Preface
	Acknowledgements
	1. Structural Analysis and Design
	2. Material and Section Properties
	3. Pin-Jointed Frames
	4. Beams
	5. Rigid-Jointed Frames
	6. Buckling Instability
	7. Direct Stiffness Method
	8. Plastic Analysis
	Appendix 1: Elastic Section Properties of Geometric Figures
	Appendix 2: Beam Reactions, Bending Moments and Deflections
	Appendix 3: Matrix Algebra
	Index



